Optical Nonlinear Properties of Noble Metal Nanoparticles and Composites Abdulkadir Yurt 04.29.2009.

15
Optical Nonlinear Properties of Noble Metal Nanoparticles and Composites Abdulkadir Yurt 04.29.2009

Transcript of Optical Nonlinear Properties of Noble Metal Nanoparticles and Composites Abdulkadir Yurt 04.29.2009.

Optical Nonlinear Properties of Noble Metal Nanoparticles and

Composites

Abdulkadir Yurt

04.29.2009

Outline

1. Introduction

2. Linear Optical Properties

3. Nonlinear Optical Properties

4. Effect of surrounding medium

5. Selected Applications

1.Introduction

• Need for faster and smaller data processing technology

• Understanding nonlinear phenomenon in bulk and nanosized metals

L. Cao and M. Brongersma, Nature Photonics, January (2009)

2.Linear Optical Properties

• Permittivity of metals

• Local Field Factor

• Confinement Effect

Figure 1: Modulus of the local field factor f. *

* M. G. Papadopoulos, et al Nonlinear Optical Properties of Matter, Springer, Dordrecht, 2006

3.Nonlinear Optical Properties

• Basic Nonlinear Optics Equations:

Optical Kerr Effect

Third Harmonic Generation (THG)

3.Nonlinear Optical Properties

R. W. Boyd, Nonlinear Optics, Academic Press, Boston, (1992)

3.Nonlinear Optical Properties

• Origin of intrinsic nonlinearity– Thermal and electronic contribution– Notice size dependencies

Figure 2: Band structure of noble metals. *

F. Hache, et al. J. Opt. Soc. Am. B 3, 1647 (1986)* C. Voisin et al. Phys. Rev. B 69,195416 (2004)

4.Effect of surrounding medium

Figure 3: Real, imaginary and modulus of the effectivenonlinear susceptibility within visible range.*

* M. G. Papadopoulos, et al Nonlinear Optical Properties of Matter, Springer, Dordrecht, 2006

4.Effect of surrounding medium

Takeda et al. Opt. Exp. 16, 6010 (2007);

Figure 4: The variation in ε of the Effective medium.

Figure 5: The variation in intrinsic ε of the metal nanoparticles.

5.Selected Applications- “Photo-thermal cancer therapy using gold

nanoparticles” by El-Sayed et al.• Based on SHG• They use 800nm excitation. Transparent to skin.• 20 times lower energy to destroy cancer cells

X. Huang, W. Qian, I. H. El-Sayed, M. A. El-Sayed, Lasers in Surgery and Medicine, 39(9), 747 – 753, (2007).

5.Selected Applications- “All-optical switching in subwavelength metallic

grating structure containing Au:SiO2 composite material” by Min et al.- Based on optical Kerr effect- 200fs switching time

with low power requirement

C. Min, et al. Opt. Lett. 33, 869-871 (2008)

5.Selected Applications

• “Ultra-fast active plasmonics” by Zheludev et al.

MacDonald, K. F., Sámson, Z. L., Stockman, M. I. and Zheludev, N. I. Nature Photon. 3, 55–58 (2009)

Conclusion

• Noble metals are promising candidates for nonlinear optics, active plasmonics and biological labeling and therapy applications

• Their size, surrounding medium and excitation characteristics can be engineered to have optimum desired response.

• Using ultra-short high power pulses, non-equilibrium electron distribution studies can further provide insight to quantum metallic systems.

References1. S. Lal, S. Link and N.J. Halas, Nature Photonics 1 641-648 (2007)2. R. W. Boyd, Nonlinear Optics, Academic Press, Boston, (1992)3. Palik, E.D. (ed.): Handbook of Optical Constants of Solids, vols. I and II, Academic, New York

(1985/1991)4. L. Novotny and B. Hecht, Principles of Nano-Optics Cambridge University Press, New York,

NY, 20065. M. G. Papadopoulos, A. J. Sadlej and J. Leszczynski, NonlinearOptical Properties of Matter,

Springer, Dordrecht, 2006 6. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer-Verlag, Berlin, (1995)7. Y. Guillet, M. Rashidi-Huyeh, and B. Palpant, Phys. Rev. B 79, 045410 (2009)8. C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry,

E. Cottancin, M. Pellarin, M. Broyer, Phys. Rev. B 69,195416 (2004)9. J. Y. Bigot, V. Halté, J. -C. Merle, A. Daunois, Chem. Phys. 251,181-203 (2000)10. F. Hache, D. Ricard, and C. Flytzanis, J. Opt. Soc. Am. B 3, 1647 (1986)11. J.P. Huang and K.W. Yu, Phys. Rep. 431 (2006)12. Lippitz, M., van Dijk, M.A., Orrit, M. ,Nano Lett. 5, 799–802 (2005)13. X. Huang, W. Qian, I. H. El-Sayed, M. A. El-Sayed, Lasers in Surgery and Medicine, 39(9),

747 – 753, (2007).14. L. Cao and M. Brongersma, Nature Photonics, January (2009)15. Pala, R. A.; Shimizu, K. T.; Melosh, N. A.; Brongersma, M. L. Nano Lett. 8(5); 1506-1510

(2008)16. C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, Opt. Lett.

33, 869-871 (2008)17. MacDonald, K. F., Sámson, Z. L., Stockman, M. I. and Zheludev, N. I. Nature Photon. 3, 55–

58 (2009)

Thanks!