Linear and nonlinear optical properties of metal nanoparticles

30
Linear and nonlinear optical properties of metal nanoparticles Arnaud Arbouet Cyril Guillon Natalia Del Fatti Pierre Langot Fabrice Vallée

Transcript of Linear and nonlinear optical properties of metal nanoparticles

Page 1: Linear and nonlinear optical properties of metal nanoparticles

Linear and nonlinear optical properties

of metal nanoparticles

Arnaud Arbouet

Cyril Guillon

Natalia Del FattiPierre Langot

Fabrice Vallée

Page 2: Linear and nonlinear optical properties of metal nanoparticles

Semiconductor or metal nanoparticlesin a transparent matrix or deposited

• Quantum confinement: - modification of the electronic wave functions- quantized vibration modes

• Dielectric confinement:- Sizes << optical wavelength

→→→→ Modification of the optical properties

Semiconductor nanoparticles →→→→ quantum confinementMetal nanoparticles →→→→ dielectric confinement

→→→→ " small solids " + modifications due to confinement (N > 300 atoms / particle ⇔⇔⇔⇔ nanosphere with diameter D > 2nm)

Noble Metals (Ag, Au) : synthesis - model

Nanomaterials

Page 3: Linear and nonlinear optical properties of metal nanoparticles

Metal nanoparticles : optical properties at equilibrium

Interfaces :Visible absorption enhancement

Surface Plasmon Resonance

200 250 300 350 400 450 5000

1

2

3

4

5

Interband Transitions

Surface Plasmon Resonance

α L

Wavelength (nm)

Surface Plasmon Resonance

ΩR

Silver nanoparticles in glass matrix

Page 4: Linear and nonlinear optical properties of metal nanoparticles

Optical Properties of Metal Clusters (I)

Medium absorption (spheres):

→→→→ Resonance for εεεε1 + 2 εεεεm = 0: surface plasmon resonance

→→→→ Resonance frequency depends on: - shape- structure- environment

REO

Eint

εεεε(ωωωω)

εεεεm

+

+

+

+( )mm

mm p ε−ε

ε+εε+ε=ε2

3~

Metal Nanospheres (ε = εε = εε = εε = ε1 1 1 1 + + + + iεεεε2222) (R << λλλλ) in a matrix (εεεεm):

→→→→ effective dielectric constant:

(p << 1 : volume fraction)

( ) )(2)(

)()(

22

21

2

ωε+ε+ωεωε∝ωα

m

Page 5: Linear and nonlinear optical properties of metal nanoparticles

Optical Properties of Metal Clusters (II)

EFintrabandtransitionsinterband

transitions

CB

d - bands

Ag - D = 13 nm - p = 2x10-4

200 250 300 350 400 450 5000

1

2

3

4

5

ΩRInterband Transitions

Surface Plasmon Resonance

α L

Wavelength (nm)

ΩΩΩΩRInterband Transitions

Threshold

ΩΩΩΩib

Surface Plasmon Resonance

Wavelength (nm)

( )τ+ωωω−ωε=ωε ipb 2)()(

bound electrons (interband)

free electrons (intraband)

Metal dielectric function:

mRb

pR ε+Ωεω=Ω 2)(1

Surface Plasmon Resonance

- frequency :

- width : Γ = 1/τ = 1/τo + g vF/R

Page 6: Linear and nonlinear optical properties of metal nanoparticles

Non-equilibrium Femtosecond studies

Fundamental properties of metal nanoparticles (Silver or Gold in a matrix, solution or deposited)

→→→→ out-of-equilibrium electronic propertiesOptical excitation →→→→ Ultrafast response

of an ensemble of nanoparticles or a single unit

• Size evolution of the properties

• Mechanisms of energy and charge transfer at interfaces

Experiments: femtoseconde pump-probe setup

Optical « pump » pulse :

modification of the electronic and optical properties of the system

Optical « probe » pulse :

optical transmission changes ∆∆∆∆T/T

Page 7: Linear and nonlinear optical properties of metal nanoparticles

Experimental setup : femtosecond pump - probe

Chopper ( ω)

Computer

Variable Delay

Lock-inAmplifier

ω

+ -

Signal Reference

Argon Laser

Reference

BBO

Sample

Signal

Ti:sapphire laser

800 - 900nm1W - 25fs

prismpair

Pump: infrared pulses (25 fs)Probe: infrared pulses (25 fs)

blue (30 fs)or UV (55 fs)

Weak perturbation : ∆∆∆∆Te ~ 100KSensitivity: ∆∆∆∆T/T ~ 10-7

ω2ω3ω

(f)

f

Sample

Pump

Probe

∆T/T

Page 8: Linear and nonlinear optical properties of metal nanoparticles

Nanomaterials : Ag, Au nanoparticles in a matrix

10 11 12 13 14 15 16 17 180

5

10

15

20

Rel

ativ

e n

umbe

r

Nanoparticle radius (nm)

TEM

Hoya - Japan LASIM - Lyon LM2N - Paris / ICMCB - Bdx

Synthesis : fusion + trait. th. deposition (LECBD) chemicalDiameter D : 4 < D < 30 nm 2 < D < 4 nm 4 < D < 10 nmDispersion : < 10 % ~ 10 % 10 - 30 %Vol. Fraction : ~ 2.10-4 ~ 2 % tunableMatrix : 50 BaO - 50P2O5 Al2O3 ou MgF2 colloïde, polymer, deposited

Page 9: Linear and nonlinear optical properties of metal nanoparticles

Femtosecond investigations

Selective electron excitation (hνννν) →→→→ response of nonequilibriumelectrons

→→→→ Intrinsic electron scattering processes- Internal thermalization ( →→→→ Te) →→→→ electron-electron : ττττth ~

300 fs- External thermalization (Te →→→→ TL) →→→→ electron-lattice : ττττe-ph ~ 1

ps

→→→→ Confined vibrational modes

MatrixLattice

ττττe-ph

e ↔ eττττth ττττp-mττττp-m

Matrix

Page 10: Linear and nonlinear optical properties of metal nanoparticles

Femtosecond excitation and probing

f

E

f(0)

F E F

0f(t)

E F

Te = T0 Te > T0

+ωP

ωP

t = 0 t > 0t < 0

Femtosecond excitation: intraband absorption

→→→→ Athermal electron distribution →→→→ Thermalization + Cooling

Femtosecond probing: • Transmission change ∆∆∆∆T/T ⇔⇔⇔⇔ dielectric function change ∆ε∆ε∆ε∆ε(tD)

• Probe wavelength →→→→ different electron interactions

IS T x IS∆∆∆∆T/T

Sample

Probe

Pump

Page 11: Linear and nonlinear optical properties of metal nanoparticles

*First hundreds fs :

→ Internal thermalisation of

the electron gaz at Te >To

* First ps :

→ Energy transfer from

the electrons to the lattice

* Longer time scale :

→ Energy transfer to the matrix

→ Acoustic vibrations

Ultrafast dynamics

τth (Ag) = 350 fs dans le massif

Electron dynamics

Lattice dynamics

τ e-ph (Ag) = 850 fs dans le massif

Internal Thermalization of the electron gaz

Energy transferto the lattice

Acoustic vibrations of the particles

Energy transferto the matrix

0 2 4 6 8 10 12

0.0

0.5

1.0

∆T

/ T

(n

orm

.)

Retard sonde (ps)

Page 12: Linear and nonlinear optical properties of metal nanoparticles

Metal Nanoparticles (I)

Internal electron thermalization

Page 13: Linear and nonlinear optical properties of metal nanoparticles

Internal electron thermalization: Ag - Au

• Probing energies close to the Fermi level from d-bands→→→→ electronic distribution close to EF →→→→ Internal electron thermalization

• Probe pulse : - Ag : ΩΩΩΩib ~ 4eV (310nm) →→→→ Titane - Saphir x 3 - Au : ΩΩΩΩib ~ 2.5eV (500nm) →→→→ Titane - Saphir x 2

• Low perturbation regime : dynamics independent from Ipompe

0 ∆∆∆∆fe

EF

∆∆∆∆fe

EF

bandes d

B.C.

EF

Probe UV or visible

d-bands

PumpIR

Athermal Thermal

Page 14: Linear and nonlinear optical properties of metal nanoparticles

Electron thermalization kinetics (Ag nanoparticles)

Rise time : thermalization time Phenomenological response:

Faster thermalizationfor the smaller sizes

caracteristic time ττττth

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

τth = 250 fs

Ag - R = 3 nm

∆T

/T

(nor

m.)

Probe Delay (ps)

BttAth relth +τ−τ−−= )/exp()/exp(1)(

Ag - D = 6 nm

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

3.2 nm

6 nm

D = 24 nm

- ∆

T/T

(

norm

aliz

ed)

Probe Delay (ps)

Page 15: Linear and nonlinear optical properties of metal nanoparticles

Electron internal thermalization: size dependence(C. Voisin et al. , PRL 85 , 2200 (2000))

• Increase of electron – electron scattering: intrinsic effect

• Modification of the electronic environment at surfaces:

- spill-out →→→→ reduction of the electron density ne →→→→ R + b - reduced polarisability of d-electrons →→→→ R - a

Fermi liquid Theory (bulk):

increase of e-e scattering close to the surfaces (screening reduction)

0 5 10 15 20 25100

200

300

400

500

colloidAl2O3

Au

τ th

(fs)

Nanoparticle diameter (nm)0 5 10 15 20 25

150

200

250

300

350

BaO-P2O5

Al2O3

Deposited

Nanoparticle diameter (nm)

Ag

τ th

(fs)

R-aR

R+b2/16/5 )()( deee n ε∝τ −

Page 16: Linear and nonlinear optical properties of metal nanoparticles

Metal Nanoparticles (II)

Electrons - lattice energy transfer

Page 17: Linear and nonlinear optical properties of metal nanoparticles

Electron energy losses: electron-phonon couplingAg - D = 3 nm in Al2O3

UV probe : Risetime: electron thermalization →→→→ electron-electron interactionsDecay: energy transfer to the lattice →→→→ electron-lattice coupling

Blue probe: ∆∆∆∆T/T ∝∝∝∝ excess energy in the electron gas →→→→ electron-lattice coupling

→→→→ Size effect ?

bandes d

B.C.

EF

UV probe

d-bands

Blue probe

0 1 2 3

0.2

0.4

0.6

0.8

1.0

∆T

/T

Probe Delay (ps)

0 1 2

0.01

0.1

1

∆T

/T

Probe Delay (ps)

pump: IR (930nm)probe: Blue (465nm) or UV (310 nm)

Page 18: Linear and nonlinear optical properties of metal nanoparticles

Electron - Phonon Coupling in Ag Clusters: Size effect

Exponential decay : electrons - lattice energy transfer time,

ττττe-ph

• Large nanoparticles: same as bulk

• Small nanoparticles: increased electron-lattice energy

exchanges

0 1 2 310

-2

10-1

100

23 nm film

D = 26 nm

D = 6 nm

Ag

∆T

/T

(no

rmal

ized

)Probe delay (ps)

0 1 2 3

0.0

0.5

1.0 Ag - clusters in Ba0-P2O5

D = 26 nm D = 6 nm

∆T

/T

(no

rmal

ized

)

Probe delay (ps)

Page 19: Linear and nonlinear optical properties of metal nanoparticles

Electron - phonon scattering : size effects (A. Arbouet et al., PRL 90, 177401 (2003))

• Similar to electron-electron scattering modifications

• Tin and Gallium: ττττe-ph ∝∝∝∝ D (M. Nisoli et al., PRL 78, 3575 (1997))

• Theory : coupling modification (electron-ion screening →→→→ full line) ? Quantized vibrations?

0 5 10 15 20 25 30

0.5

0.6

0.7

0.8

0.9

BaO-P20

5

Al2O

3

MgF2

PMMAdeposited

Nanoparticle Diameter (nm)

Ag

τ e-ph

(ps)

0 5 10 15 20 25 300.4

0.6

0.8

1.0

1.2

Al203

Colloid Colloid

Au

τ e-ph

(ps)

Nanoparticle Diameter (nm)No matrix or growing method dependence Intrinsic effect

Page 20: Linear and nonlinear optical properties of metal nanoparticles

Metal Nanoparticles (III)

Acoustic Vibrations of nanospheres

Page 21: Linear and nonlinear optical properties of metal nanoparticles

Electron-lattice quasi-equilibrium: acoustic modeAg spherical nanoparticles in glass

Transmission change probed at the surface plasmon resonance :

Oscillating signal ∆∆∆∆T/T ∝∝∝∝ A e - γγγγ t cos ( ωωωω t + ϕϕϕϕ ) Coherent (in phase) motion of the spherical nanoparticles

R

D = 26 nm

D = 6 nm

10 20 30 40-1

0

1

(ps)

( ∆T

/T) os

c

0 10 20 30

0.0

0.5

1.0

Retard sonde (ps)

∆T/T

(n

orm

.)

Fundamental radial mode (n = 0): "breathing" of an elastic sphere

Page 22: Linear and nonlinear optical properties of metal nanoparticles

Excitation mechanism

Fast lattice heating by the electrons: ττττe-ph < Tosc

fast increase of the equilibrium size Req(TL) (dilation)

(C.Voisin et al., J. Phys. Chem B 105, 2264 (2001))

Displacive excitation

cosine oscillations0 10 20 30

0

1

- Sin

Cos Ag - R = 13nm

( ∆T

/T )

osc

Probe Delay (ps)

Lattice heatingAg - D = 26 nm

Page 23: Linear and nonlinear optical properties of metal nanoparticles

Probe mechanism

Modulation of the position of the surface plasmon resonance :

Ensemble of nanoparticles:

Coherent (in-phase) oscillations

R

3 40

1

2

3

α L

Energy (eV)

ω-pr ω+

pr

ΩR

0 10 20 30-2

-1

0

1

2

3

ω-pr

ω+pr

∆T

/T

x 1

0 3

Probe Delay (ps)

0 4 8

-0.1

0.0

0.1

∆γ

(meV

)∆Ω

R

(meV

)

Probe Delay (ps)

mRb

pR ε+Ωεω=Ω 2)(1

Page 24: Linear and nonlinear optical properties of metal nanoparticles

Vibration modes of a sphere

• Silver nanoparticles in glass matrix :elastic homogeneous media

• Vibration modes of a free sphere : Lamb (1882)• Embedded sphere :

• Excitation mechanism : isotrope (via the electrons)→ radial vibration modes (dilation and contraction)

Page 25: Linear and nonlinear optical properties of metal nanoparticles

Size effects

Size reduction :

→ smaller period

→ stronger damping

R = 13 nm

R = 3 nm

RRTosc ∝=∝=γ

τωπ 12

Dependence of period and damping with nanoparticle size

Page 26: Linear and nonlinear optical properties of metal nanoparticles

1 2 3 4 5 6 7 8-0.02

0.00

∆T

/T (

norm

alis

é)

Retard sonde (ps)1 2 3 4 5 6 7 8

-1.0

-0.5

0.0

0.5

1.0

103 ∆∆ ∆∆

T/T

Retard sonde (ps)

Damping : environment effect

Origin of damping : homogeneous and inhomogeneous

Inhomogeneous : nanoparticle size distribution

Homogeneous : energy transfer to the matrix → nanoparticle - matrix acoustic coupling

Ag - R = 3nm in glass Ag - R = 2.5nm in water

R

Page 27: Linear and nonlinear optical properties of metal nanoparticles

Acoustic vibrations : fundamental radial mode

Fundamental radial mode (n = 0) :

Period Tn=0 →→→→ average diameter

Homogeneous damping : →→→→ matrix energy transfer

R

R

RdtdE

Esurface

volumeh ∝

∝τ

0

2

4

6

8

10

Osc

illat

ion

peri

od

(ps)

0 5 10 15 20 25 30 350

4

8

12

Dam

ping

tim

e (

ps)

Nanoparticle Diameter (nm)→→→→ contact / interface quality

Page 28: Linear and nonlinear optical properties of metal nanoparticles

Higher order radial modes

FFT

R

n = 0

with : Tn=1 = Tn=0 / 2.1 (period)ττττn=1 ≈≈≈≈ ττττn=0 (damping)

lower excitation (1:6)(dilation model )

n = 1

0 10 20 30 40-4

-2

0

2

4

Experimental Fit (one mode)

Ag in glassR = 13 nm

∆T

osc

(x

104 )

Probe Delay (ps)

Ag - D = 26 nm

0.0 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1.0

experimental calculated (2 modes)

Ag in glass R = 13nm

Frequency (THz)

FF

T

Am

plitu

de

Ag - D = 26 nm

n=0 n=1

Page 29: Linear and nonlinear optical properties of metal nanoparticles

Conclusion

• Femtosecond perturbation of the electron gas→→→→ Electron interaction processes in a nanoparticle

• Nonequilibrium electrons: establishment of a collective response

• Electron dynamics: e - e and e - phonon interactions increase for D ≤≤≤≤ 10nm Confinement effects

• Nanoparticle lattice dynamics

Real time detection of nanoparticle coherent oscillations Radial mode frequency and damping - Optical control

• Charge transfer• Single nanoparticle

Page 30: Linear and nonlinear optical properties of metal nanoparticles

Acknowledgements

E. Cottancin LASIM - Univ. Lyon I - France

J. Lermé

M. Pellarin

M. Broyer

M. Maillard LM2N - Univ. P. et M. Curie - France

L. Motte

M. P. Pileni

M. Treguer ICMCB – Univ. Bordeaux I - France

Y. Hamanaka Nagoya University - Japan

A. Nakamura

S. Omi Hoya Corporation - Japan