Logbook week 1

7
Sketch of overlay It was interesting to see in week 1’s activity: compression, all groups chose to opt for a circular structure with the bricks layered on top of each other in an overlapping pattern. A solid structural system was applied to this activity as it was the most logical use of the material given – wooden bricks. The brick layering method for construction provided with the most stability while a circular shape provided the most efficient use of material. When compared to the squarebased structure of another group (pictured right), the circular base (pictured left) was just as efficient in providing space for the dog and creating stability while using less blocks, thus freeing material for establishing tower height. Challenges encountered: Creating the required opening for the toy dog to enter the structure Creating windows in the structure Maintaining stability after reaching a particular height In the creation of the arch we found that the most efficient method was to add each ‘overlay’ block one at a time, building the structure away from the overlay block to counterbalance the weight of the overlay and the pull of gravity towards the ground. When built from both sides this slowly created the required arch. W01 Studio activity: MASS Photo: other group’s square based structure (Photographer: Jasmin Goldberg) Photo: our circle based structure (Photographer: Jasmin Goldberg)

description

 

Transcript of Logbook week 1

Page 1: Logbook week 1

     

Sketch  of  overlay  

It  was  interesting  to  see  in  week  1’s  activity:  compression,  all   groups   chose   to   opt   for   a   circular   structure  with   the  bricks   layered   on   top   of   each   other   in   an   overlapping  pattern.    A  solid  structural  system  was  applied  to  this  activity  as  it  was  the  most  logical  use  of  the  material  given  –  wooden  bricks.   The   brick   layering   method   for   construction  provided   with   the   most   stability   while   a   circular   shape  provided  the  most  efficient  use  of  material.      When   compared   to   the   square-­‐based   structure   of  another  group  (pictured  right),  the  circular  base  (pictured  left)  was   just   as   efficient   in   providing   space   for   the   dog  and  creating  stability  while  using  less  blocks,  thus  freeing  material  for  establishing  tower  height.        

Challenges  encountered:  -­‐ Creating  the  required  opening  

for  the  toy  dog  to  enter  the  structure  

-­‐ Creating  windows  in  the  structure  

-­‐ Maintaining  stability  after  reaching  a  particular  height  

In  the  creation  of  the  arch  we  found  that  the   most   efficient   method   was   to   add  each   ‘overlay’   block   one   at   a   time,  building   the   structure   away   from   the  overlay   block   to   counterbalance   the  weight   of   the   overlay   and   the   pull   of  gravity   towards   the   ground.  When   built  from   both   sides   this   slowly   created   the  required  arch.  

W01  Studio  activity:  

MASS  

Photo:  other  group’s  square  based  structure  (Photographer:  Jasmin  Goldberg)  

Photo:  our  circle  based  structure  (Photographer:  Jasmin  Goldberg)  

Page 2: Logbook week 1

   Insert  load  path  diagram  for  arch  

As   the   load   path   diagram  (left)   illustrates,   the   arch  didn’t   collapse   as   the   force  of  the  dead  load  of  material  above   the   arch   was  relocated   left   and   right,  around   the  arch   to  me  met  by   reaction   forces   through  the  floor.    

The   structure   was   proved   to   be   quite  structurally   sound   in   the   ‘deconstruction’  phase   of   the   activity   as   large   gaps   were  made   without   the   collapse   of   the   entire  structure.  A  large  number  of  blocks  could  be  removed   (creating   additional   gaps   and  arches)   before   the   forces   were   too   strong  and   the   structure   collapsed.   It   was   found  that   other   groups   in   the   class  were   able   to  remove   more   blocks   due   to   their   initial  arrangement   of   materials   being   more  compact.   The   greater   gaps   between   blocks  (which   fulfilled   the  criteria  of  using  minimal  materials)   meant   that   a   smaller   surface   of  each   material   was   taking   the   dead   load   of  the  structure,   thus  making  each  block  more  integral  to  the  structures  overall  stability.      

Photo:  arch  of  our  structure    (Photographer:  Jasmin  Goldberg)  

Page 3: Logbook week 1

               

As   the   structure   grew,   we   adjusted   our  structure’s   design   by   “tapering”   the   layers   in  order   to   create   a   roof.   This   move   was   not  necessary  in  order  maintain  structural  stability  but  rather  was  a  decision  influenced  by  limited  time   and   the   need   for   the   conservation   of  materials.      It  boded  well  for  our  structure  that  we  would  have   been   able   to   continue   with   the   same  technique  for  building  without  there  being  an  issue   with   the   structure’s   stability.   Our   only  concerns   were   specific   areas   of   stress  (indicated  in  photo,  right)  which  were  due,  not  to   the   structure’s   design,   but   inaccurate  placement  of  bricks.      

Photograph:  specific  areas  of  stress  (photographer:  Jasmin  Goldberg)  

Photograph:  final  structure  (photographer:  Alistair  Robinson)  

Page 4: Logbook week 1

   

~y ";0;--/ ZO ••..•A:::;../

. ~,t--~c~ .....C>_

7f:>,-q/ e»; ~r-kt::;:Y~ ~/oC..-eh e: .

<!:A.t!:..~y ¥ AD" /~

/'1.-,0// 0/ a/;;....

/

c:- "'-JOC> -"'-!! __ h/~;- •...=r=r=: ,

?" c/OcYCr" .....~ 7"v DC!..

-- _i 4 _.t!// __~~./:7"~""-?--/ c:Y / .••..•.c:>'~t::::.J<=v"

""'//cY/-57- .:....-p ,/,./~ =-Ove.-- /"-~--""" /-=.7

lhtA X (tv-. (/11--- .

zffi') ( "' c:::XL.fr •......--....= /,,, c -.~~---. ~ ~A..4~'/--C:;>~/7

C'or--~.J""pC>_cY' 4 ..-,..,O.Kr""'v/'--

~a7""'" ,/"--••..~ ~ Clpr;Phcc/

;/c'~C<.

ac~ i---~_~/rq~O1"o?-,-. h.-~ ~.

.//-;-vc /---4:: .:::::4 c.-R .k"p-'"/r,e..--/,/o./ 7C~~ __ /.c-..

~ ~ /,q ,e:..,.-c......, A.:,

~o/-Kr. -r'/o/c~~ __ h ••••""'""'~"""~,-.::::::<::..c

~ "c:'="~fo ¥ -.;O/",//Cq~/",,_/1..,,0';',':,7 =_-'""ho'-~""'6&.. /o.:::;>ey.

~M"'l_/c: "" ~~'-_~' ro~ C'-. •..•.•C::::1 ~c:;::V'

~ 4"'-p~&/~/"""c::>r/c ../o=c;:v;

O;O.,pVe'o/ +» -J/-rc.-c/c.-..-e-.C:-~/"Po"'cY/ /o.:.........~

:;:> ~..- •.•....•Q ",--='.... -~qC~./

"o<QC:> ~ 7=~ =/

~~/.//_(?~~ -;;.e, o~r:'r-t!. _/--....:0_ ~.-......-/ t:.e~~ C' ~p ~c;y /__ ""Q ;.L~_~ ./

Cb,..,-/~=/"""--.e~ ~/...., __--""

7""'~",,--q/ .<!"-yo=-....-_=,.... /ro~ /---c ~/c..:.....

//1-,po/~c:;/ b!;/ /&b//~ •.•.cu.("/V!e-J/-/c ••...•) 0/- /<-/-J?O--~/•....y/0'// :r ,...t!"./c..-/~/~ cY:-#.e~...,/_/4/ e-~~ .•...•/- ¥ /~--c.:;;:I'-

l ~~~~ #4"-e __~ /OCt~

P, ttjr-oc,.,,....c::y)!5r~ /~~c

( Ao..-,<"0..., r~ / ,/C-~..4a "! ::&:. 05 ~

a -"'t?/ / ..-.....,Q .....•....-

a ,;...~-/-r C"'c:::;,..."

-t!:"""~/.....,/~..........~-••.••..c,£<:.....-<

~dr.--.'-/,c /c,-cc;;> 0-,/

3~o"~ t:- .cJh-,- 0-

~r.-~a //0...... .-y/k ...•......

Page 5: Logbook week 1

   

N Iw+Oh -' 2..014)

/~Adu-"I('y" 0-/ aforCR. pr""d&~,ro/q ""~Cl;""0/ =bo~ c>.6oc.-+ a ~C:>''';'''.f.

~,..- //~

( AO •.....<~ ......•r C__~a~

'-----_-=6-:~>"__6-o-~-C-c.~_-"_~ , ~--),-----

~ L/'r~d<--c.u"---£'0'-'".0 re>?0 /-~CJ--, 6c,.../-

prC.J2 y....,::::____. c~ ",",or r:-~....,,.,_/q/_~C';.-7t/vo "oa_~/,~/ 7' (P'7'~/

7'c-"'-c <!"'_. c::?C:''''::'''/y /_

cpr./"/4 d_<,C'~/o_-"

/-------- -L _/ Or~e"...,_r~"'rC>....,

'''I r~f7r~/cA f-t"cY ~ o,r-,-"",vv

~ U!!A3/'A " ,,"ajJA//'~

»< e:« g/o/~y C'-/~ /c:-~/ - 0/02

I/'cCIO.- 9t--CJ",;I-/Y .Cj:;o//t",.//<'../ dr-C-C/A:::'..... 7'

n-,c:9~//~)

reA c'-;-_~,..,f (

.//I'~./ 0/ ac r/C)..-../A.+~~.-ec/7~ ="LrO,-,....~"' po:,.;"';-

).;., 0 P-..('co", C v""'-- ,- ~ -I 7( . ,.

. //.-t-.e./ o;rl ,?:/ C' /- / ,pr

do -o~ /"'-'7'e,-/.<,C?/- ~;t<

('t:? """' 'l-,.,.~~ pc:>,/....., :J-

Page 6: Logbook week 1

W01  –  Key  term  glossary    Beam  (Ching,  2008;  ENVS10003,  2014,  March  17)  

• Rigid  structural  members  designed  to  carry  and  transfer  transverse  loads  across  space  to  supporting  elements  • Horizontal  element  designed  to  carry  vertical  load  using  its  bending  resistance  • Nonconcurrent  patterns  of  forces  subject  beam  to  deflection  and  bending  which  needs  to  be  resisted  by  the  internal  strength  of  the  material  –  part  

compression  and  part  tension    Compression:  (Newton,  2014)  

• Basic  structural  force  • Occurs  when  an  external  load  pushes  on  a  structural  member,  causing  a  compacting  of  the  

particles  of  the  material  • Forces  result  in  the  shortening  of  the  material  under  a  compression  force  • Produces  the  opposite  effect  of  a  tension  force  

 Load  Path  (ENVS  10003,  2014,  March  5)    

• Load  (be  it  dead  or  live)  takes  the  most  direct  route  down  towards  the  ground  • The  load  path  of  a  particular  force  on  a  structure  can  be  illustrated  in  a  load  path  diagram  

 Masonry  (Ching,  2008)  

• Subset  of  mass  construction  • Building  of  structures  from  smaller  units,  usually  with  the  use  of  mortar  as  a  bonding  agent    • Properties  of  the  individual  unit  applicable  to  the  properties  of  the  whole  structure  • Common  materials  used:  stone,  earth,  clay  and  concrete  • Structurally  most  effective  in  compression  

   Point  Load  

• A  force  applied  to  the  structure  at  a  specific  point.      Reaction  Force  (ENVS  10003,  2014,  March  5)  

• Force  that  occurs  in  response  to  the  load  the  structure  is  subject  to  • Equal  and  opposite  to  the  load  on  the  structure  to  ensure  structure’s  stability  

   

Figure  1:  Load  path  diagram  (ENVS  10003,  2014,  March  5)  

Page 7: Logbook week 1

         Glossary  Reference  List:    Ching,  F.  D.  K.,  (2008).  Building  construction  illustrated  (fourth  edition).  New  Jersey:  John  Wiley  &  Sons.    2.14,  12.06.    ENVS10003,  (2014,  March  5).  W01  s1  Load  Path  Diagrams.  Retrieved  March  15,  2014,  from:  http://www.youtube.com/watch?v=y__V15j3IX4&feature=youtu.be    ENVS10003,  (2014,  March  17).  W03_s1  Structural  Elements.  Retrieved  March  18,  2014,  from:  https://www.youtube.com/watch?v=wQIa1O6fp98&feature=youtu.be    Newton,  C.,  (2014).  Basic  Structural  Forces  (I).  Retrieved  March  15,  2014,  from:  https://app.lms.unimelb.edu.au/bbcswebdav/courses/ENVS10003_2014_SM1/WEEK%2001/Basic%20Structural%20Forces%201.pdf        Knowledge  Map  (W01)  Reference  List:    Ching,  F.  D.  K.,  (2008).  Building  construction  illustrated  (fourth  edition).  New  Jersey:  John  Wiley  &  Sons.  2.08-­‐2.09,  2.11    Newton,  C.,  (2014).  Basic  Structural  Forces  (I).  Retrieved  March  15,  2014,  from:  https://app.lms.unimelb.edu.au/bbcswebdav/courses/ENVS10003_2014_SM1/WEEK%2001/Basic%20Structural%20Forces%201.pdf