LMS Rotating Machinery 2013

298
Rotating Machinery

description

LMS VIRTUAL

Transcript of LMS Rotating Machinery 2013

Page 1: LMS Rotating Machinery 2013

Rotating Machinery

Page 2: LMS Rotating Machinery 2013

Rotating Machinery Agenda

3

Torsional Vibration 2

Order Fundamentals

4

Gears, Motors, Bearings, Pumps…

5

Resonances

1

Angle Domain

6

Balancing

LMS International, A Siemens Business copyright 2013 2

Page 4: LMS Rotating Machinery 2013

Why is understanding Rotating Machinery important?

Warranty Costs

Often driven by perceived issues via vibration from customers

Example: JD Powers Ride Comfort

Competitive Advantage

Distinguish your product from competition

Example: Washing machine “walking”

Performance/Fuel Economy

Eliminate vibration that effects product performance

Examples: Torque Converter lockup. Knock sensors. Production Line

Durability

Reduce Vibration Levels. Torsional Inputs. Dynamic Loading

Noise

Eliminate unwanted noise

Example: Piston slap in engine, screaming pumps

LMS International, A Siemens Business copyright 2013 4

Page 5: LMS Rotating Machinery 2013

Product Development Process C

os

t o

f C

han

ge

Concept Detail

Drawing

Prototype Production Field

Failure

Troubleshoot

Rotating Part

Engineer

Rotating Part

Validate

Rotating Part

Concept

Modeling

LMS International, A Siemens Business copyright 2013 5

Page 6: LMS Rotating Machinery 2013

Electric Motor

Noise ▪ Objective

Sound Pressure Level

Tones/Narrow-Band

▪ Subjective No „Disturbing“ Noise

Vibration ▪ Unbalance

▪ Mode-Free Bands

Price Module ~$6-11 per

Features and Volume

Kinematics

Dynamics

Stress ▪ Rotation and Torque

▪ Unbalance

▪ Mechanical Commutation

Durability ▪ Motor Flange (PP plastic)

▪ Durability to >7000 h

▪ „Shake ‚n„ Bake“

Sine/Random -22–75ºC LMS International, A Siemens Business copyright 2013 6

Page 7: LMS Rotating Machinery 2013

Engine

Piston Noise

Valve Impact Noise

Combustion profile

Gear rattle

Torsional vibrations

Engine surface vibration

Engine knock

Engine ancillaries

Unbalanced inertia forces

Cylinder to cylinder

variation of combustion

Bending of crankshaft

Valve train dynamics

Bearing forces

Camshaft bending

LMS International, A Siemens Business copyright 2013 7

Page 8: LMS Rotating Machinery 2013

Vehicle Chassis

Driveline Boom

Wheel Imbalance

Tire Uniformity

Driveline Endurance

LMS International, A Siemens Business copyright 2013 8

Page 9: LMS Rotating Machinery 2013

Washing Machine

LMS International, A Siemens Business copyright 2013 9

Page 10: LMS Rotating Machinery 2013

Wind Turbine

GEARBOX

LOW SPEED

SHAFT

ROTOR

BLADES

HUB

NACELLE

HIGH SPEED SHAFT

with MECHANICAL

BRAKE

ELECTRICAL

GENERATOR

ELECTRONIC

CONTROLLER

COOLING

UNIT

TOWER

LMS International, A Siemens Business copyright 2013 10

Page 11: LMS Rotating Machinery 2013

Production Equipment

Increase production/speed -> Increase Vibration/Decrease Life

LMS International, A Siemens Business copyright 2013 11

Page 12: LMS Rotating Machinery 2013

Pain: Set Register deviations from 20 µm may become

visible up of a modern sheetfed press

LMS International, A Siemens Business copyright 2013 12

Page 13: LMS Rotating Machinery 2013

Dental Equipment

LMS International, A Siemens Business copyright 2013 13

Page 14: LMS Rotating Machinery 2013

Green Revolution brings new challenges!

Turbo Whine - Tones

Cylinder deactivation - Vibration

Battery cooling fans - Whine

Direct injection engines – Ticking Sounds

Hybrid engine shutoff – No powertrain masking

Electric Motors – Spin backwards and forwards!

LMS International, A Siemens Business copyright 2013 14

Page 15: LMS Rotating Machinery 2013

Order Fundamentals

LMS International, A Siemens Business copyright 2013 15

Page 17: LMS Rotating Machinery 2013

Fourier Transform

“Any real world signal can be expressed by adding up a unique set of sine waves”

Complicated signals become easier to understand

No information is lost when converting

Frequency (Hz) Time

(seconds)

Amplitude

Amplitude

Amplitude

Fourier Transform

LMS International, A Siemens Business copyright 2013 17

Page 18: LMS Rotating Machinery 2013

Basics of Sine Waves

Amp

time

1 second

LMS International, A Siemens Business copyright 2013 18

Page 19: LMS Rotating Machinery 2013

Basics of Sine Waves: Frequency

Amp

time

1 second

Amp

time

1 second

LMS International, A Siemens Business copyright 2013 19

Page 20: LMS Rotating Machinery 2013

Basics of Sine Waves: Amplitude

Amp

time

1 second

Amp

time

1 second

LMS International, A Siemens Business copyright 2013 20

Page 21: LMS Rotating Machinery 2013

Basics of Sine Waves: Amplitude

Amp

time

5 Peak

0

-5

5

3.5 RMS (.707 of Peak)

10 Peak-to-Peak (2xPeak)

LMS International, A Siemens Business copyright 2013 21

Page 22: LMS Rotating Machinery 2013

What is an Order?

An order is a vibration and/or acoustic

response of a structure due to a

rotating component of a physical

structure.

LMS International, A Siemens Business copyright 2013 22

Page 23: LMS Rotating Machinery 2013

Order Fundamentals

Shaft spins at 600 rpm

What is Frequency?

LMS International, A Siemens Business copyright 2013 23

Page 24: LMS Rotating Machinery 2013

Order Fundamentals

Shaft spins at 600 rpm

What is Frequency?

600 Rev

Minute x 1 Minute

60 Second = 10 Rev

Second

LMS International, A Siemens Business copyright 2013 24

Page 25: LMS Rotating Machinery 2013

Order Fundamentals

Am

plit

ud

e

Frequency

Hz

0 100 50

Spectrum of Shaft

Spinning at 600 rpm

LMS International, A Siemens Business copyright 2013 25

Page 26: LMS Rotating Machinery 2013

Order Fundamentals

Shaft spins at 6000 rpm

What is Frequency?

LMS International, A Siemens Business copyright 2013 26

Page 27: LMS Rotating Machinery 2013

Order Fundamentals

Shaft spins at 6000 rpm

What is Frequency?

6000 Rev

Minute x 1 Minute

60 Second = 100 Rev

Second

LMS International, A Siemens Business copyright 2013 27

Page 28: LMS Rotating Machinery 2013

Order Fundamentals

Am

plit

ud

e

Frequency

Hz

0 100 50

Spectrum of Shaft

Spinning at 6000 rpm

LMS International, A Siemens Business copyright 2013 28

Page 29: LMS Rotating Machinery 2013

Order Fundamentals

Shaft spins at 3300 rpm

What is Frequency?

LMS International, A Siemens Business copyright 2013 29

Page 30: LMS Rotating Machinery 2013

Order Fundamentals

Shaft spins at 3300 rpm

What is Frequency?

3300 Rev

Minute x 1 Minute

60 Second = 55 Rev

Second

LMS International, A Siemens Business copyright 2013 30

Page 31: LMS Rotating Machinery 2013

Sweep

Am

plit

ud

e

Frequency

Hz

0 100 50 200 150 250 300

Sweep from 600

to 6000 rpm

10 Hz

LMS International, A Siemens Business copyright 2013 31

Page 32: LMS Rotating Machinery 2013

Sweep

Am

plit

ud

e

Frequency

Hz

0 100 50 200 150 250 300

Sweep from 600

to 6000 rpm

100 Hz

LMS International, A Siemens Business copyright 2013 32

Page 33: LMS Rotating Machinery 2013

Sweep

Am

plit

ud

e

Frequency

Hz

0 100 50 200 150 250 300

Sweep from 600

to 6000 rpm

LMS International, A Siemens Business copyright 2013 33

Page 34: LMS Rotating Machinery 2013

Sweep

Am

plit

ud

e

Frequency

Hz

0 100 50 200 150 250 300

Sweep from 600

to 6000 rpm

LMS International, A Siemens Business copyright 2013 34

Page 35: LMS Rotating Machinery 2013

Sweep

Am

plit

ud

e

Frequency

Hz

0 100 50 200 150 250 300

Sweep from 600

to 6000 rpm

LMS International, A Siemens Business copyright 2013 35

Page 36: LMS Rotating Machinery 2013

Sweep

Am

plit

ud

e

Frequency

Hz

0 100 50 200 150 250 300

Sweep from 600

to 6000 rpm

LMS International, A Siemens Business copyright 2013 36

Page 37: LMS Rotating Machinery 2013

Sweep

Am

plit

ud

e

Frequency

Hz

0 100 50 200 150 250 300

Sweep from 600

to 6000 rpm

600 rpm 6000

1st Order

LMS International, A Siemens Business copyright 2013 37

Page 38: LMS Rotating Machinery 2013

Order Fundamentals

Shaft 1 at 600 RPM

Pulley on Shaft 1 is 3x

pulley diameter on Shaft 2

What is rpm for Shaft 2?

Shaft 2

Shaft 1

Pulley

Ratio:

3 to 1

LMS International, A Siemens Business copyright 2013 38

Page 39: LMS Rotating Machinery 2013

Order Fundamentals

Shaft 1 at 600 RPM

Pulley on Shaft 1 is 3x

pulley diameter on Shaft 2

What is rpm for Shaft 2?

Answer: 1800 rpm

Shaft 2

Shaft 1

Pulley

Ratio:

3 to 1

LMS International, A Siemens Business copyright 2013 39

Page 40: LMS Rotating Machinery 2013

Order Fundamentals

Shaft 1 at 600 RPM

Pulley on Shaft 1 is 3x

pulley diameter on Shaft 2

What is frequency for

Shaft 2?

Shaft 2

Shaft 1

Pulley

Ratio:

3 to 1

LMS International, A Siemens Business copyright 2013 40

Page 41: LMS Rotating Machinery 2013

Order Fundamentals

Shaft 1 at 600 RPM

Pulley on Shaft 1 is 3x

pulley diameter on Shaft 2

What is frequency for

Shaft 2?

Answer: 30 Hz Shaft 2

Shaft 1

Pulley

Ratio:

3 to 1

LMS International, A Siemens Business copyright 2013 41

Page 42: LMS Rotating Machinery 2013

Order Fundamentals

Am

plit

ud

e

Frequency

Hz

0 100 50

Spectrum of Shaft 1

spinning at 600 rpm. Shaft

2 spinning at 1800 rpm

Shaft 2

Shaft 1

Pulley

Ratio:

3 to 1

LMS International, A Siemens Business copyright 2013 42

Page 43: LMS Rotating Machinery 2013

Order Fundamentals

Am

plit

ud

e

Frequency

Hz

0 100 200

Spectrum of Shaft 1

spinning at 6000 rpm. Shaft

2 spinning at 18000 rpm

Shaft 2

Shaft 1

Pulley

Ratio:

3 to 1

300 400 500

LMS International, A Siemens Business copyright 2013 43

Page 44: LMS Rotating Machinery 2013

Sweep

Am

plit

ud

e

Frequency

Hz

0 100 50 200 150 250 300

Shaft 2

Shaft 1

Pulley

Ratio:

3 to 1

LMS International, A Siemens Business copyright 2013 44

Page 45: LMS Rotating Machinery 2013

Sweep

Am

plit

ud

e

Frequency

Hz

0 100 50 200 150 250 300

Shaft 2

Shaft 1

Pulley

Ratio:

3 to 1

30 Hz

LMS International, A Siemens Business copyright 2013 45

Page 46: LMS Rotating Machinery 2013

Sweep

Am

plit

ud

e

Frequency

Hz

0 100 50 200 150 250 300

Shaft 2

Shaft 1

Pulley

Ratio:

3 to 1

300 Hz

LMS International, A Siemens Business copyright 2013 46

Page 47: LMS Rotating Machinery 2013

Sweep

Am

plit

ud

e

Frequency

Hz

0 100 50 200 150 250 300

Shaft 2

Shaft 1

Pulley

Ratio:

3 to 1

LMS International, A Siemens Business copyright 2013 47

Page 48: LMS Rotating Machinery 2013

Sweep

Am

plit

ud

e

Frequency

Hz

0 100 50 200 150 250 300

Shaft 2

Shaft 1

Pulley

Ratio:

3 to 1

LMS International, A Siemens Business copyright 2013 48

Page 49: LMS Rotating Machinery 2013

Sweep

Am

plit

ud

e

Frequency

Hz

0 100 50 200 150 250 300

Shaft 2

Shaft 1

Pulley

Ratio:

3 to 1

LMS International, A Siemens Business copyright 2013 49

Page 50: LMS Rotating Machinery 2013

Sweep

Am

plit

ud

e

Frequency

Hz

0 100 50 200 150 250 300

Shaft 2

Shaft 1

Pulley

Ratio:

3 to 1

LMS International, A Siemens Business copyright 2013 50

Page 51: LMS Rotating Machinery 2013

Sweep

Am

plit

ud

e

Frequency

Hz

0 100 50 200 150 250 300

Shaft 2

Shaft 1

Pulley

Ratio:

3 to 1

What if all speeds are

relative to Shaft 2?

LMS International, A Siemens Business copyright 2013 51

Page 52: LMS Rotating Machinery 2013

Sweep

Am

plit

ud

e

Frequency

Hz

0 100 50 200 150 250 300

Shaft 2

Shaft 1

Pulley

Ratio:

3 to 1

What if all speeds are

relative to Shaft 2?

LMS International, A Siemens Business copyright 2013 52

Page 53: LMS Rotating Machinery 2013

How to Measure?

Remote Optical Probe:

• Reflective Tape needed on shaft

LMS International, A Siemens Business copyright 2013 53

Page 54: LMS Rotating Machinery 2013

Zebra Tape Example

LMS International, A Siemens Business copyright 2013 54

Page 55: LMS Rotating Machinery 2013

TL RUNUP

DEMONSTRATION Project: Orders.lms

LMS International, A Siemens Business copyright 2013 55

Page 56: LMS Rotating Machinery 2013

LMS International, A Siemens Business copyright 2013 56

Page 57: LMS Rotating Machinery 2013

Colormap (ie, Campbell Diagram)

0.00 2000.00Hz

Point1 (CH1)

900.00

3500.00

rpm

Tach

o1 (T

1)

-20.00

80.00

dB Pa

AutoPow er Point1 WF 251 [984.96-3482.9 rpm]

Frequency

RP

M

LMS International, A Siemens Business copyright 2013 57

Page 58: LMS Rotating Machinery 2013

Campbell Map Sweep vs 2D Steady State

0.00 6400.00Hz

Point1 (CH1)

0.00

4.50e-3

Amplit

udePa

0.00

1.00

Amplit

ude

F AutoPow er Point1 1084 rpm

Am

plit

ud

e

Frequency

Resonance or Forcing Frequency?

LMS International, A Siemens Business copyright 2013 58

Page 59: LMS Rotating Machinery 2013

Colormap (ie, Campbell Diagram)

0.00 2000.00Hz

Point1 (CH1)

900.00

3500.00

rpm

Tach

o1 (T

1)

-20.00

80.00

dB Pa

AutoPow er Point1 WF 251 [984.96-3482.9 rpm]

Frequency

RP

M

Resonance is apparent

LMS International, A Siemens Business copyright 2013 59

Page 60: LMS Rotating Machinery 2013

Order vs Frequency

900.00 3500.002000 30001200 1400 1600 1800 2200 2400 2600 2800 3200

rpm

Tacho1 (T1)

20.00

70.00

30.00

40.00

50.00

60.00

dBPa

F Order 6.00 Point1

RPM

What frequency?

2700 RPM, 6th Order:

2700 RPM/60 RPM = 45 Hz

45 Hz * 6 order = 270 Hz

LMS International, A Siemens Business copyright 2013 60

Page 61: LMS Rotating Machinery 2013

Frequency and Orders

Amp

time

1 second

Amp

1 revolution

2nd Order 2 Hertz

Event per Second Event per Revolution

Frequency Order

LMS International, A Siemens Business copyright 2013 61

Page 62: LMS Rotating Machinery 2013

Order Example #1:

Fan spins at 6000

rpm.

What is frequency

of main shaft?

LMS International, A Siemens Business copyright 2013 62

Page 63: LMS Rotating Machinery 2013

Order Example #1:

100 Hz (6000 rpm/60)

Fan spins at 6000

rpm.

What is frequency

of main shaft?

LMS International, A Siemens Business copyright 2013 63

Page 64: LMS Rotating Machinery 2013

Order Example #1:

100 Hz (6000 rpm/60)

Fan spins at 6000

rpm.

What is frequency

of main shaft?

0 200 400 600

Am

plit

ud

e

LMS International, A Siemens Business copyright 2013 64

Page 65: LMS Rotating Machinery 2013

Order Example #1:

Fan spins at 6000

rpm.

What is frequency

of blade pass?

LMS International, A Siemens Business copyright 2013 65

Page 66: LMS Rotating Machinery 2013

Order Example #1:

Fan spins at 6000

rpm.

What is frequency

of blade pass?

600 Hz 100 Hz x 6 blades

1 2

3

4

5

6

LMS International, A Siemens Business copyright 2013 66

Page 67: LMS Rotating Machinery 2013

600 Hz 100 Hz x 6 blades

Order Example #1:

Fan spins at 6000

rpm.

What is frequency

of blade pass?

1 2

3

4

5

6

0 200 400 600

Am

plit

ud

e

LMS International, A Siemens Business copyright 2013 67

Page 68: LMS Rotating Machinery 2013

Order Example #1:

Fan spins at 6000

rpm.

What is order of

blade pass?

1 2

3

4

5

6

LMS International, A Siemens Business copyright 2013 68

Page 69: LMS Rotating Machinery 2013

Order Example #1:

Fan spins at 6000

rpm.

What is order of

blade pass?

6th order

1 2

3

4

5

6

LMS International, A Siemens Business copyright 2013 69

Page 70: LMS Rotating Machinery 2013

Order Example #1:

Fan spins at 6000

rpm.

What is order of

blade pass?

6th order

1 2

3

4

5

6

Independent of rpm

LMS International, A Siemens Business copyright 2013 70

Page 71: LMS Rotating Machinery 2013

Imbalance

1st ORDER is due to

Imbalance of spinning shaft

LMS International, A Siemens Business copyright 2013 71

Page 72: LMS Rotating Machinery 2013

VL ENGINE

DEMONSTRATION

LMS International, A Siemens Business copyright 2013 72

Page 73: LMS Rotating Machinery 2013

LMS International, A Siemens Business copyright 2013 73

Page 74: LMS Rotating Machinery 2013

LMS International, A Siemens Business copyright 2013 74

Page 75: LMS Rotating Machinery 2013

Order Example - 2 stroke

2 Stroke, 2 Cylinder

Engine at 600 rpm.

What is combustion

frequency?

LMS International, A Siemens Business copyright 2013 75

Page 76: LMS Rotating Machinery 2013

Order Example - 2 stroke

2 Stroke, 2 Cylinder

Engine at 600 rpm.

What is combustion

frequency?

10 Hz x 2 cylinders

=

20 Hz

LMS International, A Siemens Business copyright 2013 76

Page 77: LMS Rotating Machinery 2013

Order Example - 2 stroke

2 Stroke, 2 Cylinder

Engine at 600 rpm.

What is combustion

order?

LMS International, A Siemens Business copyright 2013 77

Page 78: LMS Rotating Machinery 2013

Order Example - 2 stroke

2 Stroke. 2 Cylinder

Engine at 600 rpm.

What is combustion

order?

2nd order

LMS International, A Siemens Business copyright 2013 78

Page 79: LMS Rotating Machinery 2013

Order Example - 4 stroke

4 stroke. 6 cylinder

engine.

What is combustion

order?

LMS International, A Siemens Business copyright 2013 79

Page 80: LMS Rotating Machinery 2013

Order Example - 4 stroke

4 stroke. 6 cylinder

engine.

What is combustion

order?

3rd Order

LMS International, A Siemens Business copyright 2013 80

Page 81: LMS Rotating Machinery 2013

Combustion occurs over 2 revs

1 cycle

1st revolution 2nd revolution

Intake Compression Power Exhaust

LMS International, A Siemens Business copyright 2013 81

Page 82: LMS Rotating Machinery 2013

Torsional Vibration

LMS International, A Siemens Business copyright 2013 82

Page 84: LMS Rotating Machinery 2013

What is Torsional Vibration?

0.00 19.00 s

200.00

2200.00 A

mplit

ude

rpm

F 1:Tacho1

What is unusual

about this RPM-

time curve?

LMS International, A Siemens Business copyright 2013 84

Page 85: LMS Rotating Machinery 2013

Torsional Vibration

0.00 19.00 s

200.00

2200.00

Am

plit

ude

rpm

F 1:Tacho1

13.98 14.44 s

1635.46

1764.56

Am

plit

ude

rpm

F 1:Tacho1

RPM is not

steadily

increasing.

Small fluctuations

up/down occur.

LMS International, A Siemens Business copyright 2013 85

Page 86: LMS Rotating Machinery 2013

What is Torsional Vibration?

Torsional vibration is a fluctuation

(reversal) in the speed of a rotating

component.

LMS International, A Siemens Business copyright 2013 86

Page 87: LMS Rotating Machinery 2013

Torsional Vibration: Causes

Non-constant RPM generated by motion of

crankshaft. connecting rod and piston:

• Piston motion is not constant during

combustion cycle (combustion versus

compression)

• Piston has inertia properties to overcome

• Entire mechanism does not output smooth

torque (example: top dead center change of

direction)

LMS International, A Siemens Business copyright 2013 87

Page 88: LMS Rotating Machinery 2013

Problems caused by Torsional Vibration

Durability Problems

Flexible Coupling wear

Worn Gear teeth/failed gears

Vibration Comfort

Vibration of the steering wheel. seats. pedals

Noise problems

Engine start/stop noise

Resonance of long drive shafts. causing interior noise

Meshing and rattle noise problems from gearboxes

Resonance in auxiliary drives (generators. compressors.

and steering pumps)

Synchronization Problems

Reduced performance

Reduced fuel economy

LMS International, A Siemens Business copyright 2013 88

Page 89: LMS Rotating Machinery 2013

TORSIONAL VIBRATION

HOW TO MEASURE?

LMS International, A Siemens Business copyright 2013 89

Page 90: LMS Rotating Machinery 2013

Measuring Torsional Vibration: Order Cut Example

Pulses converted to RPM

Perform multiple FFTs

on rpm vs time trace

V

time

time

Time or rpm

De

lta

rp

m

Order Cut

from

Waterfall 15.00 500.00Hz

1000

3500

rpm

0

61

rpm

0.00 19.00 s

200.00

2200.00

Am

plit

ude

rpm

F 1:Tacho1

rpm

LMS International, A Siemens Business copyright 2013 90

Page 91: LMS Rotating Machinery 2013

AC vs DC

RPM

time

+

RPM

RPM

Overall RPM (DC)

Torsional Vibration (AC)

Net RPM (AC and DC)

frequency

LMS International, A Siemens Business copyright 2013 91

Page 92: LMS Rotating Machinery 2013

Pulses per Rev: Maximum Torsional Order

Amp

For a 50 Hz Sine

Wave. what

should sampling

rate be? time

LMS International, A Siemens Business copyright 2013 92

Page 93: LMS Rotating Machinery 2013

Pulses per Rev: Maximum Torsional Order

time

Amp

For a 50 Hz Sine

Wave. what

should sampling

rate be?

100 Hz Twice the frequency of

interest

LMS International, A Siemens Business copyright 2013 93

Page 94: LMS Rotating Machinery 2013

Pulses per Rev: Maximum Torsional Order

rev

Amp

For a 50th Order

torsional

vibration. What

should pulse per

revolution be?

LMS International, A Siemens Business copyright 2013 94

Page 95: LMS Rotating Machinery 2013

Pulses per Rev: Maximum Torsional Order

rev

Amp

For a 50th Order

torsional

vibration. What

should pulse per

revolution be?

100 ppr Twice the order of interest

LMS International, A Siemens Business copyright 2013 95

Page 96: LMS Rotating Machinery 2013

1 Pulse/Rev versus Multi Pulse/Rev

Same shaft

Blue – 120 ppr

Green - 1 ppr

0.00 8.50s

800.00

3600.00

Ampl

itude

rpm

F 3333:Torsion

F 1:Tacho1

LMS International, A Siemens Business copyright 2013 96

Page 97: LMS Rotating Machinery 2013

Maximum Torsional Order

0.00 7000.00Hz

Torsion (V1)

1000.00

3500.00

rpm

Tach

o1 (T

1)

-20.00

80.00

dB rpm

74.74

AutoPow er Torsion WF 251 [1013.4-3497.3 rpm]

Nothing Shows Here

because of pulse/rev

limit

LMS International, A Siemens Business copyright 2013 97

Page 98: LMS Rotating Machinery 2013

Units and Display Tip

LMS International, A Siemens Business copyright 2013 98

Page 99: LMS Rotating Machinery 2013

Virtual channels: Torsional Vibration

LMS International, A Siemens Business copyright 2013 99

Page 100: LMS Rotating Machinery 2013

TL TORSIONAL

DEMO Project: Torsion2.lms

LMS International, A Siemens Business copyright 2013 100

Page 101: LMS Rotating Machinery 2013

LMS International, A Siemens Business copyright 2013 101

Page 102: LMS Rotating Machinery 2013

How to Measure? Magnetic Pickup

Magnetic Pickups:

• Works on Gears

• No external power

required

LMS International, A Siemens Business copyright 2013 102

Page 103: LMS Rotating Machinery 2013

aerodyneng.com

LMS International, A Siemens Business copyright 2013 103

Page 104: LMS Rotating Machinery 2013

How to Measure? FEAD example

LMS International, A Siemens Business copyright 2013 104

Page 105: LMS Rotating Machinery 2013

How to Measure? Shafts

LMS International, A Siemens Business copyright 2013 105

Page 106: LMS Rotating Machinery 2013

How to Measure? Shafts

LMS International, A Siemens Business copyright 2013 106

Page 107: LMS Rotating Machinery 2013

How to Measure? Shafts

!

Overlap on Ends

causes

discontinuity

LMS International, A Siemens Business copyright 2013 107

Page 108: LMS Rotating Machinery 2013

Offline Overlap: Uncorrected

Big dips in RPM

Overview

Top –Even Spacing

Bottom – Uneven spacing

due to overlap

}

Zoomed in

for detail }

LMS International, A Siemens Business copyright 2013 108

Page 109: LMS Rotating Machinery 2013

Offline Overlap: Corrected

ZEBRA_MOMENTS_TO_ANGLE ZEBRA_MOMENTS_TO_RPM

Corrected

LMS

Test.Lab

10 SL1

LMS International, A Siemens Business copyright 2013 109

Page 110: LMS Rotating Machinery 2013

Zebra Tape Example

LMS International, A Siemens Business copyright 2013 110

Page 111: LMS Rotating Machinery 2013

31.26 57.71s

4379.83

5019.96

Am

plit

ude

rpm

0.72

0.86

Am

plit

ude

F 6:Ring_Gear

Torsional Vibration Resonance

Torsional Vibration can be

amplified by resonance:

Crankshaft in Engine

Drive Shaft

LMS International, A Siemens Business copyright 2013 111

Page 112: LMS Rotating Machinery 2013

Virtual Channels :Torsional Vibration difference

LMS International, A Siemens Business copyright 2013 112

Page 113: LMS Rotating Machinery 2013

VL FLEXIBLE TORSIONAL DEMO

Database: Shaft with U-Joints

LMS International, A Siemens Business copyright 2013 113

Page 114: LMS Rotating Machinery 2013

LMS International, A Siemens Business copyright 2013 114

Page 115: LMS Rotating Machinery 2013

LMS International, A Siemens Business copyright 2013 115

Page 116: LMS Rotating Machinery 2013

LMS International, A Siemens Business copyright 2013 116

Page 117: LMS Rotating Machinery 2013

LMS International, A Siemens Business copyright 2013 117

Page 118: LMS Rotating Machinery 2013

Problems caused by Torsional Vibration

Durability Problems

Flexible Coupling wear

Vibration Comfort

Vibration of the steering wheel. seats. pedals

Noise problems

Engine start/stop noise

Resonance of long drive shafts. causing interior noise

Meshing and rattle noise problems from gearboxes

Resonance in auxiliary drives (generators. compressors.

and steering pumps)

Synchronization Problems

Reduced performance

Reduced fuel economy

LMS International, A Siemens Business copyright 2013 118

Page 119: LMS Rotating Machinery 2013

Driveline Torsional Vibration

LMS International, A Siemens Business copyright 2013 123

Page 120: LMS Rotating Machinery 2013

Driveline Torsional Vibration

Ever-tightening fuel economy requirements are driving lower torque converter locking limits

Cylinder deactivation technology

Diesel engines

1000.00 3500.00rpm

Tacho1 (T1)

0.00

1.40

Am

plit

ude

°

0.00

1.00

Am

plit

ude

F Order 2.00 TorsionAngle

LMS International, A Siemens Business copyright 2013 124

Page 121: LMS Rotating Machinery 2013

Driveline Torsional Vibration

Different types of dampers: friction. spring. etc

Trans Diff'l

Wheel/Brake

Wheel/Brake

Engine

Damper

Torsional Spring

LMS International, A Siemens Business copyright 2013 125

Page 122: LMS Rotating Machinery 2013

Driveline Torsional Vibration

4-8

20-50

50-90

90

130

750

1350

300

750

60

120

1350

1950

Eliminated with

Turbine Damper

Driveline Torsional Modes are a function of the rotational inertia and stiffness

of the driveline elements.

LMS International, A Siemens Business copyright 2013 126

Page 123: LMS Rotating Machinery 2013

AMESIM

DEMO Database: Boom and Clunk.ame

LMS International, A Siemens Business copyright 2013 127

Page 124: LMS Rotating Machinery 2013

LMS International, A Siemens Business copyright 2013 128

Page 125: LMS Rotating Machinery 2013

Gears, Motors, Pumps,

Bearings, ...

LMS International, A Siemens Business copyright 2013 129

Page 127: LMS Rotating Machinery 2013

Gears

LMS International, A Siemens Business copyright 2013 131

Page 128: LMS Rotating Machinery 2013

Gears and Bearings

Gear Issues:

Transmission Error

Sidebands

Gear Whine

Gear Rattle

LMS International, A Siemens Business copyright 2013 132

Page 129: LMS Rotating Machinery 2013

Order Example #2:

48 Tooth Gear

spins at 600 rpm.

What is shaft

frequency?

LMS International, A Siemens Business copyright 2013 133

Page 130: LMS Rotating Machinery 2013

Order Example #2:

48 Tooth Gear

spins at 600 rpm.

What is shaft

frequency?

10 Hz 600rpm/60

LMS International, A Siemens Business copyright 2013 134

Page 131: LMS Rotating Machinery 2013

Order Example #2:

48 Tooth Gear

spins at 600 rpm.

What is shaft

frequency?

10 Hz 600rpm/60

0 20 40 60

Am

plit

ud

e

LMS International, A Siemens Business copyright 2013 135

Page 132: LMS Rotating Machinery 2013

Order Example #2:

48 Tooth Gear

spins at 600 rpm.

What is frequency

of gear mesh?

LMS International, A Siemens Business copyright 2013 136

Page 133: LMS Rotating Machinery 2013

Order Example #2:

48 Tooth Gear

spins at 600 rpm.

What is frequency

of gear mesh?

10 Hz x 48 teeth =

480 Hz

LMS International, A Siemens Business copyright 2013 137

Page 134: LMS Rotating Machinery 2013

Order Example #2:

48 Tooth Gear

spins at 600 rpm.

What is frequency

of gear mesh?

10 Hz x 48 teeth =

480 Hz

0 20 40 60

LMS International, A Siemens Business copyright 2013 138

Page 135: LMS Rotating Machinery 2013

Order Example #2:

48 Tooth Gear

spins at 600 rpm.

What is gear mesh

order?

LMS International, A Siemens Business copyright 2013 139

Page 136: LMS Rotating Machinery 2013

Order Example #2:

48 Tooth Gear

spins at 600 rpm.

What is gear mesh

order?

48th order

LMS International, A Siemens Business copyright 2013 140

Page 137: LMS Rotating Machinery 2013

Transmission Error

50 tooth gear

25 tooth gear

50 tooth gear

spins at 100 rpm.

What is rpm of 25

tooth gear?

LMS International, A Siemens Business copyright 2013 141

Page 138: LMS Rotating Machinery 2013

Transmission Error

50 tooth gear

25 tooth gear

50 tooth gear

spins at 100 rpm.

What is rpm of 25

tooth gear?

200 rpm

LMS International, A Siemens Business copyright 2013 142

Page 139: LMS Rotating Machinery 2013

Transmission Error

50 tooth gear

25 tooth gear

50 tooth gear

spins at 100 rpm.

What is rpm of 25

tooth gear?

200 rpm

Transmission Error means it

is not 200 rpm

LMS International, A Siemens Business copyright 2013 143

Page 140: LMS Rotating Machinery 2013

Transmission Error

Transmission Error of 0

means no loss, perfect

transmission

50 tooth gear

25 tooth gear

Transmission Error = Actual RPM Gear2 – Theoretical RPM Gear2

Where Theoretical RPM at Gear2 = Actual RPM Gear1 x Gear Ratio

LMS International, A Siemens Business copyright 2013 144

Page 141: LMS Rotating Machinery 2013

Gears: Transmission Error

Can Gear rotation

speeds effect

Transmission Error?

LMS International, A Siemens Business copyright 2013 145

Page 142: LMS Rotating Machinery 2013

TL GEAR

TRANSMISSION

ERROR DEMO Project: gear_trans_error.lms

LMS International, A Siemens Business copyright 2013 146

Page 143: LMS Rotating Machinery 2013

LMS International, A Siemens Business copyright 2013 147

Page 144: LMS Rotating Machinery 2013

Transmission Error Calculation Procedure

Gear1

rpm

Gear2

Theory

rpm time

1. Measure RPM of driving and

driven gear vs time

2. Calculate theoretical rpm of driven

gear

3. Subtract difference of theoretical

gear speed and actual driven gear

speed vs time

4. Perform FFT on rpm difference

(overall or versus time)

Difference

rpm time

time

Gear 2

Actual

rpm time

0.00 5.00order

Derived Order (rpm)

0.00

0.03

Am

plit

ude

°

1.0024

Curve 1.0024 order

0.0192 °

Multiple Gear1 rpm by Gear Ratio

Subtract Gear2Actual-Gear2Theory

2

3

4

LMS International, A Siemens Business copyright 2013 148

Page 145: LMS Rotating Machinery 2013

Transmission Error Causes

Perfectly Meshed

Gear 1 Gear 2

LMS International, A Siemens Business copyright 2013 149

Page 146: LMS Rotating Machinery 2013

Transmission Error Causes

Eccentric Not Perfect Circle

Manufacturing

defect can cause

Gear to be

oblong/eccentric

Gear 1 Gear 2 Gear 2

LMS International, A Siemens Business copyright 2013 150

Page 147: LMS Rotating Machinery 2013

Transmission Error Causes

Eccentric - Not Perfect Circle

Manufacturing

defect can cause

Gear to be

oblong/eccentric

Gear 1 Gear 2 Gear 2

LMS International, A Siemens Business copyright 2013 151

Page 148: LMS Rotating Machinery 2013

Transmission Error Causes

Eccentric Not Perfect Circle

Manufacturing

defect can cause

Gear 2 to be

oblong/eccentric

rev

Gear 2

vs

Gear1

Gear 2 Gear 2

LMS International, A Siemens Business copyright 2013 152

Page 149: LMS Rotating Machinery 2013

0.00 1.00s

-1.10

1.10

Real

g

0.00 1.00s

-1.00

1.00

Real

gModulation

100th Order – “Gear Mesh”

2nd Order Ampitude Modulation

due to Eccentric Gear

LMS International, A Siemens Business copyright 2013 153

Page 150: LMS Rotating Machinery 2013

Modulation -> Sideband

0.00 1.00s

-1.00

1.00

Real

g

0.00 1.00s

-1.10

1.10

Real

g

90.00 110.00Hz

0.00

1.00

Am

plit

ude

g

100th Order

100th Order – “Gear Mesh”

2nd Order Ampitude Modulation

due to Eccentric Gear

LMS International, A Siemens Business copyright 2013 154

Page 151: LMS Rotating Machinery 2013

Modulation -> Sideband

0.00 1.00s

-1.00

1.00

Real

g

0.00 1.00s

-1.10

1.10

Real

g

90.00 110.00Hz

0.00

1.00

Am

plit

ude

g

100th Order

100th Order – “Gear Mesh”

2nd Order Ampitude Modulation

due to Eccentric Gear

90.00 110.00Hz

0.00

0.64

Am

plit

ude

g

Spectrum 2_per_rev_mod

+/- 2 order

LMS International, A Siemens Business copyright 2013 155

Page 152: LMS Rotating Machinery 2013

Transmission Error Causes

Off Center Rotation

Gear 1

Gear 2

Shaft mis-

alignment and/or

resonance causes

gear 2 to spin off

center

Center of Rotation shift

LMS International, A Siemens Business copyright 2013 156

Page 153: LMS Rotating Machinery 2013

Transmission Error Causes

Off Center Rotation

Gear 1

Gear 2

Shaft mis-

alignment and/or

resonance causes

gear 2 to spin off

center

Center of Rotation shift

LMS International, A Siemens Business copyright 2013 157

Page 154: LMS Rotating Machinery 2013

Transmission Error Causes

Off Center Rotation

Gear 1

Gear 2

Shaft mis-

alignment and/or

resonance causes

gear 2 to spin off

center

Center of Rotation shift

LMS International, A Siemens Business copyright 2013 158

Page 155: LMS Rotating Machinery 2013

0.00 1.00s

-1.00

1.00

Real

g

0.00 1.00s

-1.10

1.10

Real

gModulation

100th Order – “Gear Mesh”

1st Order Amplitude Modulation

due to Off Center Shaft Rotation

LMS International, A Siemens Business copyright 2013 159

Page 156: LMS Rotating Machinery 2013

Modulation -> Sideband

0.00 1.00s

-1.00

1.00

Real

g

0.00 1.00s

-1.10

1.10

Real

g

100th Order – “Gear Mesh”

1st Order Amplitude Modulation

due to Eccentric Gear

90 11010095 105

Hz

0.00

1.00

Am

plit

ude

g

100th Order

90 11010095 105

Hz

0.00

0.64

Am

plit

ude

g

Spectrum 1_per_rev_mod

+/- 1 order

LMS International, A Siemens Business copyright 2013 160

Page 157: LMS Rotating Machinery 2013

Gear Sidebands

90 11010095 110

Hz

0.00

1.00

Am

plit

ude

g

Offset RotationEccentric GearGear Mesh Only

Sideband Order

(+/-)

Problem

0 None

1 Offcenter Shaft

Rotation

-Shaft Resonance

-Imbalanced Shaft

-Improper install

2 Eccentric Gear

- Manufacturing Issue

LMS International, A Siemens Business copyright 2013 161

Page 158: LMS Rotating Machinery 2013

Sidebands

0.00 5000.00Hz

VIBR:2:+Z (CH2)

899.96

2909.99

rpm

TA

CH

:9999:+

RX

(T

1)

-50.00

50.00

dB

m/s

2

AutoPow er VIBR:2:+Z WF 202 [899.96-2910 rpm]

Sidebands vary

by rpm/load in

real life

LMS International, A Siemens Business copyright 2013 162

Page 159: LMS Rotating Machinery 2013

Gear whine: Noise generated by the loading and unloading of the individual teeth around the point of engagement

Gear rattle: Noise induced by teeth impacting each other at non-powered gears fluctuating with lash clearance

Gearbox Major Noise Types

FREQUENCY

RP

M

RP

M

FREQUENCY

Whine

Gearbox Rattle vs Whine

LMS International, A Siemens Business copyright 2013 163

Page 160: LMS Rotating Machinery 2013

Example: Gear Rattle/Backlash

LMS International, A Siemens Business copyright 2013 164

Page 161: LMS Rotating Machinery 2013

Gear Simulation Approaches

Definition

Analytical method (reference: Cai / ISO / …)

Accounts for varying stiffness of the contact

• Width of the tooth varies

• Number of teeth that are in contact varies

(e.g. helical gear)

Applies the force to a single point at the tooth

center

Gear types supported

Spur and helical

Advantages

High solving speed

High level of detail

Limitation

Heavy manual modeling work (geometry,

kinematics, dynamics)

Solution is … GTSE! (see next slide)

p b

h

k

Meshing

path

Pitch point

Force

Applied

LMS International, A Siemens Business copyright 2013 165

Page 162: LMS Rotating Machinery 2013

Gear Train Super Element (GTSE)

Definition

One interface for creating a complete (multi-stage) gear train

Uses the same analytical algorithm as the Gear Contact Force (Cai, ISO)

Includes the definition and creation of bodies, joints, contacts and geometry of the whole train

Advantages

Fast and easy modeling

Fast solving speed (analytical contact)

Automatic detailed geometry creation and possible import of existing geometry

The gear contact force element can be

used in a standalone mode but the

feature is included in the GTSE as well

LMS International, A Siemens Business copyright 2013 166

Page 163: LMS Rotating Machinery 2013

AMESIM GEAR

RATTLE DEMO

LMS International, A Siemens Business copyright 2013 167

Page 164: LMS Rotating Machinery 2013

LMS International, A Siemens Business copyright 2013 168

Page 165: LMS Rotating Machinery 2013

Bearings

LMS International, A Siemens Business copyright 2013 169

Page 167: LMS Rotating Machinery 2013

Bearing Parts

Outer Race

Inner Race

Rolling Elements

LMS International, A Siemens Business copyright 2013 171

Page 168: LMS Rotating Machinery 2013

Bearings

Inner shaft spins at

600 rpm.

What is bearing ball

pass frequency?

LMS International, A Siemens Business copyright 2013 172

Page 169: LMS Rotating Machinery 2013

Bearings

Inner shaft spins at

600 rpm.

What is bearing ball

pass frequency?

600 rpm/60 x 8 =

80 Hz

LMS International, A Siemens Business copyright 2013 173

Page 170: LMS Rotating Machinery 2013

Bearing Parts

LMS International, A Siemens Business copyright 2013 174

Page 171: LMS Rotating Machinery 2013

Bearing Frequencies

Bearing Defects and their frequencies

• FTF: Fundamental Train Frequency: Defect in

the cage

• BSF: Ball Spin Frequency: Defect in the ball =

2 Ball defect Frequency

• Ball Defect Frequency: Defect in the ball

when it tends to roll rather than spin

• BPFO: Ball Pass Frequency Outer race: Defect

on the outer race

• BPFI: Ball Pass Frequency Inner race: Defect

on the inner race

• Combinations of the above

cos1

2

1

dp

drRPMFTF

LMS International, A Siemens Business copyright 2013 175

Page 172: LMS Rotating Machinery 2013

Bearing frequencies

cos1

2

1

dp

drRPMFTF

cos1

2

12

2

dp

drz

dr

dpRPMBSF

cos1

2

1

dp

drzRPMBPFO

cos1

2

1

dp

drzRPMBPFO

Rolling element irregularities and defects

FTF: Fundamental Train Frequency: Defect in the cage

α is contact angle between load and rolling plain

BSF: Ball Spin Frequency: Defect in the ball = 2 Ball defect

Frequency

• Ball Defect Frequency: Defect in the ball when it tends to

roll rather than spin

BPFO: Ball Pass Frequency Outer race: Defect on the outer race

BPFI: Ball Pass Frequency Inner race: Defect on the inner race

Combinations of the above

LMS International, A Siemens Business copyright 2013 176

Page 173: LMS Rotating Machinery 2013

Example Defect Frequencies for a Bearing

RPM BSF

Ball Spin

FTF Fundamental Train

BPFO Outer Race

BPFI Inner Race

100 3.979451 0.675251 6.077258 8.922742

500 19.89726 3.376254 30.38629 44.61371

1000 39.79451 6.752509 60.77258 89.22742

1500 59.69177 10.12876 91.15887 133.8411

2000 79.58902 13.50502 121.5452 178.4548

2500 99.48628 16.88127 151.9315 223.0685

3000 119.3835 20.25753 182.3177 267.6823

3500 139.2808 23.63378 212.704 312.296

4000 159.178 27.01004 243.0903 356.9097

Pitch Diameter = 1.548 inches

Ball Diameter = 0.3125 inches

Number balls = 9

LMS International, A Siemens Business copyright 2013 177

Page 174: LMS Rotating Machinery 2013

Example Defect Frequencies for a Bearing

RPM BSF

Ball Spin

FTF Fundamental Train

BPFO Outer Race

BPFI Inner Race

100 3.979451 0.675251 6.077258 8.922742

500 19.89726 3.376254 30.38629 44.61371

1000 39.79451 6.752509 60.77258 89.22742

1500 59.69177 10.12876 91.15887 133.8411

2000 79.58902 13.50502 121.5452 178.4548

2500 99.48628 16.88127 151.9315 223.0685

3000 119.3835 20.25753 182.3177 267.6823

3500 139.2808 23.63378 212.704 312.296

4000 159.178 27.01004 243.0903 356.9097

Pitch Diameter = 1.548 inches

Ball Diameter = 0.3125 inches

Number balls = 9

2.387

Order

.405

Order

3.646

Order

5.354

Order

LMS International, A Siemens Business copyright 2013 178

Page 175: LMS Rotating Machinery 2013

Bearing Defects

Good Bearing

Bad Bearing

Bearing defect can become failure due to:

Bearing defect starts as surface erosion (of bearing

or race). possibly due to hard contaminants

scraping bearing material

LMS International, A Siemens Business copyright 2013 179

Page 176: LMS Rotating Machinery 2013

FFT on Impact Event

time frequency

FFT

Bearing Defect Impact

LMS International, A Siemens Business copyright 2013 180

Page 177: LMS Rotating Machinery 2013

Impact Event Frequency Analysis (Simplfied)

0.00 3.00s

Time

0.00

4000.00

Hz

Hig

hP

ass500 (

CH

2)

0.00

0.01

Am

plit

ude

V

0.00 3.00s

-0.01

0.34

Real

V

Impacts are 0.6

seconds apart.

What is frequency?

LMS International, A Siemens Business copyright 2013 181

Page 178: LMS Rotating Machinery 2013

Impact Event Frequency Analysis (Simplfied)

0.00 3.00s

-0.01

0.34

Real

V

0.00 3.00s

Time

0.00

4000.00

Hz

Hig

hP

ass500 (

CH

2)

0.00

0.01

Am

plit

ude

V

Impacts are 0.6

seconds apart.

What is frequency?

1.66 Hz 1/time interval or

1/0.6

0.00 2000.00Hz

0.00

300e-6

Am

plit

ude

V

0.00

1.00

Am

plit

ude

1.57

LMS International, A Siemens Business copyright 2013 182

Page 179: LMS Rotating Machinery 2013

Real Life Bearing Data

8.20 11.80s

-40.00

30.00

Real

g

0.00

1.00

Am

plit

ude

F 4:Outer Race Faulted Bearing 2000 RPM:None

F 5:Outer Race Good Bearing 2000 RPM:None

Difficult to see

impacts associated

with defect.

Bandpass filtering

required.

LMS International, A Siemens Business copyright 2013 183

Page 180: LMS Rotating Machinery 2013

Envelope

0.61 0.65s

-0.10

0.12

Real

V

4:HighPass500:None

5:Envelope_of_HighPass:None

ENVELOPES

• Envelope done by Hilbert

Transform

• Hilbert Transform separates slowly

varying envelope from rapidly

varying signal

LMS International, A Siemens Business copyright 2013 186

Page 181: LMS Rotating Machinery 2013

Step by Step Envelope

t

t

t

Bandpass Filter (based on accel resonance)

Envelope

FFT

Hz

Amp

frequency

FFT

1

2

3

LMS International, A Siemens Business copyright 2013 187

Page 182: LMS Rotating Machinery 2013

Identification of bearing defects

Frequency analysis

FFT of Time signal

Peaks in the spectrum

– Compare VS known defect frequencies

– Compare VS spectrum of good bearing

Use of location

Maximum amplitude along axis of static load

Use of calculated or derived variables

Cepstrum

Envelope analysis

• In case machinery faults have a modulating effect

Gearboxes (cracks. broken teeth). bearings (defects on inner/outer race). Turbine-

blades (cracks. distorted)

LMS International, A Siemens Business copyright 2013 192

Page 183: LMS Rotating Machinery 2013

Identification of bearing defects

Cepstrum

Step 1 FFT of signal to identify bandwidth of interest

Step 2 Band Pass Filtering according to step 1

Step 3 Calculate Real or Complex Cepstrum

Step 4 Identify the 1/frequencies and compare with defect frequencies

Envelope detection

Step 1 FFT of signal to identify bandwidth of interest

Step 2 Band Pass Filtering according to step 1

Step 3 Calculate Hilbert transform

Step 4 Calculate Envelope

Step 5 FFT of envelope

LMS International, A Siemens Business copyright 2013 193

Page 184: LMS Rotating Machinery 2013

Step by Step Envelope

t

t

t

Bandpass Filter (based on accel resonance)

Envelope

FFT

Hz

Amp

frequency

FFT

1

2

3

LMS International, A Siemens Business copyright 2013 194

Page 185: LMS Rotating Machinery 2013

Bearing Simulation

Many levels of detail possible:

Simple Lumped Model

First is simple lumped stiffness and damping

Using ideal or measured stiffness and

damping for the bearing

Used as component in larger system

Discrete Detailed Model

Rigid Body

More detailed and accounts for local loads in

the bearing

Capture transient dynamic behavior

Discrete Detailed Model with Flexible Body

mesh geometry and solve for modes of

deformation

Get more accurate loads for the bearing and

the supporting structure than the rigid body

model

Flexible contact captures local deformation

and is the most accurate method

LMS International, A Siemens Business copyright 2013 195

Page 186: LMS Rotating Machinery 2013

Sample Discrete Bearing Model

Primary components:

Inner Race

Outer Race (not shown)

Cage

Rollers

Skeleton sketch for layout

Skeleton is only a Part document, not a body, it controls the size and position of all bodies in the model

Use of a sketch skeleton in this manner only works if bodies are coupled with force elements

Design Table controls all major geometry and dynamic parameters

One approach to how a bearing “could” be designed. The various radius values control the cutting of the Cage

Results are contact forces and displacement, velocity, and acceleration of the rollers, cage, and rotating race

LMS International, A Siemens Business copyright 2013 196

Page 187: LMS Rotating Machinery 2013

VL Bearing Demo

LMS International, A Siemens Business copyright 2013 197

Page 188: LMS Rotating Machinery 2013

Bearing Simulation

LMS International, A Siemens Business copyright 2013 198

Page 189: LMS Rotating Machinery 2013

Electric Motors

LMS International, A Siemens Business copyright 2013 199

Page 190: LMS Rotating Machinery 2013

Basics of Electric Motors

Motors

AC Motor

DC Motor

Basic Parts: Brush, Stator, Rotor, Commutator

Controllers

DC Motor Controller

Wave Rectifiers - Voltage = Speed, Current = Torque

Pulse Width Modulation – Voltage (via Pulse width) = Speed, Current = Torque

AC Motor Controller

Pulse Width Modulation - Switching Frequency = Speed, Pulse Width = Torque(ie

current)

LMS International, A Siemens Business copyright 2013 200

Page 191: LMS Rotating Machinery 2013

AC Motor

LMS International, A Siemens Business copyright 2013 201

Page 192: LMS Rotating Machinery 2013

DC Motor

LMS International, A Siemens Business copyright 2013 202

Page 193: LMS Rotating Machinery 2013

Order Example – Motor Speed

DC Brushless

Motor with 12

copper windings.

What is

commutation

order?

LMS International, A Siemens Business copyright 2013 203

Page 194: LMS Rotating Machinery 2013

Order Example – Motor Speed

DC Brushless

Motor with 12

copper windings.

What is

commutation

order?

12th Order

LMS International, A Siemens Business copyright 2013 204

Page 195: LMS Rotating Machinery 2013

Electric Motors: AC/DC Power Transformation

Amp

AC Power

Amp

DC Power

Motor

Controller

Regulate Torque

and Speed via

Voltage and

Current

LMS International, A Siemens Business copyright 2013 205

Page 196: LMS Rotating Machinery 2013

Example: AC to DC (and vice versa) Power Conversion

Examples:

Alternator charging battery in car

• Alternator: Full Wave, 3 phase rectifier

• Battery: DC power

• AC to DC power

Electric Drive

• 750 V DC Battery

• AC Drive Motor

• DC to AC Power

LMS International, A Siemens Business copyright 2013 206

Page 197: LMS Rotating Machinery 2013

Control via Pulses: Changing Frequency

FFT

FFT

1 3 7

1 3 7

Frequency Different

LMS International, A Siemens Business copyright 2013 207

Page 198: LMS Rotating Machinery 2013

Control via Pulses: Changing Width

Note: Original Frequency

of Signal 1 and 2 is same,

only Pulse Width Different

Blue – Original Frequency

Red – Half Pulse Width

Green – Long Pulse Width

Signal 1

Signal 2

LMS International, A Siemens Business copyright 2013 208

Page 199: LMS Rotating Machinery 2013

Pulse Width Modulated

Pulse Wave

Unmodulated

Pulse

Wave

Modulate

d

(PWM)

Sine Wave

Sine Wave

LMS International, A Siemens Business copyright 2013 209

Page 200: LMS Rotating Machinery 2013

Motor Inertia “Smooths” Pulse Wave Signal

Pulse Wave

Modulated

(PWM)

Sine Wave

LMS International, A Siemens Business copyright 2013 210

Page 201: LMS Rotating Machinery 2013

Pulse Width Modulated Drive (Switching Frequency)

sideband switching orders that don't track with the wheel.

Electric Motor and

Combustion Engine Orders

Electric Motor

Control Switching

Frequencies

Hybrid Electric Drive

LMS International, A Siemens Business copyright 2013 211

Page 202: LMS Rotating Machinery 2013

Pulse Width Modulated Drive

LMS International, A Siemens Business copyright 2013 212

Page 203: LMS Rotating Machinery 2013

AC to DC Motor Controller

Single Phase AC Power

110 V, 60 Hz (USA)

220 V, 50 Hz (Europe)

degrees

240 120

Amplitude

V

Volts

Amplitude

360

DC Voltage Level =0

LMS International, A Siemens Business copyright 2013 213

Page 204: LMS Rotating Machinery 2013

DC Motor Controller

Single Phase AC Power

110 V, 60 Hz (USA)

220 V, 50 Hz (Europe)

240 120

Amplitude

V

Volts

Amplitude

360

degrees Half Wave Rectified

DC Voltage Level =

Vpeak/Pi

LMS International, A Siemens Business copyright 2013 214

Page 205: LMS Rotating Machinery 2013

DC Motor Controller

Single Phase AC Power

110 V, 60 Hz (USA)

220 V, 50 Hz (Europe)

Amplitude

V

Volts

Amplitude

degrees

DC Voltage Level

2*(Vpeak/Pi)

240 120 360

Full Wave Rectified

LMS International, A Siemens Business copyright 2013 215

Page 206: LMS Rotating Machinery 2013

DC Motor Controller

3 Phase AC Power

60 Hz (USA)

50 Hz (Europe)

Carried on 3 wires

degrees

240 120

Amplitude

V

Volts

Amplitude

360

DC Voltage Level =0

LMS International, A Siemens Business copyright 2013 216

Page 207: LMS Rotating Machinery 2013

DC Motor Controller

degrees

Amplitude

V

Volts

Amplitude

240 120 360

Half wave rectified – 3 x Line Frequency – Normal Operation

3 Phase AC Power

Line Frequency:

60 Hz (USA)

50 Hz (Europe)

DC Voltage Level

Hz

Am

p

LMS International, A Siemens Business copyright 2013 217

Page 208: LMS Rotating Machinery 2013

DC Motor Controller

Full wave rectified – 6 x Line Frequency – Normal Operation

Volts

Amplitude

degrees

240 120 360

3 Phase AC Power

Line Frequency:

60 Hz (USA)

50 Hz (Europe)

DC Voltage Level

Hz

Am

p

LMS International, A Siemens Business copyright 2013 218

Page 209: LMS Rotating Machinery 2013

DC Motor Controller with Problem

Full wave rectified – 5th order – Controller problem

Volts

Amplitude

degrees

240 120 360

3 Phase AC Power

Line Frequency:

60 Hz (USA)

50 Hz (Europe)

Hz

Am

p

Problem

Frequencies

High 2nd, 3rd, 4th and

5th order on Full

Rectified 3 Phase

power indicates

problem

LMS International, A Siemens Business copyright 2013 219

Page 210: LMS Rotating Machinery 2013

Summary of Motor Controller Frequencies

Electrical Expected Frequencies

Single Phase, Half Rectified Wave 1 x Line Frequency

Single Phase, Full Rectified Wave 2 x Line Frequency

Three Phase, Half Rectified Wave 3 x Line Frequency

Three Phase, Full Rectified Wave

6 x Line Frequency

LMS International, A Siemens Business copyright 2013 220

Page 211: LMS Rotating Machinery 2013

Electric Motors: AC/DC Power Transformation

Amp

AC Power

Amp

DC Power

Motor

Controller

Regulate Torque

and Speed via

Voltage and

Current

LMS International, A Siemens Business copyright 2013 221

Page 212: LMS Rotating Machinery 2013

Hydraulic Pump

LMS International, A Siemens Business copyright 2013 222

Page 213: LMS Rotating Machinery 2013

Hydraulic Pumps

Various types

Vane

Piston

Gerotor

Screw

Gear

Controls pressure in hydraulic lines

LMS International, A Siemens Business copyright 2013 223

Page 214: LMS Rotating Machinery 2013

Hydraulic Vane Pumps

Hydraulic Vane

Pump with 8 vanes.

What is pressure

pulsation order? low

high

LMS International, A Siemens Business copyright 2013 224

Page 215: LMS Rotating Machinery 2013

Hydraulic Vane Pumps

Hydraulic Vane

Pump with 8 vanes.

What is pressure

pulsation

frequency?

8x rotation

speed

low

high

LMS International, A Siemens Business copyright 2013 225

Page 216: LMS Rotating Machinery 2013

Pulse amplitude versus freq

Higher number of compartments = smaller fluctuations

Odd number of vanes smaller fluctuations rather than even – guaranteed overlap

Shape of compartment and bleed back valves

LMS International, A Siemens Business copyright 2013 226

Page 217: LMS Rotating Machinery 2013

AC vs DC Pressure

Pressure

time

+

Pressure

Pressure Average Pressure (DC)

Pressure Pulsation (AC)

Net Pressure (AC and DC)

LMS International, A Siemens Business copyright 2013 227

Page 218: LMS Rotating Machinery 2013

If AC Fluctuation > DC Pressure

Pressure

time

+

Pressure

Pressure Average Pressure (DC)

Pressure Pulsation (DC)

Net Pressure (DC)

LMS International, A Siemens Business copyright 2013 228

Page 219: LMS Rotating Machinery 2013

Cavitation Formation of vapor bubbles in hydraulic line or pump

Cavitation is when vapor bubble collapses (instantaneous when bubble reaches high pressure line)

Can be violent event, damage hydraulic lines and pumps

Many possible causes:

Line resonance

Pump intake creates vacuum

Valve-Pump interaction

High frequency actuators

Phase diagram

temperature

pre

ssure

boilingliquid

solid

gas

cavitation

LMS International, A Siemens Business copyright 2013 229

Page 220: LMS Rotating Machinery 2013

AMESIM HYDRAULIC

CIRCUIT DEMO WITH

CAVITATION

LMS International, A Siemens Business copyright 2013 230

Page 221: LMS Rotating Machinery 2013

LMS International, A Siemens Business copyright 2013 231

Page 222: LMS Rotating Machinery 2013

Cavitation Observations

Hydraulic system can be sized to perform function,

but dynamic performance can be easily overlooked

Dynamic interaction of complete system: valves,

pumps, lines, etc

LMS International, A Siemens Business copyright 2013 232

Page 223: LMS Rotating Machinery 2013

Balancing

LMS International, A Siemens Business copyright 2013 233

Page 225: LMS Rotating Machinery 2013

Balancing

Two shafts spinning.

Which one vibrates more? Front View – Shaft 1

Front View – Shaft 2

Mass Added

LMS International, A Siemens Business copyright 2013 235

Page 226: LMS Rotating Machinery 2013

Balancing

Two shafts spinning.

Which one vibrates more?

Answer:

Shaft 2!

Front View – Shaft 1

Front View – Shaft 2

Mass Added

LMS International, A Siemens Business copyright 2013 236

Page 227: LMS Rotating Machinery 2013

Balancing

Two shafts spinning.

Which one vibrates more?

600 rpm

6000 rpm

Mass Added

Mass Added

LMS International, A Siemens Business copyright 2013 237

Page 228: LMS Rotating Machinery 2013

Balancing

Two shafts spinning.

Which one vibrates more?

6000 rpm

600 rpm

6000 rpm

Mass Added

LMS International, A Siemens Business copyright 2013 238

Page 229: LMS Rotating Machinery 2013

Balancing

Two shafts spinning.

Which one vibrates more?

6000 rpm

600 rpm

6000 rpm

Mass Added

LMS International, A Siemens Business copyright 2013 239

Page 230: LMS Rotating Machinery 2013

Imbalance

Imbalance:

is the product of mass and

distance (radius)

customary unit of measure is g-

cm or oz.-in.

Complex quantity

Force due to imbalance (where

has unit's rad/sec2):

22 ImRF

Imbalance force

increases

exponentially with

speed

0

25

50

75

100

125

150

0 1000 2000 3000 4000 5000 6000

Shaft Speed, RPM

Ce

ntr

ifu

ga

l F

orc

e, N

40 g-cm

20 g-cm

Imbalance force

increases

exponentially with

speed

LMS International, A Siemens Business copyright 2013 240

Page 231: LMS Rotating Machinery 2013

Balance Example

Fan and Shaft are each 99.5% balanced.

Is fan/shaft assembly 99.5% balanced?

Fan Shaft

LMS International, A Siemens Business copyright 2013 241

Page 232: LMS Rotating Machinery 2013

Balance Example

Fan and Shaft are each 99.5% balanced.

Is fan/shaft assembly 99.5% balanced?

Fan Shaft

NO

LMS International, A Siemens Business copyright 2013 242

Page 233: LMS Rotating Machinery 2013

Balance Example

Fan and Shaft are each 99.5% balanced.

Is fan/shaft assembly 99.5% balanced?

Fan Shaft

NO

LMS International, A Siemens Business copyright 2013 243

Page 234: LMS Rotating Machinery 2013

Balance Example

Fan and Shaft are each 99.5% balanced.

Is fan/shaft assembly 99.5% balanced?

Fan Shaft

NO

LMS International, A Siemens Business copyright 2013 244

Page 235: LMS Rotating Machinery 2013

Balancing

How to fix?

Front View – Shaft 2

Mass Added

LMS International, A Siemens Business copyright 2013 245

Page 236: LMS Rotating Machinery 2013

Balancing

How to fix?

Mass on each side

Front View – Shaft 2

Mass Added

LMS International, A Siemens Business copyright 2013 246

Page 237: LMS Rotating Machinery 2013

Balancing

How to fix?

Eliminate Mass

Front View – Shaft 2

Mass Added

LMS International, A Siemens Business copyright 2013 247

Page 238: LMS Rotating Machinery 2013

Types of Imbalance

Static Imbalance Where (Principal Inertia Axis) PIA is displaced parallel to

geometric centerline.

Couple Unbalance Where (Principal Inertia Axis) PIA intersects the geometric

centerline at center of gravity (CG).

Dynamic Unbalance Where (Principal Inertia Axis) PIA and geometric centerline do

no coincide (run parallel) or touch.

Static

PIA

Geometric

Centerline

Center of Gravity

Static

PIA

Geometric

Centerline

Center of Gravity

LMS International, A Siemens Business copyright 2013 248

Page 239: LMS Rotating Machinery 2013

Causes of Imbalance

Shaft Bending Resonance If shaft is above 70% of it‟s natural frequency (critical speed) it

is considered to be a flexible rotor. and the PIA and geometric

centerline do not correspond.

Bearing Clearance/Radial Endplay

Improper Installation Shaft offset from center of rotation

Static

Geometric

Centerline

LMS International, A Siemens Business copyright 2013 249

Page 240: LMS Rotating Machinery 2013

Imbalance Example: Power Generator

LMS International, A Siemens Business copyright 2013 250

Page 241: LMS Rotating Machinery 2013

Imbalance Example: Power Generator

During periods of in-

use, large rotors/shafts

will droop.

Upon startup,

generators must be run

a low speeds for long

time, to allow the main

shaft to straighten

When the generator is

run at high speed, the

imbalance forces

prevent the shaft from

straightening, causing

high vibration.

Generator

LMS International, A Siemens Business copyright 2013 251

Page 242: LMS Rotating Machinery 2013

VL

IMBALANCE

DEMO Database: Shaft with U-Joints

and Added Mass

LMS International, A Siemens Business copyright 2013 252

Page 243: LMS Rotating Machinery 2013

Drive Shaft Durability due to Imbalance

LMS International, A Siemens Business copyright 2013 253

Page 244: LMS Rotating Machinery 2013

Drive Shaft Durability due to Imbalance

Imbalance

weights

induce

jump-rope

mode

Prop shaft

must

survive

maximum

expected

imbalance

Virtual strain

gauges

must be

below

certain

target LMS International, A Siemens Business copyright 2013 254

Page 245: LMS Rotating Machinery 2013

Production Equipment

LMS International, A Siemens Business copyright 2013 255

Page 246: LMS Rotating Machinery 2013

Production Equipment

Production Line Equipment Story:

• Line Speed Increased

• Large Roller (with Gears) goes from 100 rpm to 300 rpm

• Production equipment vibrates at unacceptable levels

• Gear Mesh frequency is much higher

Changing Gears does not reduce the vibration. Why Not?

LMS International, A Siemens Business copyright 2013 256

Page 247: LMS Rotating Machinery 2013

Production Equipment

Production Line Equipment Story:

• 1st Order Imbalance is problem – Very sensitive to speed

• Imbalance on shaft holding gears causes mesh

frequency amplitude increase

Solution: Balance roller reduced gear mesh by factor of 6

LMS International, A Siemens Business copyright 2013 257

Page 248: LMS Rotating Machinery 2013

Faster

Production Equipment

Production Equipment

Baseline

Frequency

Vib

ratio

n A

mp

litu

de

1st order

imbalance

Gear Mesh

LMS International, A Siemens Business copyright 2013 258

Page 249: LMS Rotating Machinery 2013

How to Measure Imbalance?

1 tach. 1 response of system

Find a speed

Measure 1st order

Baseline

With Known Mass added at specific angle

Determine Influence Coefficent

Amplitude and phase at speed of response (usually acceleration in g‟s)

Trial Mass (kg and location in angle)

This effectively „calibrates‟ the vibration plane to the mass plane

Influence Coefficient

relates Vibration Plane to

Imbalance

LMS International, A Siemens Business copyright 2013 259

Page 250: LMS Rotating Machinery 2013

Influence Coefficient (IC)

Influence Coefficent (IC) – Relates vibration at response to imbalance

IC = Change in Response/Change in Imbalance

•Change in Response = Baseline vs TrialMass

•Change in Imbalance known due to weight and angular placement and radius

Assumptions:

All response due to imbalance

Linear IC between response and imbalance

Influence Coefficient

relates Vibration Plane to

Imbalance

LMS International, A Siemens Business copyright 2013 260

Page 251: LMS Rotating Machinery 2013

Find a Speed for Balancing

Optimal Speed

Just Imbalance

Imbalance + Resonance

g g

rpm rpm

LMS International, A Siemens Business copyright 2013 261

Page 252: LMS Rotating Machinery 2013

Shaft Centerline Measurement

Front View – Shaft 1

Proximity probe X

Proximity probe Y

t

t

seconds

X

Y

-0.24 0.24Real

mm

-0.24

0.24

Real

mm

0.00

1.00

Real

14.61 14.74s

14.61 14.74

1:1

X

Y

LMS International, A Siemens Business copyright 2013 262

Page 253: LMS Rotating Machinery 2013

Shaft Centerline Plot

-0.24 0.24Real

mm

-0.24

0.24

Real

mm

0.00

1.00

Real

14.61 14.63s

14.61 14.63

1:1

Indicates how

well shaft rotates

around center

LMS International, A Siemens Business copyright 2013 263

Page 254: LMS Rotating Machinery 2013

TL SHAFT

CENTERLINE

DEMO

LMS International, A Siemens Business copyright 2013 264

Page 255: LMS Rotating Machinery 2013

Angle Domain

LMS International, A Siemens Business copyright 2013 265

Page 257: LMS Rotating Machinery 2013

Angle Domain Introduction

Engine

Front

Crankshaft

Optical Probe

0 10

Engine runup from 600 to 6000 rpm with 1 pulse/rev in 10 seconds

Why does time between

pulses change?

Time

seconds

0 10

V

rpm

LMS International, A Siemens Business copyright 2013 267

Page 258: LMS Rotating Machinery 2013

Angle Domain Introduction

Engine

Front

Crankshaft

Optical Probe

0 10

Why does time between

pulses change?

Answer: Engine gets faster!

Time

seconds

0 10

V

rpm

Engine runup from 600 to 6000 rpm with 1 pulse/rev in 10 seconds

LMS International, A Siemens Business copyright 2013 268

Page 259: LMS Rotating Machinery 2013

Transform Time to Angle

Time Data V

Time

seconds

V

Revolutions

Angle

1 rev 1 rev 1 rev 1 rev 1 rev

Angle Data

View data in angle domain

Angle

domain

makes

revolutions

uniform

distance

apart

LMS International, A Siemens Business copyright 2013 269

Page 260: LMS Rotating Machinery 2013

Insights revolution/degree domain

Cylinder #5 Pressure

Vibration on Block

1 revolution

LMS International, A Siemens Business copyright 2013 270

Page 261: LMS Rotating Machinery 2013

How to go from time to angle?

0 10

Time

seconds

0 10

V

rpm

Integrate RPM

Time

seconds

0 10

RPM is Speed. Angle is Distance Traveled

degrees

Now we can relate

each time

instance with a

particular angle!

LMS International, A Siemens Business copyright 2013 271

Page 262: LMS Rotating Machinery 2013

Transform Data vs Time to Data vs Angle

Vibration/sound

amplitude

degrees

Vibration/sound

amplitude

time

Now we can relate

each time

instance with a

particular angle!

LMS International, A Siemens Business copyright 2013 272

Page 263: LMS Rotating Machinery 2013

Resampling

Vibration/sound

amplitude

degrees

Resampling and angle domain resolution:

• 360 points/rev = 1.0 degree

• 720 points/rev = 0.5 degree

• 1800 points/rev = 0.2 degree

• 3600 points/rev = 0.1 degree

High Resolution

required

LMS International, A Siemens Business copyright 2013 273

Page 264: LMS Rotating Machinery 2013

How to Measure?

Incremental Encoder Features:

• High Pulse per Revolution: 360. 720.

1800. etc (A and B)

• Single Pulse Revolution (INDEX)

• Distinguish Forward and Backward

Incremental Encoder

LMS International, A Siemens Business copyright 2013 274

Page 265: LMS Rotating Machinery 2013

How to Measure?

LMS International, A Siemens Business copyright 2013 275

Page 266: LMS Rotating Machinery 2013

INCREMENTAL

ENCODER DEMO

LMS International, A Siemens Business copyright 2013 276

Page 267: LMS Rotating Machinery 2013

Engine Analysis

Question: Is it useful to look

at data over 1 revolution

for a 4 stroke engine?

LMS International, A Siemens Business copyright 2013 277

Page 268: LMS Rotating Machinery 2013

Engine Analysis

Question: Is it useful to look

at data over 1 revolution

for a 4 stroke engine?

NO

LMS International, A Siemens Business copyright 2013 278

Page 269: LMS Rotating Machinery 2013

Engine Analysis

Question: Is it useful to look

at data over 1 revolution

for a 4 stroke engine?

NO -

1 combustion cycle occurs

over 2 revs

LMS International, A Siemens Business copyright 2013 279

Page 270: LMS Rotating Machinery 2013

Combustion occurs over 2 revs

1 cycle

1st revolution 2nd revolution

Intake Compression Power Exhaust

LMS International, A Siemens Business copyright 2013 280

Page 271: LMS Rotating Machinery 2013

Angle Maps

0.00 719.00°

0.00

72000.00

°

1.30

13161069.00

Am

plitu

de

Pa

22.61

0.00 719.00°

0.00

72000.00

°

-7.73

6.88

Real

g

22.61

0.00 719.00°

block:+Z (CH18)

-7.00

6.00

Real

g

0.00

1.00

Am

plit

ude

F Angle block:+Z 3009.8 rpm

Averaged 0.00 719.00°

PCYL1 (CH1)

-1000000.00

13000000.00

Real

Pa

0.00

1.00

Am

plit

ude

F Angle PCYL1 3009.8 rpm

Averaged

LMS International, A Siemens Business copyright 2013 281

Page 272: LMS Rotating Machinery 2013

Maximums from 2 conditions

0.00 719.00°

0.00

72000.00

°

-7.73

6.88

Real

g

22.61

0.00 100.00#

26.00

102.00

Am

plitu

de

g

F Maximum block:+Z Cyl5Accel

F Maximum block:+Z Cyl5Accel

Cycles

LMS International, A Siemens Business copyright 2013 282

Page 273: LMS Rotating Machinery 2013

Maximum Acceleration versus Angle

0.00 720.00Real

°

26.00

102.00R

eal

g

0.00

1.00

Real

0.00 73000.00°

X X value at Maximum block:+Z Cyl5Accel

F Maximum block:+Z Cyl5Accel

F Maximum block:+Z Cyl5Accel

LMS International, A Siemens Business copyright 2013 283

Page 274: LMS Rotating Machinery 2013

TL ANGLE DOMAIN

DEMONSTRATION Project: angle_data.lms

LMS International, A Siemens Business copyright 2013 284

Page 275: LMS Rotating Machinery 2013

LMS International, A Siemens Business copyright 2013 285

Page 276: LMS Rotating Machinery 2013

Problems where angle domain helps…

Piston Slap

Combustion Noise

False Knock detection

Injector Noise

Valve Timing

LMS International, A Siemens Business copyright 2013 286

Page 277: LMS Rotating Machinery 2013

Example: Piston Slap

LMS International, A Siemens Business copyright 2013 287

Page 278: LMS Rotating Machinery 2013

Example: Piston Slap

Pis

ton

Sla

p

Pis

ton

Sla

p

Pis

ton

Sla

p

LMS International, A Siemens Business copyright 2013 288

Page 279: LMS Rotating Machinery 2013

Example: Piston Slap

Solution:

Offset Piston Rod

LMS International, A Siemens Business copyright 2013 289

Page 280: LMS Rotating Machinery 2013

Example: Pilot Injection P

ressu

re

angle

Normal Cylinder Pressure

Pre

ssu

re

angle

Pilot Ignition Cylinder Pressure

LMS International, A Siemens Business copyright 2013 290

Page 281: LMS Rotating Machinery 2013

Example: Pilot Injection P

ressu

re

angle

Pilot Ignition Cylinder Pressure

Pilot Ignition:

1.Reduces Noise

2.More gradual pressure

buildup in cylinder

(pressure rise rate)

3.More fuel combusted

LMS International, A Siemens Business copyright 2013 291

Page 282: LMS Rotating Machinery 2013

PLAY PILOT

IGNITION DATA Project: angle_data.lms

LMS International, A Siemens Business copyright 2013 292

Page 283: LMS Rotating Machinery 2013

LMS International, A Siemens Business copyright 2013 293

Page 284: LMS Rotating Machinery 2013

Example: Pilot Ignition P

ressure

angle

How to analyze:

1.Derived channels: Differentiate

Cylinder Pressure

2. Frame Statistics AD: Take Maximum

of Differentiated data

Pre

ssure

/s

angle

Take Max

LMS International, A Siemens Business copyright 2013 294

Page 285: LMS Rotating Machinery 2013

Example: Pilot Ignition

LMS International, A Siemens Business copyright 2013 295

Page 286: LMS Rotating Machinery 2013

Example: Spark Timing d

B(A

) O

ve

rall

Le

ve

l

Spark Timing

degrees

0 -2 -4 -6 -8 -10 2

To

rqu

e N

/m

80

78

76

74

* Note: This is generalized graph

200

190

180

170

LMS International, A Siemens Business copyright 2013 296

Page 287: LMS Rotating Machinery 2013

AMESIM ENGINE

DEMO

LMS International, A Siemens Business copyright 2013 297

Page 288: LMS Rotating Machinery 2013

LMS International, A Siemens Business copyright 2013 298

Page 289: LMS Rotating Machinery 2013

Resonances

LMS International, A Siemens Business copyright 2013 299

Page 291: LMS Rotating Machinery 2013

What causes

Vertical

Lines?

1.

0.00 2000.00Hz

Point1 (CH1)

900.00

3500.00

rpm

Tacho1 (

T1)

-20.00

80.00

dB Pa

AutoPow er Point1 WF 251 [984.96-3482.9 rpm]

Colormap of Runup

LMS International, A Siemens Business copyright 2013 301

Page 292: LMS Rotating Machinery 2013

Natural Frequency

(rad/sec)frequency naturalm

kn

Natural frequency is the frequency at which a system naturally vibrates once it

has been forced into motion

ground

m

c k

x(t)

f(t)

Single Degree of Freedom System

LMS International, A Siemens Business copyright 2013 302

Page 293: LMS Rotating Machinery 2013

Resonant Frequency

Resonance is the buildup of a large amplitude that occurs when a structure is

excited at its natural frequency

ω f = 0.4 ω f = 1.01 ω f =1.6 Frequency

Am

pli

tud

e

ω n = 1.0

3 Single Degree of Freedom Systems with

same mass, stiffness and damping LMS International, A Siemens Business copyright 2013 303

Page 294: LMS Rotating Machinery 2013

Aircraft Flutter

LMS International, A Siemens Business copyright 2013 304

Page 295: LMS Rotating Machinery 2013

Natural Frequency

k = 1 N/m k = 4 N/m k = 9 N/m

What will happen to the natural frequency as the beam stiffness is increased?

Assume the mass of the beam is 1 kg and the excitation frequency is constant

ωn

k

m

ωn = 1 rad/s ωn = 2 rad/s ωn = 3 rad/s

Am

pli

tud

e

Frequency

LMS International, A Siemens Business copyright 2013 305

Page 296: LMS Rotating Machinery 2013

31.26 57.71s

4379.83

5019.96

Am

plit

ude

rpm

0.72

0.86

Am

plit

ude

F 6:Ring_Gear

Torsional Vibration Resonance

Torsional Vibration can be

amplified by resonance:

Crankshaft in Engine

Drive Shaft

LMS International, A Siemens Business copyright 2013 306

Page 297: LMS Rotating Machinery 2013

More Resonances

Accessory brackets

Mount Brackets

Rigid Body Modes

LMS International, A Siemens Business copyright 2013 307

Page 298: LMS Rotating Machinery 2013

CAE-Test Correlation

LMS International, A Siemens Business copyright 2013 308