Magnetic field effects on the CDW and SC states in -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres,...

download Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.

If you can't read please download the document

Transcript of Magnetic field effects on the CDW and SC states in -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres,...

  • Slide 1
  • Magnetic field effects on the CDW and SC states in -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark Kartsovnik Walther-Meiner-Institut, Bayerische Akademie der Wissenschaften, Garching, Germany Ilya Sheikin Laboratoire National des Champs Magntiques Intenses, Grenoble, France Harald Mller European Synchrotron Radiation Facility, Grenoble, France Natalia Kushch Institute of Problems of Chemical Physics, Chernogolovka, Russia
  • Slide 2
  • c a -(BEDT-TTF) 2 KHg(SCN) 4 : basic features BEDT-TTF molecule: bis(ethylenedithio)-tetrathiafulvalene a b || (300K) 10 20 m cm / || ~ 10 4 10 5 a / c 2 (300K) / (1.4K) ~ 10 2 t || /t 670 ,coh / || 2.2 10 -6 T. Mori et al., Bull. Chem. Soc. Jpn. 1990; R. Rousseau et al., J. Phys. I (France) 1996; P. Foury-Leylekian et al., PRB 2010
  • Slide 3
  • -(BEDT-TTF) 2 KHg(SCN) 4 : basic features 2D Fermi surface CDW formation at 8 K Nesting instability of the Fermi surface Q very low!! small CDW k B T CDW high sensitivity to external conditions: pressure, magnetic field [P. Foury-Leylekian et al., PRB 2010]
  • Slide 4
  • Q+Q+ Q-Q- CDW in a magnetic field Pauli paramagnetic effect: suppresses CDW [W. Dieterich & P. Fulde, 1973] 2BB/vF2BB/vF B Q - < Q + T CDW /T CDW (0), exp Phase diagram of -(BEDT-TTF) 2 KHg(SCN) 4 P. Christ, W. Biberacher, M.K., et al., JETP Lett. 2000 ~ 23 T T CDW /T CDW (0) Theory: A. Buzdin & V. Tugushev, JETP 1983 D. Zanchi et al., PRB 1996; P. Grigoriev & D. Lyubshin, PRB 2005 CDW x CDW 0 NM
  • Slide 5
  • CDW in a magnetic field Orbital effect (requires an imperfectly nested FS): stimulates CDW
  • Slide 6
  • CDW in a magnetic field Orbital effect (requires an imperfectly nested FS): stimulates CDW y ~ 1/B z electrons become effectively more 1D Real space orbit:
  • Slide 7
  • D. Andres, M.K., et al., PRB 2001 -(BEDT-TTF) 2 KHg(SCN) 4 CDW in a magnetic field Orbital effect (requires an imperfectly nested FS): stimulates CDW Theory: D. Zanchi et al., PRB 1996
  • Slide 8
  • R (deg) CDW in a magnetic field Orbital effect (requires an imperfectly nested FS): stimulates CDW Angle-dependent MagnetoResistance Oscillations (AMRO) in -(BEDT-TTF) 2 KHg(SCN) 4 P > P c ambient pressure M.K. et al., SSC 1994 normal state CDW state normal state field-induced
  • Slide 9
  • D. Andres, M.K., et al., PRB 2001 -(BEDT-TTF) 2 KHg(SCN) 4 CDW in a magnetic field Orbital effect (requires an imperfectly nested FS): stimulates CDW Theory: D. Zanchi et al., PRB 1996 FICDW at t > t * ??? L. Gorkov & A. Lebed, J. Phys. Lett. (Paris) 1984
  • Slide 10
  • CDW in a magnetic field Field-induced CDW (FICDW) transitions The slow oscillations appear at P P c 2.5 kbar approximately periodic with 1/B SdHo display a weak hysteresis P = 3 kbar Positions of the FICDW transitions can be fitted with t 0.5 meV [A. Lebed, PRL 2010]
  • Slide 11
  • CDW in a magnetic field Field-induced CDW (FICDW) transitions A. Kornilov et al., PRB 2002 FICDW in -(BEDT-TTF) 2 KHg(SCN) 4 FISDW in (TMTSF) 2 PF 6 A. Lebed, JETP Lett. 2003 FICDW is weaker than FISDW due to the paramagnetic effect!
  • Slide 12
  • Superconductivity vs. CDW Sample #2: zero resistance but no Meissner! R (Ohm) R 0 R = 0 Resistance at zero field See also: H. Ito et al., SSC 85 1005 (1993) inhomogeneous superconductivity at P = 0
  • Slide 13
  • Superconductivity vs. CDW A. Kusmartseva et al., PRL 2009 Cu x TiSe 2 NbSe 3 S. Yasuzuka et al., J. Phys. Soc. Jpn. 2005 R. Yomo et al., PRB 2005 ZrTe 3 (TMTSF) 2 PF 6 I. J. Lee et al., PRL 2002
  • Slide 14
  • Superconductivity vs. CDW Onset of superconductivity
  • Slide 15
  • The SC onset temperature is 3 times higher in the SC/CDW coexistence region! The SC onset temperature is 3 times higher in the SC/CDW coexistence region! Superconductivity vs. CDW Onset of superconductivity CDW+SC R = 0 R 0
  • Slide 16
  • Superconductivity in a magnetic field; P > P c Critical field layers at P = 3 kbar: (0) 250 nm cf. mean free path 1 m
  • Slide 17
  • Superconductivity in a magnetic field; P > P c Critical field // layers GL: H c2 (T c -T ) H p0 : Chandrasekhar-Clogston paramagnetic limit dH c2 /dT 12 T/K (0) = 1.0 nm d/2; || (0)/ (0) 250! 1.6H p0
  • Slide 18
  • Superconductivity in a magnetic field; P > P c T = 90 mK
  • Slide 19
  • Superconductivity in a magnetic field; P > P c Direct manifestation of the paramagnetic pair-breaking Direct manifestation of the paramagnetic pair-breaking!
  • Slide 20
  • Summary CDW state: rich phase diagram due to the interplay of Pauli paramagnetiorbital competing Pauli paramagnetic and orbital effects of magnetic field SC state: at P < P c : coexists with the CDW state; the SC onset temperature is drastically increased in the coexistence region; at P > P c : bulk SC state with a highly anisotropic H c2 near T c (0) and a clear paramagnetic pair-breaking manifestation of paramagnetic pair-breaking at H // layers.
  • Slide 21
  • CDW in a magnetic field Field-induced density wave transitions, t >t *: B kFkF -k F Q x = 2k F + NG, G = ea y B z /
  • Slide 22
  • CDW in a magnetic field Field-induced CDW (FICDW) transitions 2Q P = MG N =3,43,42,32,3 1,21,2 0,10,1 0 Commensurate splitting (A. Bjelis et al., 1999; A. Lebed, 2003) Spin-zero 2Q P = (M + 1/2)G with M - integer
  • Slide 23
  • CDW in a magnetic field Field-induced CDW (FICDW) transitions N =5 4 3 2 1 0 4 33 2 1 2 1 0 0 no Pauli effect (FISDW) Pauli effect on (FICDW) Q x = 2k F + NG Q x = 2k F Q P + NG G = 2ea y B z / Q P = 2 B B/ v F
  • Slide 24
  • CDW in a magnetic field Field-induced CDW (FICDW) transitions 4 N = 33 2 1 2 1 0 0 no Pauli effect (FISDW) Pauli effect on (FICDW) Q x = 2k F + NG Q x = 2k F Q P + NG A. Lebed, JETP Lett. 78, 138 (2003) G = 2ea y B z / Q P = 2 B B/ v F
  • Slide 25
  • CDW in a magnetic field Field-induced CDW (FICDW) transitions Spin-zero condition: v F 1.2 10 5 m/s
  • Slide 26
  • The SC onset temperature is 3 times higher in the SC/CDW coexistence region! The SC onset temperature is 3 times higher in the SC/CDW coexistence region! Superconductivity vs. CDW Onset of superconductivity CDW+SC R = 0 R 0 Ginzburg-Levanyuk parameter: Gi (2) ~ 10 -5 Low Tc weak fluctuations!
  • Slide 27
  • Superconductivity in a magnetic field; P > P c B (mT) Critical field layers
  • Slide 28
  • Superconductivity in a magnetic field; P > P c Critical field // layers