Second- and Third- Order Nonlinear Optical...

127
7 Second- and Third- Order Nonlinear Optical Materials Larry Dalton Philip Sullivan Alex K.-Y. Jen 7.1 Introduction............................................................................ 7-1 7.2 Second-Order Nonlinear Optical Materials ......................... 7-2 Electro-Optic Materials Optical Rectification Including Terahertz Radiation and Detection 7.3 Third-Order Nonlinear Optical Materials.......................... 7-15 7.4 Summary ............................................................................... 7-16 Acknowledgments ............................................................................. 7-16 References ........................................................................................ 7-119 7.1 Introduction Second- and third-order optical nonlinearity can perhaps be best understood as the coefficients of the second and third terms in the power series expansion of molecular and macroscopic polarization in terms of applied electric fields. P i Z a ij E j C b ijk E j E k C g ijkl E j E k E l C . ð7:1Þ P i Z c ð1Þ ij E j C c ð2Þ ijk E j E k C c ð3Þ ijkl E j E k E l C . ð7:2aÞ P i Z c ð1Þ ij E ju cosðut KkzÞ C ð1=2Þc ð2Þ ijj E jju ½1 C cosð2ut K2kzÞ C . ð7:2bÞ The terms b and g represent the first and second molecular hyperpolarizabilities, whereas the terms c (2) and c (3) represent the first- and second-order nonlinear material (macroscopic) susceptibilities. Each term arises from the nonlinear interaction of applied electric fields with the quasi-delocalized electron distribution of molecules and materials. Moreover, each of these terms can give rise to a variety of nonlinear responses reflecting different frequency dependences. 1–13 Second-order terms give rise to second harmonic generation (see Equation 7.2b), difference frequency (e.g., terahertz frequency) generation, optical rectification (see Equation 7.2b), and electro-optic modulation (the Pockels effect). Third-order optical nonlinearity gives rise to third harmonic generation, phase conjugation, optical 15018—Chapter7—26/8/2006—22:01—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126. Article in Press 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 7-1

Transcript of Second- and Third- Order Nonlinear Optical...

Page 1: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

Article in Press

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

7

15018—Chapter7—26/8/2006—22:01—SJAPPIYA

Second- and Third-Order Nonlinear

Optical Materials

Larry DaltonPhilip SullivanAlex K.-Y. Jen

7.1 Introduction............................................................................ 7-1

7.2 Second-Order Nonlinear Optical Materials ......................... 7-2

R—1501

Electro-Optic Materials † Optical Rectification Including

Terahertz Radiation and Detection

7.3 Third-Order Nonlinear Optical Materials.......................... 7-15

7.4 Summary ............................................................................... 7-16

Acknowledgments............................................................................. 7-16

References........................................................................................ 7-119

7.1 Introduction

Second- and third-order optical nonlinearity can perhaps be best understood as the coefficients of the

second and third terms in the power series expansion of molecular and macroscopic polarization in

terms of applied electric fields.

Pi Z aijEj CbijkEjEk CgijklEjEkEl C. ð7:1Þ

Pi Z cð1ÞijEj Ccð2Þ

ijkEjEk Ccð3ÞijklEjEkEl C. ð7:2aÞ

Pi Z cð1ÞijEjucosðutKkzÞC ð1=2Þcð2Þ

ijjEjju½1 Ccosð2utK2kzÞ�C. ð7:2bÞ

The terms b and g represent the first and second molecular hyperpolarizabilities, whereas the terms

c(2) and c(3) represent the first- and second-order nonlinear material (macroscopic) susceptibilities. Each

term arises from the nonlinear interaction of applied electric fields with the quasi-delocalized electron

distribution of molecules and materials. Moreover, each of these terms can give rise to a variety of

nonlinear responses reflecting different frequency dependences.1–13 Second-order terms give rise to

second harmonic generation (see Equation 7.2b), difference frequency (e.g., terahertz frequency)

generation, optical rectification (see Equation 7.2b), and electro-optic modulation (the Pockels effect).

Third-order optical nonlinearity gives rise to third harmonic generation, phase conjugation, optical

8—XML MODEL CRC12a – pp. 1–126.

7-1

Page 2: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

7-2 Handbook of Photonics

Article in Press

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

limiting, optical parametric effects, and all-optical modulation (the Kerr effect). As is typical for power

series expansions, the second-order coefficients are larger than the third-order coefficients. Although

commercial applications have been realized for both second- and third-order inorganic materials, such as

lithium niobate electro-optic and titanium/sapphire optical parametric materials, organic nonlinear

optical materials are still struggling to obtain a beachhead on the commercial landscape. To the present

time, second-order nonlinear optical organic materials appear closer to commercial application and will

thus receive greater attention in this chapter.

It is very difficult to define a universal figure-of-merit (FOM) for either second- or third-order

nonlinear optical materials, as practical device performance will often depend on the details of device

design as well as intrinsic material properties. However, the most simplistic and yet somewhat realistic

figure-of-merit can be expressed as FOMZc(2 or 3) /ta, where t is the response time for the system

reacting to an electric field perturbation and t is the optical loss. For p-electron organic materials, the

response time, t is the phase relaxation time of the conjugated p-electrons, which is typically on the

order of tens of femtoseconds. If device bandwidths are determined by the intrinsic material response

time, bandwidths of tens of terahertz are possible. The optical loss, a, typically includes both absorption

and scattering contributions. Optical loss will, thus, be influenced by material heterogeneity as well as

molecular structure. Of course, practical device applications may also require many additional material

properties including stability (e.g., thermal and photochemical) and processability (e.g., solubility in

spin-casting solvent, appropriate sublimation temperatures for vapor deposition, appropriate glass

transition temperatures for nanoimprint lithography). The FOM defined above is most commonly used

in ranking third-order nonlinear optical materials. With second-order nonlinear optical materials, other

factors such as the resistivity of metal electrodes used in electro-optic modulator devices can limit

bandwidths, so the material FOM is commonly simplified to c(2)/a or as c(2)/a3, where 3 is the material

dielectric constant. For example, for electro-optic applications, it is important to match the velocity of

propagating optical and radiofrequency waves. Velocity matching is optimized when n2Z3, where n is

the material index of refraction.

Quantum mechanical calculations have proven useful in investigating the relationship of b and g to

molecular (chromophore) structure.14–24 For simple polyenes, the variation of molecular hyperpolariz-

ability with the length of the conjugated p-electron structure and with bond length alternation is

reasonably well predicted by theoretical calculations. Third-order nonlinear optical activity can be

observed for both isotropic and anisotropic materials. From the above polarization equations, it can be

seen that the symmetry requirement for second-order optical nonlinearity requires chromophores to

exhibit either dipolar23,24 or octupolar25–27 symmetry. For materials to exhibit second-order optical

nonlinearity, macroscopic dipolar or octupolar symmetry must exist; such symmetry is frequently

introduced by electric field poling or by sequential synthesis/self assembly from a functionalized surface.

Because of the additional symmetry requirement for second-order nonlinear optical materials, statistical

mechanical calculations have proven useful in guiding the optimization of desired nano- and

mesoscopic order.

In the following discussion, greater attention will be paid to second-order nonlinear optical organic

materials than for third-order materials. The reason for this disproportionate focus relates to the fact that

more commercial attention has been focused on second-order materials, whose design issues have

therefore received more intense research scrutiny. For example, very little attention has been given to the

optical loss and photostability of third-order nonlinear optical materials, whereas these properties have

been extensive studied for a number of second-order materials.

7.2 Second-Order Nonlinear Optical Materials

The primary applications of second-order nonlinear optical organic materials include electro-optic

modulation, second harmonic generation, optical rectification, and terahertz radiation generation and

detection. With recent success in the development of visible wavelength lasers and light emitting diodes,

15018—Chapter7—26/8/2006—22:01—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 3: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

Second- and Third-Order Nonlinear Optical Materials 7-3

Article in Press

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

second harmonic generation has received less attention. Also, absorption at visible wavelengths of second

harmonic light by organic materials is problematic and has inhibited the practical utilization of materials

for this application. An excellent review of second harmonic generation, including an extensive

discussion of the concept of phase-matching, has been given by Stegeman.28 This review remains

highly relevant.

The most common application of organic second-order nonlinear optical materials is electro-optic

modulation. Electro-optic modulation involves the application of a low (relative to optical frequencies)

frequency electrical field to a material. This low frequency field is often referred to as a radiofrequency

field, although actual frequencies can range from DC to tens of terahertz. The applied field perturbs the

p-electron distribution of the material, which in turn alters the velocity of light propagating in the

material. Thus, electro-optic activity can be viewed as voltage control of the refraction index of a

material. The primary focus of this chapter will be a review of organic electro-optic materials and devices.

An increasingly popular application of second-order nonlinear optical materials is terahertz

generation and detection. This phenomenon is relevant to a variety of sensing applications, ranging

from homeland security to medical imaging. Organic materials also have potential for promoting the

development and increased utilization of terahertz spectroscopy. Terahertz generation is an example of

optical rectification or “difference frequency” phenomena. Like second harmonic generation, terahertz

generation involves the interaction of two optical fields with the charge density of the material.

7.2.1 Electro-Optic Materials

Organic electro-optic materials include single crystal materials such as 4 0-dimethylamino-N-methyl-4-

stibazolium tosylate (DAST),13,29 chromophore/polymer composite materials,30–33 polymeric materials

containing covalently incorporated chromophores (including heavily crosslinked materials),30,31,34–40

single-chromophore-containing dendrimers,24,41–44 multichromophore-containing dendrimers,44,45

chromophore-containing dendronized polymers,44,46–51 doped chromophore materials (including

binary chromophore systems),52 and materials prepared by sequential synthesis/self-assembly of

chromophores from a functionalized surface by Langmuir–Blodgett or modified Merrifield tech-

niques.13,53–57 The vast majority of systems studied involve dipolar chromophores; the reader is

referred elsewhere for an introduction to octupolar materials.25–27 In like manner, most devices are

currently prepared by electric field poling of polymeric or dendritic materials. For materials prepared by

electric field poling or by sequential synthesis/self-assembly, only two nonzero electro-optic tensor

elements (r33 and r13) exist. These are given approximately by:

r33 Z 2Nf ð0Þbzzz !cos3qO =ðn0eÞ4 ð7:3aÞ

r13 Z Nf ð0Þbzzz ! sin2q cos qO =ðn0oÞ2ðn0eÞ2; ð7:3bÞ

where N is the chromophore number density (molecules/cm3), f(u) are local field factors that account for

the dielectric nature of the media surrounding chromophores, n0o and n0e are the ordinary and

extraordinary linear refractive indices, and the order parameters, !cos3qO and !sin2q cosqO,

define the orientational distribution of chromophores. Equation 7.3 neglects the minor elements of

the molecular first hyperpolarizability tensor.

7.2.1.1 Optimizing Electro-Optic Activity

The process of optimizing electro-optic activity is typically a two-step process, in which quantum

mechanical calculations are used to guide the improvement of molecular first hyperpolarizability,bijk,

values14–24 and statistical mechanical calculations are employed to optimize the product of the

chromophore number density and the order parameter.58–64 Quantum mechanical calculations have

15018—Chapter7—26/8/2006—22:02—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 4: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

7-4 Handbook of Photonics

Article in Press

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

guided the development of a number of chromophores, leading to dramatic improvements in molecular

first hyperpolarizability, i.e., to b0 values on the order of or greater than 1000!10K30 esu. The

tricyanovinylfuran (TCF) acceptor moiety shown in Scheme 7.1 has facilitated the development of

workhorse chromophores appropriate for prototype device development.65–72 In recent years, the

synthesis of chromophores has been greatly aided by the utilization of microwave-assisted synthesis

techniques.73,74 Of course, for a chromophore to be carried forward for development of device-

appropriate materials, it must exhibit appropriate thermal, chemical, and photochemical stability,

acceptably low levels of absorption at anticipated device operational wavelengths, and appropriate

processability (e.g., solubility in spin casting solvents, etc.). These features will be addressed later in this

chapter; note that the comments that apply for electro-optic materials also apply to other second-order

materials and, to some extent, to third-order materials.

The theoretically-inspired development of chromophores with improved molecular first hyperpolar-

izability can be divided into two categories: (1) variations of the fundamental donor, bridge, and acceptor

blocks of modular dipolar chromophores; and (2) investigation of novel chromophore architectures such

as “X-shaped”18,19,75,76 and “twisted”20,21 chromophores. The former strategy has proven to be very

effective in the past and significant future improvement may be possible following this strategy. The latter

strategy is much newer, but may afford dramatic improvements in molecular first hyperpolarizability,

while permitting desirable auxiliary properties such as high transparency at operating wavelengths.

Molecular first hyperpolarizability (b) values are commonly measured by hyper-Rayleigh scattering

(HRS).77–79 Such measurements are complicated by two-photon fluorescence and by molecular

aggregation. A variety of modifications have been made to he HRS technique in efforts to circumvent

these problems, including the use of femtosecond pulse techniques, measurements at a number of

wavelengths (using laser wavelength agility afforded by optical parametric devices), and measurements as

a function of concentration with measured b values determined exploiting extrapolations to zero

concentration.77–79 Moreover, HRS measurements are normally carried out to determine relative (to a

standard solvent such as chloroform) b values. Absolute values are most frequently defined using an

OS

OTBDMS

OTBDMS

N S

HONCNC

CN

O

R1R2

NO KO(t-bu)

N

OTBDMS

SEt2O

67%–78°C

OTBDMS

OTBDMS

N S

O

ON S

HO

Br

n-Buli(1-equiv.)DMF

THF95%

Br

HOS

Br

CIS S

Br

OO

OP

Br

HCI(conc)

quant.

NaBH4

NaOH

MeOH00C-RT

quant.

P(OEt)3

heat 3daysquant.

4)

4)

NaBH4

NaOHMeOH/THF

00C-RTquant.

ETOHRT 12h62%

n-BuliDMF

THF–78°C - RT70%

OTBDMS

N S

NC NC

CN

OR1R2

HO

SCHEME 7.1 The synthesis of a chromophore containing the tricyanofuran (TCF) acceptor.

15018—Chapter7—26/8/2006—22:02—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 5: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

Second- and Third-Order Nonlinear Optical Materials 7-5

Article in Press

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

integrating sphere approach. A problem arises in the comparison of b values between theory and

experiment. Theoretical b values are calculated for isolated particles in the long wavelength or zero

frequency limit. On the other hand, experimental b values are measured in solutions of varying dielectric

constants and at finite infrared wavelengths such as 1.9 mm. To avoid comparing data corresponding to

different conditions, relative b values are frequently compared, e.g., both theoretical and experimental b

values referenced to a standard such as paranitroaniline.23

The product of dipole moment, m, and molecular first hyperpolarizability, b, is also a useful quantity,

particularly as the slope of the curve of r33 versus N in the low concentration limit is given by

2f(0)[mb]Ep/5kTn4, where for the sake of simplicity the subscripts on b and n have been dropped. The

product mb can be measured by electric field induced second harmonic generation (EFISH) techniques.

Like HRS measurements, many factors can complicate the measurements and great care must be

exercised to obtain meaningful data. If molecular first hyperpolarizability values relevant to electro-optic

response are to be extracted from EFISH data, then care must be exercised to avoid multiphoton

resonance contributions. Again, like HRS measurements, EFISH measurements should ideally be made at

a number of wavelengths.

The second aspect of optimizing electro-optic activity involves optimizing the product N!cos3qO. It

is now well-appreciated that intermolecular electrostatic (e.g., dipole–dipole) interactions involving

prolate ellipsoid-shaped p-electron chromophores can lead to serious attenuation of electro-optic

activity.58–64 The Monte Carlo calculations in Figure 7.1 illustrate this point. These calculations were

carried out with the restriction that the chromophores maintain a uniform lattice distribution. Different

results are obtained if a non-uniform chromophore distribution is permitted. This latter treatment

18

16

14

12

10

Load

ing

para

met

er

8

6

4

2

00 0.5 1 1.5 2 2.5

Number density (molecules/cc)

3 3.5 4 4.5 5

×1019

×1020

Loading parameter = N<cos3q> α r 33/b(constant)

Ising latticeRegion of enhancement

2:1 Oblate

Independentparticle lattice

Spherical

1:2 Prolate

FIGURE 7.1 Calculation (employing pseudo-atomistic Monte Carlo methods) of N!cos3qO vs. N for

chromophore shapes ranging from prolate to oblate ellipsoidal. Calculations are based on an “on-lattice”

approximation, which means that chromophores are restricted to uniform spacing among chromophores. Different

results, particularly at high loading, are obtained for “off-lattice” calculations, in which chromophores are permitted

to assume a non-uniform lattice distribution (e.g., to aggregate). For off-lattice calculations, results are much more

sensitive to the details of chromophore structure. Pseudo-atomistic calculations mean that p-conjugated segments

are treated in the united atom approximation whereas s-bonded molecular fragments are treated fully atomistically.

15018—Chapter7—26/8/2006—22:02—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 6: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TBDMSO

TBDMSO

NS

NC

NC

CN

O

F3C

C45H55F3N4O3SSi2

C50H63F3N4O3Si2

Exact mass: 880.44

Exact mass: 844.35

C155H159F9N12O15S3Si3

Exact mass: 2779.04

C200H135F39N12O24S3

Exact mass: 3924.83

C, 61.16; H, 3.46; F, 18.87; N, 4.28; O, 9.78; S, 2.45

TBDMSO

TBDMSO

N

NC

NC

CN

F3C

O

NC NC

CN

CF3

S

O

O

OO

O

O

O

NC

CNCN

O

SN OTBDMS

F3C

OO

OS

CN

F

FF

F

F

F

F

FF

F

O

O

ON

S

NC

NC

OCF3

CF3

CN

O

OO

O

O

O

OF3C

O

SN O

O

OO

FF

F

FF

F

F

FF

F

CN

CN

NC

O

O

O

NO

O

O

O

FFF

F F

FF F

FF

S

CN

CN

CN

O

CN

O

CN

CF3

NOTBDMS

N

OTBDMS

CF3-FTC

YLD_124

PSLD_33

PSLD_41

FIG

UR

E7.

2F

ou

rch

rom

op

ho

rest

ruct

ure

sre

late

dto

the

dat

ap

rese

nte

din

Fig

ure

7.3.

15018—Chapter7—26/8/2006—22:02—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-6 Handbook of Photonics

Article in Press

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

Page 7: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

Second- and Third-Order Nonlinear Optical Materials 7-7

Article in Press

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

permits aggregation effects to be taken into account. The discussion of this latter treatment, which can be

critical for considering very large number densities (high chromophore loading), is sufficiently

complicated to be beyond the discussion presented here. In the present discussion, we restrict our

consideration to the more simplistic case of a uniform chromophore distribution. As shown in this

figure, intermolecular electrostatic interactions can also augment poling-induced noncentrosymmetric

order. It has been suggested in at least two studies that chromophore-polymer interactions can also

influence order.80,81 Indeed, in addition to chromophore shape effects illustrated in Figure 7.1, the spatial

and dynamical restrictions associated with covalent bonds impact poling-induced order. This is

illustrated in studies of multichromophore-containing dendrimers (MCCD), as depicted in Figure 7.2

and Figure 7.3. In Figure 7.3, a significant enhancement in electro-optic activity is observed for a MCCD,

relative to the behavior observed for the same chromophore in a polymer composite material. Indeed,

behavior for the MCCD lies between that expected for a chromophore in a spherically-symmetric

environment and the independent particle limit (see Figure 7.1). Even more intriguing behavior is

observed when a second chromophore is doped into the MCCD. The electro-optic activity, as shown in

Figure 7.3, increased nearly linearly with a slope more than twice the initial slope of the r33 versus N plot

for the same chromophore in an amorphous polycarbonate (APC) polymer host.32,33 A simplistic

analysis suggests that such behavior may reflect intermolecular electrostatic interactions, acting to

increase N!cos3qO in a manner analogous to that seen in Figure 7.1. However, unlike the case for

chromophore/polymer composite and undoped dendrimer materials, this behavior has not yet been

quantitatively reproduced by theoretical calculations. Moreover, all necessary control experiments to rule

out other potential contributions to the unusual behavior shown in Figure 7.3 have not yet been

completed. Nevertheless, the realization of electro-optic activities greater than 300 pm/V for doped

single-chromophore-containing dendrimers, MCCDs, and dendronized polymers is an important

milestone and provides the potential (providing further improvement in molecular first hyperpolariz-

ability is forthcoming) of realizing electro-optic activity on the order of 1000 pm/V. Of course, for large

electro-optic activity to be meaningful, it must be accompanied by acceptable optical transparency,

5

4

3

r 33

/ E

p

2

1

00 1 2 3 4

N × 1020 (molec/cc)

5 6 7 8

YLD-124 / PSLD-41

Dendrimer only

CF3-FTC / APC

FIGURE 7.3 Data for the four chromophore structures of Figure 7.2. Since a linear dependence of electro-optic

activity, r33, on electric poling field strength is observed in all cases, r33/Ep vs. N is plotted to facilitate comparison

among data sets. Data for composite materials consisting of the chromophore CF3-FTC in amorphous polycarbonate

(APC, Aldrich Chemicals) are indicated by triangles. Data for the two dendrimer materials PSLD 33 and 41 are

indicated by squares. Data for samples of YLD 124 doped into PSLD 41 are indicated by diamonds.

15018—Chapter7—26/8/2006—22:02—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 8: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

7-8 Handbook of Photonics

Article in Press

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

thermal stability and photostability. We now turn attention to discussion of these issues, after a few

comments about the measurement of electro-optic tensor components.

Electro-optic activity of thin film samples is most commonly measured by the following techniques:

Teng-Man simple reflection82–84 attenuated total reflection (ATR),85–87 Fabry–Perot interferometry,

FPI,81,88,89 and two-slit interference.90 Electro-optic activity can also be measured in a variety of

waveguide (e.g., Mach Zehnder interferometry, MZI),91–93 ring microresonator,66,72 and etalon

devices. Each technique has its particular advantages and limitations, and in general it is desirable to

obtain electro-optic tensor components from multiple measurements using different techniques. It can

also be important to define the dispersion of tensor components. A variety of techniques, such as ATR,

FPI, and MZI devices permit both r33 and r13 to be determined. Such complete tensor determination

permits a more definitive characterization of chromophore orientational order. These various

characterization techniques can also be adapted by the introduction of temperature control and DC

voltage application stages to provide in situ monitoring of the introduction of noncentrosymmetric

order by electric field poling and the subsequent relaxation of that order.45

7.2.1.2 Minimizing Optical Loss

This discussion will first focus on “material” loss. Throughout the 1990s, most of the chromophores

being investigated had a charge transfer absorption maxima, lmax, of less than 600 nm. For such

materials, optical absorption loss at 1.3 and 1.55 micron telecommunication operating wavelengths was

most frequently dominated by hydrogen vibrational overtone absorptions. For dendrimer materials,

optical loss values as low as 0.2 dB/cm have been observed.94 When optical loss of greater than 2 dB/cm

was observed, it was normally indicative of light scattering arising from material heterogeneity associated

with various processing conditions.35 More recently, chromophores with interband absorption maxima

approaching 800 nm have come into use. For these materials, and even for some earlier materials,32,33

absorption loss at telecommunication wavelengths is dominated by electronic charge transfer absorption.

Thus, increasing c(2) may not lead to an improvement in FOM, because it is accompanied by a

corresponding increase in a. The appearance of exciton bands may even lead to a decrease in FOM. In

designing new chromophores for improved optical nonlinearity, it is critical to consider optical loss.

Optical loss due to electronic absorptions (both interband charge transfer and excitonic absorptions

associated with aggregation) is strongly influenced by solvatochromic and line broadening effects,

particularly as these effects influence the long wavelength tails of absorptions. Line broadening is

frequently defined by the heterogeneity of the chromophore environment and thus can be influenced by

chromophore order and by the mode of attachment of the chromophore to its surrounding matrix. The

dielectric properties of the surrounding matrix will, of course, have a profound effect on solvatochromic

shifts. Researchers at Lockheed Martin32,33 appear to be the first to focus on an effort to control

absorption contributions to optical loss by a systematic consideration of the roles played by the structure

of the chromophore and of the surrounding matrix.

Quite different effects on absorption loss can be observed for different types of materials at

telecommunication wavelengths. In this regard, dendritic materials may afford significant advantages

relative to chromophore/polymer composite materials due to the fact that they permit control of the local

chromophore environment and chromophore solubility in the surrounding matrix. For example,

chromophores incorporated in fluorinated dendrimers typically exhibit blue (hypsochromic) shifted

absorption maxima relative to the same chromophore in a polymer such as amorphous polycarbonate

(APC, Aldrich Chemical). Moreover, the “solubility” of the chromophore in dendrimers is controlled by

covalent bond attachment. Of course, comments made regarding dendrimers can also apply to

chromophores covalently incorporated into polymers, provided that access of chromophores to each

other is inhibited by the covalent incorporation. A high concentration of chromophores does not

necessarily imply disastrous optical loss, as illustrated in Figure 7.4, which shows the same chromophore

in a covalent-bonding-defined chromophore “bundle” and in APC.95 The absorption maximum of the

chromophore in the bundle is shifted to higher energy and no detectable line broadening is observed. The

molecular hyperpolarizability of the chromophore bundle is nearly three times that of the isolated

15018—Chapter7—26/8/2006—22:03—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 9: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

1105

8104

6104

4104

2104

Extinction coefficient / M–1

cm–1

Wav

e nu

mbe

r / c

m-1

–210

4 1104

1510

421

0425

104

3104

3510

441

04

0

2 1

Com

poun

dl m

ax (n

m, C

HC

l 3)

b / (

b chlo

rofo

rm)

b (1

0-30 e

su)

1 2 DR

1

463

481

479

1902

±11

5

775±

74

783±

6

237±

14

97±

9

98

N

N

OO

OOO

N

NN

N N

CN

S O

O

NH

NC N

HN

HN

O

NC

S

S

N

O

OO

OOO

N

ON

SS

S

SO

O

O

O

HO

OC

DO

C/D

MA

P

HO

OC

CO

OH

OH

pepr

idin

e/T

HF

60°C

, 8da

ys

H2N

NH

2

+3

NH

2

N N S

O

OH

NC EO

H /

NH

4OA

C

N

NN

OO

OH

OH

DC

C/D

MA

P

O

NC

S

NC

NO

S

ON

O

CN

NC

O

NN

CN

CNO

OH

N

HNH

O

O

4

5

6

1

74

2

FIG

UR

E7.

4T

he

com

par

iso

no

fo

pti

cal

spec

tra

and

mo

lecu

lar

hyp

erp

ola

riza

bil

ity

for

the

sam

ech

rom

op

ho

rein

AP

Can

din

ath

ree-

chro

mo

ph

ore

bu

nd

le(r

igh

th

and

sid

eo

f

figu

re).

On

the

left

han

dsi

de

of

the

figu

re,

the

syn

thes

eso

fth

eth

ree-

chro

mo

ph

ore

bu

nd

lean

dth

ean

alo

gou

ssi

ngl

ech

rom

op

ho

rear

esh

ow

n.

15018—Chapter7—26/8/2006—22:03—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-9

Article in Press

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

Page 10: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

Q1

7-10 Handbook of Photonics

Article in Press

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

chromophore. The experimental results shown here are in good agreement with theoretical calculations

carried out for the respective structures. Care should be exercised with respect to extrapolating the results

of Figure 7.4 to other materials; in general, the exact optical behavior will be determined by the precise

translational and orientational positioning of chromophores, which will vary from structure to structure.

Optical loss is also influenced by scattering losses. These frequently arise from material heterogeneities

introduced by spin casting, electric-field poling, crosslinking (lattice hardening), and by various device

processing steps (e.g., reactive ion etching of waveguides and deposition of cladding layers). The problem

is typically worse (ignoring for the moment issues associated with crosslinking or lattice hardening) for

chromophore/polymer composites than for chromophores covalently incorporated into dendrimers or

polymers. Again, the major issue is control of chromophore “solubility.” For chromophore/polymer

composites, problems include: the differential solubility of the chromophore and polymer host in spin

casting solvents; sublimation of chromophores during baking (to drive off residual spin casting solvents);

sublimation of chromophores during electric field poling; and “electrophoretic” phase separation during

poling. “Covalent-tailoring” of chromophores and their incorporation into host materials is a very

attractive means of controlling chromophore solubility and packing (void volumes) in the final material.

As we shall see shortly, crosslinking (or lattice hardening) is typically necessary to achieve adequate

thermal stability. Some crosslinking chemistries can lead to phase separation and lattice strain and thus

dramatic increases in optical loss due to light scattering. New cycloaddition crosslinking chemistries

involving the “soft” free-radical chemistry of the fluorovinyl ether group or the Diels-Alder/retro-Diels-

Alder reaction lead not only to lattice hardening without attenuation of poling efficiency, but also to

materials with low optical loss.

Optical loss can also arise from the process of fabricating buried channel waveguides. When this is

done by techniques such as reactive ion etching, care must be exercise to avoid pitting (waveguide wall

roughness) due to reactive ions with excess kinetic energy (i.e., a physical rather than chemical etch).

When care is employed, the excess waveguide loss can be 0.01 dB/cm or less.96 Loss can also be

introduced in deposition of cladding layers if the solvent used to deposit the cladding layer attacks the

electro-optic material. For both reactive ion etching and deposition of cladding layers, the lowest loss is

typically observed when very hard electro-optic materials are used. Loss can also arise from material

damage (dielectric breakdown) during electric field poling.

Optical loss can be influenced by the structure of the device, e.g., bending loss for ring

microresonators. Of course, one of the greatest contributions to total device insertion loss is coupling

loss. With organic electro-optic materials, the dominant contribution to coupling loss arises from a

mismatch in mode size and shape between light propagating in silica transmission fibers and that in the

organic EO waveguides. The solution to this problem is typically to employ a “mode transformer”

structure.97–101 Mode transformers permit per facet coupling losses to be kept to a few tenths of a dB. The

overall objective is typically to achieve a total insertion loss of less than 5 dB (the current standard for

lithium niobate devices). Thus, if device lengths of 2 cm or less are to be used, then material loss must be

kept to less than 2 dB/cm. Short device lengths, of course, have the advantage of permitting greater

operational bandwidths by minimizing loss occurring in metal drive electrodes. The calculated

performance of a Mach Zehnder device for typical EO, cladding, and electrode material conditions is

shown in Figure 7.5.

7.2.1.3 Maximizing Thermal Stability

The stability of electro-optic activity following the cessation of electric field poling is critical for device

applications. In the simplest sense, thermal stability relates to the temperature difference between the

operating temperature and the material glass transition temperature, Tg. With composite materials,

incorporation of chromophores results in plasticization and a corresponding reduction of glass transition

temperature with increasing dopant (chromophore) concentration. Thus, to realize sufficient thermal

stability to satisfy Telcordia standards, it is necessary to use a host polymer material with an initial glass

transition temperature on the order of 1508C or greater. Polycarbonates, polyquinolines, and polyimides

have been the most commonly employed polymers for producing composite materials appropriate for

15018—Chapter7—26/8/2006—22:03—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 11: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

300

250

200

150

Freq

uenc

y (

GH

z)

100

50

00

4

3.5

3

2.5

2

1.5

1

0.5

Fib

er to

fibe

r in

sert

ion

loss

(dB

)

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

Vp(

Vol

ts)

3

3.5

4

0

0.5

1

1.5

2

2.5

Vp(

Vol

ts)

3

3.5

4

0.1 0.2 0.3 0.4 0.5Interaction length, L(cm)

Interaction length, L(cm)

0.6 0.7 0.8 0.9 1

Material parameters:R33 = 300 pm/V

D(thickness) = 8 mmµWave loss = 0.75 dB(GHz)1/2/cmFiber coupling = 0.8 dB/coupling

Material loss = 2 dB/cm

Example L = 5 mm

BW(3dBe) = 90 GHzVp = 0.75V

Insert. Loss = 2.6 dB

Electrode dimensions

L

2µm

FIGURE 7.5 The variation of critical Mach Zehnder device parameters (bandwidth, drive voltage, fiber-to-fiber

insertion loss) with device (electrical/optical field interaction) length. An example of performance for a 5-mm length

Mach Zehnder electro-optic modulator expected with current materials is also shown.

Second- and Third-Order Nonlinear Optical Materials 7-11

Article in Press

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

prototype device fabrication. One of the problems with very high-glass-transition-temperature

composite materials, such as polyimides, is that very high poling temperatures are required. Such

temperatures promote chromophore sublimation and the decomposition of chromophores, and can also

be incompatible with processing methodologies such as nanoimprint lithography. High glass transition

materials also commonly exhibit poor solubility in solvents used for spin casting. A convenient means of

avoiding this requirement for high temperature processing at intermediate stages of electro-optic

material production is to achieve thermal stability by crosslinking (lattice hardening) in the final

stages of electro-optic material production. With crosslinking, thermal stability will be defined by the

density of crosslinks and the flexibility of intervening segments. Throughout the 1990s, crosslinking

chemistries used to elevate final material glass transitions temperatures frequently involved condensation

(e.g., urethane and sol gel) chemistry.34,35 Such reactions give off water as an elimination product and are

influenced by atmospheric moisture. Moreover, the expulsion of gaseous elimination products can result

in lattice disruption and increased light scattering. As the condensation reaction proceeds, increased

lattice strain (e.g., lattice contraction) can also be a problem, which can be serious with sol-gel glasses.

Both thermal and photo-induced crosslinking chemistries have been explored.30,31 The latter has been

plagued by competition for light absorption involving the photo-initiator and the EO chromophore.

More recently, cycloaddition chemistries36–38,44,46–52,102 have become popular for realizing high glass

transition temperature (e.g., to 2008C) materials without the attenuation of electro-optic activity or an

increase in optical loss associated with earlier crosslinking reactions. These chemistries are pictorially

illustrated in Figure 7.6. The fluorovinyl ether crosslinking reaction illustrated in Figure 7.6a is a soft free

radical reaction that has the advantage of yielding high glass transition materials that are also

characterized by very low optical loss at telecommunication wavelengths due to low hydrogen content

in the final material. The Diels-Alder/retro-Diels-Alder reaction of Figure 7.6b has the added advantage

15018—Chapter7—26/8/2006—22:03—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 12: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

O F

O

O

FF

FF

F

F

O

F

FF

FO

F

F

F F

O F

F F

O

H

H

O

O

O O

O

N

O

O

N

R1

R2

R1

R2

O

NR

1

R2

cyclo-addition

Concerted 4 + 2cycloaddition

"Diels-Alder"

RetroDiels-Alder Approx = 120°C

(a)

(b)

FIGURE 7.6 Fluorovinyl ether (6a) and Diels-Alder/-

retro-Diels-Alder (6b) cycloaddition crosslinking

reactions.

15018—Chapter7—26/8/2006—22:04—SJAPPIYAR—15018—XML MO

7-12 Handbook of Photonics

Article in Press

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

(in some cases) of reversibility. That is, the

material is crosslinked below the glass transition

temperature but becomes uncrosslinked at the Tg,

permitting poling to be effected without being

attenuated by crosslinks. Choice of diene and

dienophile can permit systematic tuning of the

glass transition temperature, including for the

purpose of matching the poling temperature to

the thermal initiation temperature of the fluor-

ovinyl ether crosslinking reaction (when both

types of cycloaddition crosslinking are used

together). Obviously, for irreversible crosslinking

reactions such as reaction of the fluorovinyl ether

moiety, it is important to match poling tempera-

tures to the thermal initiation temperature of the

crosslinking reaction so that effective crosslinking

is achieved without unwanted attenuation of

poling-induced order. A final material glass tran-

sition temperature on the order of 2008C is more

than adequate for satisfying Telcordia standards

for thermal stability (long-term stability at an

operating temperature of 858C). Cycloaddition

crosslinking has been demonstrated to be effective

in providing such stability.

7.2.1.4 Maximizing Photostability

Photostability has been shown to be largely a matter of avoiding singlet oxygen chemistry.103–108

Stegeman and coworkers103–106 have demonstrated most of the critical features of photodecomposition

of organic electro-optic materials, including the absence of contributions from multiphoton absorption.

Indeed, they defined a single photostability figure-of-merit, B/s, where BK1 is the probability of

photodecay from the LUMO (lowest unoccupied molecular orbital) charge transfer state and s is the

interband (charge transfer) absorption coefficient. This definition has been used by subsequent

researchers, although the data analysis of Stegeman and coworkers may have been somewhat overly

simplistic, consequently over-estimating photo-instability. For example, more detailed analyses demon-

strate that the decay data cannot be fit with a single exponential and that “observer” power in the

Stegeman pump–probe experiment may lead to artificially fast decay. Moreover, Stegeman and coworkers

failed to carry out measurements at telecommunication wavelengths; this was addressed in subsequent

work by researchers at Corning.107,108 The Corning group demonstrated that the photostability FOM for

a given chromophore structure could vary over four orders of magnitude depending on conditions that

influence singlet oxygen chemistry. Even larger variation has been observed by other groups and

photostability has been shown to improve with the use of small quantities of singlet oxygen quenchers. In

addition to pump-probe experiments carried out by Stegeman and coworkers, researchers at Corning,

Gunter and coworkers, and Dalton and coworkers, photostability has also been investigated in operating

Mach Zehnder devices by Steier and coworkers69 and by Ashley and coworkers.109 Again, in these studies,

photo-instability could be attributed to singlet oxygen chemistry, with good photostability being

observed for materials and devices where this chemistry was partially inhibited.

In summary, it appears that good photostability can be achieved with appropriate materials

modification or with appropriate packaging of devices to minimize the presence of oxygen. In this

latter regard, the problems faced with organic electro-optic materials are analogous (but not quite

so severe) as those faced with organic light emitting device (OLED) materials. It should be noted

DEL CRC12a – pp. 1–126.

Page 13: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

Second- and Third-Order Nonlinear Optical Materials 7-13

Article in Press

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

that dense crystals such as DAST exhibit excellent photostability, again consistent with the role

played by oxygen.

7.2.1.5 Radiation Hardness

Very little work has been carried out examining the performance of organic electro-optic materials and

devices in the presence of high-energy gamma rays and protons associated with space environments. Part

of the problem of evaluating the impact of high-energy radiation on device performance is isolating

changes attributable to organic electro-optic materials from changes of performance induced by events

unrelated to the organic electro-optic materials (e.g., damage to silica input fibers). Nevertheless, the one

published report110 on this subject appears promising with respect to good stability exhibited by organic

electro-optic materials.

7.2.1.6 Fabrication of Prototype Devices

The most common prototype device fabrication involves stripline Mach Zehnder modulators; however,

ring microresonator, cascaded prism, and etalon structures have also been produced and evaluated. A

critical issue with the fabrication of prototype devices is how to deal with the properties of cladding and

electrode materials. Devices are typically multilayer structures consisting of bottom (ground) electro-

de/bottom cladding/electro-optic waveguide/top cladding/top (drive) electrode. If materials are poled

through cladding layers, the poling field can be attenuated due to the resistivity of the cladding layers. A

potential solution to this problem would be to identify cladding materials with significant conductivity.

Unfortunately, cladding materials with prerequisite conductivity have also exhibited, to the present time,

unacceptably high levels of optical loss. The presence of cladding layers thus makes it difficult to realize

the same electro-optic activity in device structures that have been achieved in thin films. Another issue in

the fabrication of prototype devices is the impact of electrode materials and device structure on

performance, including operational bandwidth. For stripline devices, such as Mach Zehnder inter-

ferometers, resistive losses in metal electrodes typically define operational bandwidths. Shorter electrode

structures (see Figure 7.5) lead to higher bandwidths, but at a price of increased drive voltage (Vp, the

voltage required to produce a p phase shift). As already noted, shorter devices afford the advantage of

reduced insertion loss and are more appropriate for high-density integration of many modulators on a

single chip. For resonated devices, such as ring microresonators and etalon devices, bandwidth is limited

by the optical lifetime in the resonated structure. This is defined by the quality factor, Q, of the resonant

device. High quality factors have the advantage of affording reduced drive voltage operation but limit

the bandwidth of the device. Very high center operational frequencies can still be obtained, but the

bandwidth about the center frequency is limited by the Q. Ring microresonators have the added

advantage of reduced size, which can facilitate high-density integration. In discussing bandwidth,

one needs to distinguish between digital and analog signals. This point will be illustrated in the

following simplified discussion of bandwidth and drive voltage requirement for resonant

device structures.

For a resonator, the 3-dB electrical modulation bandwidth (the detected voltage is down by 3 dB) is

given by

Df3dBe Z c = lQ Z DfFWHM; ð7:4Þ

where c is the speed of light, l is the wavelength of light, DfFWHM and is the full-width at half-maximum

of the bandpass of the resonant device. The case of digital modulation is considered first.

For a 10-dB contrast in the digital pulses, the voltage induced frequency shift of the bandpass must be

Df Z 3DFWHM = 2: ð7:5Þ

15018—Chapter7—26/8/2006—22:04—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 14: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

7-14 Handbook of Photonics

Article in Press

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

The frequency shift with voltage is

ðDf =VÞ Z ðneff Þ2r33c = ð2dlÞ; ð7:6Þ

where d is the electrode spacing. Combining,

V10dB Z ð3dlDf3dBeÞ = ½ðneff Þ2r33c�: ð7:7Þ

In digital systems, the required bandwidth depends on the modulation format. Conservatively

assuming that Df3dBeZB (the bit rate), then

V10dB Z 3dlB = ½ðneff Þ2r33c�: ð7:8Þ

For example, if BZ10 Gb/s, nZ1.6, r33Z300 pm/V, dZ6 mm, lZ1.3 mm, and QZ5!103, then

V10dBZ1 V (with the result obviously scaling linearly with the bit rate).

Now consider analog signal modulation. The optical wavelength is set to the point of maximum slope

of the resonator transmission (bandpass) curve:

Dl Z DlFWHM = ð2ffiffiffi

3p

Þ ð7:9Þ

It is helpful to define a Vp equiv so that it corresponds to an equal Vp of a Mach Zehnder modulator:

ðV p equiv =Df3dBeÞ Z 4pdl = ½ð3ffiffiffi

3p

Þðneff Þ2r33c�: ð7:10Þ

For example, if nZ1.6, r33Z300 pm/V, dZ6 pm, and lZ1.3 pm, then (Vpequiv/Df3dBe)Z0.08 V/GHz. It is clear from the above analyses for digital and analog signal processing that the simplest

route to improving the performance of resonant devices is to increase the electro-optic coefficient, r, of

the material used to fabricate the device. The current performance of organic electro-optic materials

moves resonant devices close to practical application.

Device structures are most commonly fabricated using reactive ion etching, although ring micro-

resonator and Mach Zehnder devices structures have also been made by nanoimprint lithography.68

Nanoimprint lithography has the potential advantage of allowing complex electro-optic circuitry to be

mass-produced in a cost-effective manner.

The range of application of organic electro-optic materials has been recently broadened by the

incorporation of these materials into silicon photonic device structures.66 The small dimensions of these

structures and the obvious potential for convenient integration with silicon electronics is very attractive.

Moreover, the small (nanoscopic) dimensions of silicon photonic circuitry result in an optical field

concentration, which has recently been exploited to achieve optical rectification of light at mW optical

powers.66 Thus, the same device structure can be employed for electrical/optical and optical/electrical

signal transduction.

7.2.1.7 Applications

Applications of electro-optic materials and devices include electrical-to-optical signal transduction,

optical switching, optical beam steering, radiofrequency signal generation, phased array radar (radio-

frequency beam steering), optical gyroscopes, analog-digital conversion, frequency conversion (time

stretching), and sensing (of both physical and chemical phenomena). The term radiofrequency describes

frequencies in the range 0–30 THz. Electro-optic technology is at the heart of “RF Photonics,” or the

delivery of radiofrequency signals via optical transmission. Many applications of electro-optic materials

lie in the arena of defense and homeland security, but interest is growing in the areas of computer chip

manufacture, transportation, telecommunications (both fiber and wireless), civil engineering, and

15018—Chapter7—26/8/2006—22:04—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 15: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

Second- and Third-Order Nonlinear Optical Materials 7-15

Article in Press

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

medicine. For example, in the development of next-generation computer chips, photonics may be used

to route high frequency information among various components of the chip, avoiding the problems of

signal loss and heating associated with moving electrons through metal connectors. The field of

embedded network sensing combines sensors, computer processors, and communication components

on a single chip. Electro-optic devices provide critical signal transduction and routing on embedded

network sensing platforms. Embedded network sensing is finding increasing applications in medicine

and infrastructure monitoring (civil engineering).

7.2.2 Optical Rectification Including Terahertz Radiation and Detection

Optical rectification is the difference frequency analog of second harmonic generation. Like second

harmonic generation, it will occur whenever the electric field component of the optical field is large

enough to produce a nonlinear perturbation of the charge distribution of the nonlinear optical material.

Normally, intense laser powers are required, but the nanoscopic dimensions of silicon photonic circuitry

can concentrate optical fields from milliwatt diode lasers to the point of producing optical rectification.66

Thus, organic EO/silicon hybrid devices can act as both electrical-to-optical signal transducers and

optical-to-electrical signal transducers. In other words, they have the potential to compete with

photodiodes as photodetectors, providing that sufficiently large material second-order optical nonli-

nearity can be obtained.

Another manifestation of optical rectification/difference frequency generation is terahertz signal

generation/detection. Recently, Hayden and coworkers,111,112 Gunter and coworkers,113 and researchers

in Japan114–116 have pioneered the use of organic electro-optic materials for terahertz applications

(imaging and spectroscopy). An advantage of organic materials is that optical and terahertz waves

propagate with comparable velocities in organic materials, permitting phase matching of the optical and

terahertz radiation. Also, the second-order optical nonlinearity of organic materials is orders of

magnitude greater than inorganic crystalline materials such as zinc telluride (ZnTe). A problem

encountered with poled organic (polymer) materials is that it is difficult to effectively pole thick

(millimeter) films. Such film thickness would be ideal for terahertz applications.

Among the promising sensor applications of terahertz radiation is the ability to image plastic weapons.

It is an attractive alternative to magnetic (metal detector) sensing in the arena of homeland security. The

possible applications in biomedical imaging are also attractive.

7.3 Third-Order Nonlinear Optical Materials

Third-order organic nonlinear optical materials have very little in common with second-order nonlinear

optical materials, other than the fact that both involve significant p-conjugation. Since no symmetry

requirement exists for third-order activity, a much broader range of materials can give rise to third-order

optical nonlinearity, c(3). Indeed, third-order materials range from conjugated polymers such as

polyacetylene, to molecules such as C60 and C70, to metallomacrocyclic complexes. When charge transfer

molecules are investigated, molecules with quadrupolar117 symmetry (e.g., donor–acceptor–donor or

acceptor–donor–acceptor) frequently exhibit larger optical nonlinearity than corresponding dipolar

(donor–acceptor) molecules. Dendritic materials containing connected p-electron segments have also

been observed to give rise to large third-order optical nonlinearities.

Although the third-order optical nonlinearity for organic materials has been increased over the past

two decades, values are still too low for practical applications. A possible exception may be for materials

incorporated into silicon photonic circuitry. Scherer and coworkers120 have demonstrated all-optical

modulation to greater than 5 THz with mW pump powers derived from a diode laser operating at

telecommunication wavelengths. The concentration of optical power in waveguides of nanometer

15018—Chapter7—26/8/2006—22:04—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 16: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

7-16 Handbook of Photonics

Article in Press

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

dimensions results in an amplification of optical field intensities by orders of magnitude, permitting

much smaller c(3) values to be utilized effectively.

Recently, interest in c(3) materials has increased because of potential applications of materials with

large two-photon absorption coefficients. These applications range from sensor protection to biomedical

imaging, photodynamic therapy, and two-photon photolithography.

Because no symmetry requirement exists for nonzero third-order optical nonlinearity, lattice hardness

is a less serious problem than for second-order materials, although little research has been conducted on

this feature of third-order materials. Optical loss is as important for third-order materials as it is for

second-order materials, but very little research attention has been paid to this topic. Third-order

materials should afford comparable advantages in processability compared to second-order organic

nonlinear optical materials; however, it is unlikely that auxiliary properties will receive much attention

unless significant improvement in c(3) can be achieved.

7.4 Summary

Extensive p-conjugation of organic materials leads to significant second- and third-order optical

nonlinearities. However, until the present decade, values of c(2) and c(3) have been too small to

promote significant commercial application. Currently, electro-optic coefficients in the range 300–

400 pm/V are observed for a variety of dendrimer and dendronized polymer materials containing

chromophores with large first hyperopolarizabilities. Such values are an order of magnitude greater than

values for the commercial standard lithium niobate. New organic electro-optic materials afford the

possibility of more compact and lightweight devices operating with bandwidths of 100 GHz or greater

and with drive voltages of less than one volt. Realization of gain in RF photonics becomes a possibility for

the first time. Many issues remain to be addressed before significant commercialization is likely,

including the systematic control of optical loss, thermal stability, and photochemical stability. Moreover,

better utilization needs to be made of the processing advantages of organic electro-optic materials,

including for the production of integrated electronic/photonic circuitry exploiting a high density of

organic electro-optic devices on a single chip. The integration of organic electro-optic materials with

silicon photonic circuitry appears to afford some impressive new opportunities not only for high

bandwidth electro-optic modulation and optical switching but also for optical rectification. One distinct

advantage of organic electro-optic materials is that their processability may permit new device structures

and applications to be considered. For example, new sensor technologies appear possible, e.g., by

exploiting ring microresonators positioned on side-polished optical fibers.

The prognosis for third-order organic nonlinear optical materials is somewhat less optimistic, as c(3)

values still need to be increased by one to two orders of magnitude for many applications. Incorporating

third-order organic nonlinear optical materials into resonant structures (e.g., ring microresonators) and

into silicon photonic waveguides may help reduce the performance demands on c(3) materials. At any

rate, the development of third-order organic nonlinear optical materials is in a more immature stage than

the development of second-order materials, as very little attention is given to auxiliary properties such as

optical loss, stability, and processability. The most promising application of third-order organic materials

appears to involve materials with large two-photon cross-sections for applications such as biomedical

imaging, photodynamic therapy, two-photon photolithography, and ultrafast-responding sensor

protection (Table 7.1 through Table 7.3).

Acknowledgments

Support from the National Science Foundation, the Air Force Office of Scientific Research, and the

Defense Advanced Research Projects Agency is gratefully acknowledged. The authors thank their

colleagues, particularly Professors William Steier and Bruce Robinson, for many helpful discussions.

15018—Chapter7—26/8/2006—22:05—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 17: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1E

xper

imen

tal

Res

ult

so

fM

ole

cula

rst

ud

ies.

lm

ax,

Ab

sorp

tio

nP

eak

Wav

elen

gth

of

Lo

wes

tE

ner

gySt

ron

gT

rain

siti

on

;m

,D

ipo

leM

om

ent;

bm

(l),

EF

ISH

Det

erm

ined

Fir

stH

yper

po

lari

zab

ilit

yat

aF

un

dam

enta

lWav

elen

gth

Giv

enin

Mic

ron

s;b

0,a

sD

efin

edin

Sect

ion

6.4;

SIn

dic

ates

Solv

ato

chro

mic

Res

ult

;HR

Ind

icat

esH

yper

-Ray

leig

hSc

atte

rin

g

Res

ult

s

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

Un

con

juga

ted

der

ivat

ives

O

NC

hlo

rofo

rm!

240

3.5

0.5(

1.9)

15

6

O

NN

!20

04.

62.

3(1

.06)

37

CN

K+

CN

CN

C–

H2O

7(1

.06H

R)2

65

Ben

zen

ed

eriv

ativ

es

X

XZ

CH

3N

eat

0.34

0.18

(1.0

6)1

41

Nea

t26

00.

38!

0.2

(1.9

)46

XZ

OH

Nea

t0.

17(1

.06)

19

3

Nea

t1.

50.

17(1

.06)

19

1

p-D

ioxa

ne

270

1.5

!0.

2(1

.9)4

6

XZ

SHN

eat

1.4

!0.

2(1

.9)4

6

XZ

OC

H3

Nea

t27

51.

4!

0.2

(1.9

)46

XZ

SCH

3N

eat

1.3

!0.

2(1

.9)4

6

XZ

NH

2N

eat

1.5

0.89

(1.0

6)1

41

Nea

t1.

2(1

.06)

19

3

Nea

t1.

51.

1(1

.06)

19

0

Nea

t1.

51.

2(1

.06)

19

1

Nea

t28

41.

50.

55(1

.9)4

6

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:06—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-17

Article in Press

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

Page 18: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

XZ

N(C

H3) 2

Nea

t1.

8(1

.06)

19

3

Nea

t1.

81.

3(1

.06)

19

1

Nea

t29

31.

61.

1(1

.9)4

6

XZ

FN

eat

1.5

0.44

(1.0

6)1

41

Nea

t0.

53(1

.06)

19

3

Nea

t1.

60.

70(1

.06)

19

1

Nea

t26

60.

63!

0.2

(1.9

)46

XZ

Cl

Nea

t1.

50.

28(1

.06)

14

1

Nea

t0.

22(1

.06)

19

3

Nea

t1.

70.

33(1

.06)

19

1

Nea

t27

20.

44!

0.2

(1.9

)46

XZ

Br

Nea

t1.

40.

04(1

.06)

14

1

Nea

t0.

02(1

.9)1

93

Nea

t1.

70.

2(1

.06)

19

1

Nea

t27

40.

81!

0.2

(1.9

)46

XZ

IN

eat

1.1

0.28

(1.0

6)1

41

Nea

t0.

7(1

.06)

19

3

Nea

t1.

70.

46(1

.06)

19

1

Nea

t30

40.

96!

0.2

(1.9

)46

XZ

SO2C

H3

p-D

ioxa

ne

1.1

!0.

2(1

.9)4

6

XZ

SO2F

Nea

t1.

70.

3(1

.9)4

6

XZ

CN

Nea

t0.

51(1

.06)

19

3

Nea

t4.

10.

48(1

.06)

19

1

Nea

t23

03.

90.

36(1

.9)4

6

XZ

CO

HN

eat

320

2.8

0.8

(1.9

)46

XZ

CO

CF

3p-

Dio

xan

e30

03.

31.

3(1

.9)4

6

XZ

NO

p-D

ioxa

ne

340/

745

3.1

1.7

(1.9

)46

XZ

NO

2N

eat

2.0

(1.0

6)1

45

Nea

t2.

3(1

.06)

19

3

Nea

t4.

02.

2(1

.06)

19

0

Nea

t4.

02.

3(1

.06)

19

1

Hex

ane

4.2

1.1

(1.0

6)2

32

Nea

t26

84.

01.

9(1

.9)4

6

XZ

C2H

(CN

) 2p-

Dio

xan

e30

34.

83.

1(1

.9)4

6

15018—Chapter7—26/8/2006—22:07—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-18 Handbook of Photonics

Article in Press

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

Page 19: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

YX

N

p-D

ioxa

ne

310

1.6

1.3

(1.9

)46

XZ

SO2C

H3

YZ

OH

p-D

ioxa

ne

290

3.4

1.3

(1.9

)46

XZ

SO2C

H3

YZ

N(C

H3) 2

Ch

loro

form

mb

Z26

!10

K4

8(1

.9)2

64

XZ

CN

YZ

CH

3D

MSO

232

4.4

2.9

(1.9

)56

Nea

t4.

40.

7(1

.9)

46

XZ

CN

YZ

Cl

p-D

ioxa

ne

2.3

0.8

(1.9

)46

XZ

CN

YZ

Br

p-D

ioxa

ne

2.4

1.1

(1.9

)46

p-D

ioxa

ne

240

2.5

2.2

(1.5

9)8

7

XZ

CN

YZ

OC

6H

5p-

Dio

xan

e4.

11.

2(1

.9)4

6

XZ

CN

YZ

OC

H3

DM

SO24

74.

84.

8(1

.9)5

6

p-D

ioxa

ne

248

4.8

1.9

(1.9

)46

XZ

CN

YZ

SCH

3p-

Dio

xan

e4.

42.

8(1

.9)4

6

XZ

CN

YZ

NH

2D

MSO

269

5.9

13(1

.9)5

6

p-D

ioxa

ne

270

5.0

3.1

(1.9

)46

p-D

ioxa

ne

271

6.4

2.4

(1.5

9)8

7

XZ

CN

YZ

N(C

H3) 2

DM

SO29

76.

614

(1.9

)56

p-D

ioxa

ne

290

5.6

5.0

(1.9

)46

CC

l 429

0m

bZ

44!

10K

48

(1.0

6)2

11

Ch

loro

form

292

mb

Z50

!10

K4

8(1

.06)

21

1

H2C

Cl 2

292

mb

Z53

!10

K4

8(1

.06)

21

1

H2C

CN

291

mb

Z48

!10

K4

8(1

.06)

21

1

H3C

OH

295

mb

Z47

!10

K4

8(1

.06)

21

1

XZ

CO

HY

ZC

H3

Nea

t3.

01.

7(1

.9)4

6

XZ

CO

HY

ZO

C6H

5N

eat

269

2.8

1.9

(1.9

)46

XZ

CO

HY

ZO

CH

3N

eat

269

3.5

2.2

(1.9

)46

XZ

CO

HY

ZSC

H3

Nea

t31

03.

12.

6(1

.9)4

6

XZ

CO

HY

ZN

(CH

3) 2

p-D

ioxa

ne

326

5.1

6.3

(1.9

)46

XZ

SO2C

3H

7Y

ZO

CH

3C

hlo

rofo

rm29

05.

43.

3(1

.9)4

6

XZ

SC6H

5Y

ZN

H2

Ace

ton

e32

03.

014

(1.0

6)1

6

XZ

CO

CH

3Y

ZN

H2

DM

SO31

04.

52.

4(1

.9)5

6

XZ

CO

CF

3Y

ZO

C6H

5p-

Dio

xan

e29

23.

53.

6(1

.9)4

6

XZ

CO

CF

3Y

ZO

CH

3p-

Dio

xan

e29

24.

03.

6(1

.9)4

6

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:07—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-19

Article in Press

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

Page 20: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

XZ

CO

CF

3Y

ZN

(CH

3) 2

p-D

ioxa

ne

356

5.9

10(1

.9)4

6

XZ

NO

YZ

N(C

H3) 2

p-d

ioxa

ne

407

6.2

12(1

.9)4

6

XZ

NO

2Y

ZC

H3

DM

SO28

04.

08

(1.9

)56

p-D

ioxa

ne

272

4.2

2.1

(1.9

)46

XZ

NO

2Y

ZF

Nea

t2.

72.

1(1

.06)

14

1

XZ

NO

2Y

ZB

rp-

Dio

xan

e27

43.

03.

3(1

.9)4

6

XZ

NO

2Y

ZO

Hp-

Dio

xan

e30

45.

03.

0(1

.9)4

6

XZ

NO

2Y

ZO

C6H

5p-

Dio

xan

e29

44.

24.

0(1

.9)4

6

XZ

NO

2Y

ZO

CH

3D

MSO

314

4.5

16(1

.9)5

6

p-D

ioxa

ne

4.9

6(1

.06)

98

5.3

4(1

.9S)

19

5

p-D

ioxa

ne

302

4.6

5.1

(1.9

)46

XZ

NO

2Y

ZSC

H3

4.6

6.7

(1.9

S)1

95

p-D

ioxa

ne

322

4.4

6.1

(1.9

)46

Ace

ton

e33

54.

420

(1.0

6)1

6

XZ

NO

2Y

ZSC

6H

5A

ceto

ne

334

4.3

19(1

.06)

16

XZ

NO

2Y

ZN

2H

3p-

Dio

xan

e36

66.

37.

6(1

.9)4

6

XZ

NO

2Y

ZN

H2

Met

han

ol

36(1

.06)

19

3

Mel

t7.

221

(1.0

6)1

40

Met

han

ol

6.2

35(1

.06)

19

0

DM

SO37

86.

147

(1.9

)56

p-D

ioxa

ne

9.6

(1.9

1)2

50

p-D

ioxa

ne

12(1

.37)

25

0

p-D

ioxa

ne

17(1

.06)

25

0

p-D

ioxa

ne

25(0

.91)

25

0

p-D

ioxa

ne

40(0

.83)

25

0

DM

SO38

4m

bZ

75!

10K

48

(1.5

8)2

31

7.1

9.6

(1.9

S)1

95

Ch

loro

form

23(1

.06H

R)4

8

Ace

ton

e36

56.

29.

2(1

.9)4

6

p-D

ioxa

ne

354

7.0

16(1

.06)

23

7

Ch

loro

form

348

6.4

17(1

.06)

23

7

H3C

CN

366

6.2

29(1

.06)

23

7

Met

han

ol

370

6.1

32(1

.06)

23

7

NM

P38

66.

838

(1.0

6)2

37

p-D

ioxa

ne

mb

Z69

!10

K4

8(1

.9)1

07

Ch

loro

form

347

6.2

20(1

.06)

11

7

15018—Chapter7—26/8/2006—22:07—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-20 Handbook of Photonics

Article in Press

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

Page 21: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

XZ

NO

2Y

ZN

H(N

H2)

DM

SO37

8m

bZ

10!

10K

47

(1.3

6)2

31

XZ

NO

2Y

ZN

(CH

3) 2

DM

SO41

86.

852

(1.9

)56

Ch

loro

form

mb

Z14

!10

K4

7(1

.9)2

64

Ace

ton

e38

86.

926

(1.0

6)1

6

DM

SO40

4m

bZ

14!

10K

47

(1.3

6)2

31

Ace

ton

e37

66.

412

(1.9

)46

XZ

NO

2Y

ZC

Np-

Dio

xan

e0.

90.

6(1

.9)4

6

XZ

NO

2Y

ZC

OH

p-D

ioxa

ne

376

2.5

0.2

(1.9

)46

XZ

C2H

(CN

) 2Y

ZO

CH

3p-

Dio

xan

e34

55.

59.

8(1

.9)4

6

XZ

C2H

(CN

) 2Y

ZN

(CH

3) 2

DM

SO44

0m

bZ

27!

10K

47

(1.3

6)2

31

DM

SO44

0m

bZ

62!

10K

47

(1.0

6)1

01

7.1

12(1

.9s)

19

5

Ch

loro

form

420

7.8

32(1

.9)4

6

XZ

C2H

(CN

) 2Y

ZN

(C2H

5) 2

p-D

ioxa

ne

419

mb

Z30

!10

K4

7(1

.9)1

06

XZ

C2H

(CN

) 2Y

ZN

C5H

10

Ch

loro

form

440

8.5

17(b

0)1

77

XZ

C2H

(CN

) 2Y

ZN

(4-

CH

3C

6H

4) 2

Ch

loro

form

452

7.6

25(b

0)1

77

XZ

C2(C

N) 3

YZ

NH

2C

H2C

l 249

87.

839

(1.9

)46

XZ

C2(C

N) 3

YZ

N(C

H3) 2

CH

2C

l 251

68.

250

(1.9

)46

DM

SO52

8m

bZ

85!

10K

47

(1.3

6)2

31

NX

XZ

CO

HC

hlo

rofo

rm5.

714

(1.9

)43

XZ

C2H

(CN

) 2C

H2C

l 245

88.

044

(1.9

)46

Ch

loro

form

8.3

51(1

.9)4

3

XZ

C2(C

N) 3

CH

2C

l 255

61.

660

(1.9

)46

DM

SO56

1m

bZ

73!

10K

47

(1.3

6)2

31

S S

NO

2

DM

SO45

8m

bZ

36!

10K

47

(1.3

6)2

31

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:07—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-21

Article in Press

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

Page 22: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

CN

CN

CN

S

SD

MSO

602

mb

Z12

!10

K4

6(1

.58)

23

1

N

CN

CN

CN

p-D

ioxa

ne

505

mb

Z71

!10

K4

7(1

.36)

20

3

N

N

OOH

O

397

bZ

171!

10K

30

(1.0

6S)2

00

X

NO

2

XZ

CH

3N

eat

3.9

1.0

(1.9

)46

XZ

FN

eat

5.0

1.8

(1.9

)14

1

XZ

Br

p-D

ioxa

ne

4.0

0.4

(1.9

)46

XZ

OH

p-D

ioxa

ne

348

3.4

1.2

(1.9

)46

XZ

OC

H3

Nea

t31

83.

81.

4(1

.9)4

6

XZ

NH

2M

elt

5.0

6.4

(1.3

2)1

40

Ace

ton

e4.

310

(1.0

6)1

90

p-D

ioxa

ne

4.1

2.5

(1.9

)46

XZ

CN

p-D

ioxa

ne

5.5

1.2

(1.9

)46

XZ

CO

Hp-

Dio

xan

e4.

00.

8(1

.9)4

6

15018—Chapter7—26/8/2006—22:08—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-22 Handbook of Photonics

Article in Press

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

Page 23: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

X

NO

2

XZ

CH

3N

eat

3.9

1.5

(1.9

)46

XZ

FN

eat

3.6

-1.

6(1

.06)

14

1

XZ

Cl

Ben

zen

e3.

41.

6(1

.06)

19

1

XZ

Br

Ben

zen

e3.

41.

2(1

.06)

19

1

p-D

ioxa

ne

3.4

1.0

(1.9

)46

XZ

OH

p-D

ioxa

ne

3.6

0.8

(1.9

)46

XZ

OC

H3

p-D

ioxa

ne

326

3.9

1.6

(1.9

)46

XZ

NH

2M

elt

5.5

4.2

(1.3

2)1

40

Ace

ton

e4.

96

(1.0

6)1

90

p-D

ioxa

ne

396

4.7

1.9

(1.9

)46

XZ

CN

p-D

ioxa

ne

3.7

0.8

(1.9

)46

XZ

CO

Hp-

Dio

xan

e2.

81.

7(1

.9)4

6

XZ

NO

2B

enze

ne

3.9

1.2

(1.0

6)1

91

p-D

ioxa

ne

9.5

(1.9

1)2

50

H2N

NO

2p-

Dio

xan

e13

(1.3

7)2

50

p-D

ioxa

ne

17(1

.06)

25

0

p-D

ioxa

ne

27(0

.91)

25

0

p-D

ioxa

ne

45(0

.83)

25

0

p-D

ioxa

ne

361

6.2

8.7

(1.9

)46

p-D

ioxa

ne

7.4

18(1

.06)

25

p-D

ioxa

ne

9.1

(1.3

2)2

5

p-D

ioxa

ne

7.6

(1.9

1)2

5

p-D

ioxa

ne

5.7

13(1

.06)

26

2C

I

NO

2H

2Np-

Dio

xan

e35

05.

96.

8(1

.9)4

6

OC

H3

H2N

NO

2

p-D

ioxa

ne

6.0

8.7

(1.9

)46

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:08—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-23

Article in Press

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

Page 24: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

N

NCO

CH

3

NO

2

p-D

ioxa

ne

7.4

18(1

.06)

26

2

8.1

9.5

(1.0

6S)1

95

FF

FF

CN

Br

p-D

ioxa

ne

240

3.5

1.4

(1.5

9)8

7

FF

FF

CN

H2N

p-D

ioxa

ne

274

6.5

2.6

(1.5

9)8

7

H3C

ON

O2

F

p-D

ioxa

ne

304

4.4

2.5

(1.9

)46

F

F

NO

2H

3CO

p-D

ioxa

ne

304

4.9

2.6

(1.9

)46

FF

FF

NO

2H

3CO

p-D

ioxa

ne

270

4.2

1.7

(1.9

)46

15018—Chapter7—26/8/2006—22:08—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-24 Handbook of Photonics

Article in Press

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

Page 25: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

FF

FF

NO

2H

2Np-

Dio

xan

e31

96.

05.

5(1

.59)

87

H2N

NO

2

NO

2

Ace

ton

e5.

521

(1.0

6)1

90

p-D

ioxa

ne

mb

Z49

!10

K4

8(1

.9)1

07

NH

3C O

2CN

O2

NO

2A

ceto

ne

5.6

22(1

.06)

19

0

Styr

ene

der

ivat

ives

YX

XZ

CN

YZ

OC

H3

Ch

loro

form

304

4.2

7.0

(1.9

)45

XZ

CN

YZ

N(C

H3) 2

Ch

loro

form

364

6.0

23(1

.9)4

5

XZ

CO

HY

ZB

rC

hlo

rofo

rm29

82.

06.

5(1

.9)4

5

XZ

CO

HY

ZO

CH

3D

MSO

320

mb

Z80

!10

K4

8(1

.9)5

5

Ch

loro

form

318

4.2

11(1

.9)4

5

XZ

CO

HY

ZN

(CH

3) 2

DM

SO38

7m

bZ

37!

10K

47

(1.9

)55

Ch

loro

form

384

mb

Z32

!10

K4

7(1

.34)

14

Ch

loro

form

384

5.6

30(1

.9)4

5

XZ

CO

CH

3Y

ZO

CH

3C

hlo

rofo

rm31

64.

08.

9(1

.9)4

5

XZ

CO

CF

3Y

ZN

(CH

3) 2

Ch

loro

form

6.6

64(1

.9)4

3

XZ

NO

2Y

ZH

Ch

loro

form

312

3.8

8.0

(1.9

)45

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:08—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-25

Article in Press

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

Page 26: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

XZ

NO

2Y

ZO

HC

hlo

rofo

rm35

25.

118

(1.9

)45

XZ

NO

2Y

ZO

CH

3p-

Dio

xan

e5.

512

(1.0

6)9

8

Ch

loro

form

352

4.6

17(1

.9)4

5

XZ

NO

2Y

ZN

(CH

3) 2

Ch

loro

form

7.9

220

(1.0

6)1

89

Ch

loro

form

438

6.5

50(1

.9)4

5

XZ

CH

C(C

N) 2

YZ

N(C

H3) 2

DM

SO50

0m

bZ

36!

10K

46

(1.0

6)1

02

DM

SO50

0R

e(m

b)Z

34!

10K

46

(1.0

6)1

01

Im(m

b)Z

36!

10K

48

(1.0

6)1

01

XZ

N(C

H3) 2

YZ

NO

2C

hlo

rofo

rm43

85.

935

(1.9

)45

NX

XZ

CO

HC

hlo

rofo

rm6.

348

(1.9

)43

XZ

NO

2C

hlo

rofo

rm7.

190

(1.9

)43

NN

NO

2p-

Dio

xan

em

bZ

15!

10K

47

(1.9

)10

7

NN

NO

2

NO

2

p-D

ioxa

ne

mb

Z16

!10

K4

7(1

.9)1

07

Bip

hen

yld

eriv

ativ

es

XY

XZ

CN

YZ

Hp-

Dio

xan

e27

24.

01.

9(1

.9)4

5

15018—Chapter7—26/8/2006—22:09—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-26 Handbook of Photonics

Article in Press

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

Page 27: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

XZ

CO

CH

3Y

ZH

p-D

ioxa

ne

280

3.1

2.0

(1.9

)45

XZ

NO

2Y

ZH

p-D

ioxa

ne

304

3.8

4.1

(1.9

)45

XZ

SO2C

H3

YZ

N(C

H3) 2

Ch

loro

form

340

6.0

13(1

.9)4

5

XZ

CN

YZ

OH

p-D

ioxa

ne

292

4.8

6.3

(1.9

)45

XZ

CO

CH

3Y

ZO

CH

3p-

Dio

xan

e30

43.

44.

9(1

.9)4

5

XZ

NO

2Y

ZB

rp-

Dio

xan

e30

62.

74.

4(1

.9)4

5

XZ

NO

2Y

ZO

Hp-

Dio

xan

e33

44.

97.

7(1

.9)4

5

XZ

NO

2Y

ZO

CH

3p-

Dio

xan

e33

24.

59.

2(1

.9)4

5

XZ

NO

2Y

ZN

H2

Ch

loro

form

372

5.0

24(1

.9)4

5

XZ

NO

2Y

ZN

H2

NM

P7.

824

(1.9

)45

XZ

NO

2Y

ZN

(CH

3) 2

Ch

loro

form

390

5.5

50(1

.9)4

5

Tolu

ene

401

7.5

89(1

.06)

27

1

XZ

NO

2Y

ZN

(C6H

13) 2

C6H

11C

H3

400

7.5

73(1

.06)

27

1

Flu

oren

ed

eriv

ativ

es

XY

XZ

CN

YZ

Hp-

Dio

xan

e28

43.

93.

0(1

.9)4

5

XZ

NO

2Y

ZH

p-D

ioxa

ne

328

4.1

5.1

(1.9

)45

XZ

NO

2Y

ZB

rp-

Dio

xan

e33

02.

86.

0(1

.9)4

5

XZ

NO

2Y

ZO

CH

3p-

Dio

xan

e35

64.

711

(1.9

)45

XZ

NO

2Y

ZN

(CH

3) 2

p-D

ioxa

ne

410

5.6

40(1

.9)4

5

Ch

loro

form

417

6.0

55(1

.9)4

5

Dip

hen

ylet

her

san

dd

eriv

ativ

es

CH

3OO

SO O

Ch

loro

form

252

5.2

6.3

(1.9

)43

H2N

ON

O2

p-D

ioxa

ne

6.2

15(1

.06)

21

0

p-D

ioxa

ne

296

4.9

4.5

(1.9

)43

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:09—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-27

Article in Press

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

Page 28: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

NO

NO

2p-

Dio

xan

e29

45.

25.

3(1

.9)4

3

CH

3OS

SO O

Ch

loro

form

295

5.3

8.9

(1.9

)43

H2N

SN

O2

Ben

zen

e6.

026

(1.0

6)2

10

Ace

ton

e34

15.

828

(1.0

6)1

6

p-D

ioxa

ne

334

58.

7(1

.9)4

3

H2N

O OSN

O2

Ace

ton

e33

28

19(1

.06)

16

H2N

O OSN

H2

Ace

ton

e29

57.

88

(1.0

6)1

6

H2N

Se

NO

2p-

Dio

xan

e5.

927

(1.0

6)2

10

H2N

TeN

O2

p-D

ioxa

ne

5.6

27(1

.06)

21

0

15018—Chapter7—26/8/2006—22:09—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-28 Handbook of Photonics

Article in Press

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

Page 29: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

NS

i

n

CN

CN

nZ

1C

hlo

rofo

rm32

06

16(1

.06)

16

4

nZ

2C

hlo

rofo

rm33

47

22(1

.06)

16

4

nZ

3C

hlo

rofo

rm38

56.

838

(1.0

6)1

64

Tol

ane

der

ivat

ives

XY

XZ

SO2C

H3

YZ

Hp-

Dio

xan

e31

05.

33.

8(1

.06)

32

XZ

SO2C

H3

YZ

OC

H3

p-D

ioxa

ne

310

5.9

11(1

.06)

32

XZ

SO2C

H3

YZ

CH

3S

p-D

ioxa

ne

320

5.2

16(1

.06)

32

XZ

SO2C

H3

YZ

NH

2C

hlo

rofo

rm33

86.

513

(1.9

)45

XZ

SO2C

H3

YZ

N(C

H3) 2

p-D

ioxa

ne

358

7.5

5.6(

1.06

)32

XZ

SO2C

F3

YZ

OC

H3

p-D

ioxa

ne

327

6.2

21(1

.06)

32

XZ

SO2C

F3

YZ

N(C

H3) 2

p-D

ioxa

ne

388

8.4

40(1

.06)

32

XZ

CO

2C

H3

YZ

SCH

3C

hlo

rofo

rm32

82.

98

(1.9

)45

XZ

CO

2C

H3

YZ

NH

2C

hlo

rofo

rm33

23.

815

(1.9

)45

XZ

CO

CH

3Y

ZSC

H3

Ch

loro

form

336

3.7

9.8(

1.9)

45

XZ

CO

CH

3Y

ZN

H2

Ch

loro

form

334

3.3

12(1

.9)4

5

XZ

CO

C6H

5Y

ZN

H2

Ch

loro

form

352

3.7

19(1

.9)4

5

XZ

CN

YZ

SCH

3C

hlo

rofo

rm33

34.

015

(1.9

)45

XZ

CN

YZ

NH

2C

hlo

rofo

rm34

25.

220

(1.9

)45

XZ

CN

YZ

NH

CH

3C

hlo

rofo

rm35

85.

727

(1.9

)45

XZ

CN

YZ

N(C

H3) 2

Ch

loro

form

372

6.1

29(1

.9)4

5

XZ

NO

2Y

ZH

p-D

ioxa

ne

326

4.6

16(1

.06)

32

XZ

NO

2Y

ZB

rC

hlo

rofo

rm33

53.

010

(1.9

)45

XZ

NO

2Y

ZO

CH

3p-

Dio

xan

e35

64.

414

(1.9

)45

XZ

NO

2Y

ZSC

H3

Ch

loro

form

362

4.0

20(1

.9)4

5

XZ

NO

2Y

ZN

H2

Ch

loro

form

380

5.5

24(1

.9)4

5

NM

P41

05.

540

(1.9

)45

XZ

NO

2Y

ZN

HC

H3

Ch

loro

form

400

5.7

46(1

.9)4

5

XZ

NO

2Y

ZN

(CH

3) 2

Ch

loro

form

415

6.1

46(1

.9)4

5

p-D

ioxa

ne

402

7.1

102

(1.0

6)3

2

Ch

loro

form

416

6.6

33(b

0)1

77

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:09—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-29

Article in Press

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

Page 30: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

XZ

NO

2Y

ZN

(C6H

5) 2

Ch

loro

form

418

4.8

28(b

0)1

77

Stil

ben

ed

eriv

ativ

es

XY

XZ

HY

ZO

CH

332

02.

86.

1(1

.06)

17

5

XZ

HY

ZN

H2

Ben

zen

e2.

112

(1.0

6)1

89

p-D

ioxa

ne

332

2.2

7.4

(1.9

)46

XZ

HY

ZN

(CH

3) 2

Ben

zen

e2.

429

(1.0

6)1

89

p-D

ioxa

ne

340

2.1

10(1

.9)4

6

XZ

Cl

YZ

HB

enze

ne

1.5

3.6

(1.0

6)1

89

XZ

Cl

YZ

N(C

H3) 2

Ch

loro

form

4.0

42(1

.06)

18

9

XZ

CF

3Y

ZO

CH

3p-

Dio

xan

e32

34.

312

(1.0

6)2

44

326

4.2

16(1

.06)

17

5

XZ

CF

3Y

ZO

Hp-

Dio

xan

e32

74.

712

(1.0

6)2

44

XZ

SO2C

H3

YZ

Hp-

Dio

xan

e36

44.

458

(1.0

6)3

2

XZ

SO2C

H3

YZ

OC

H3

Ch

loro

form

336

6.5

10(1

.9)4

6

p-D

ioxa

ne

335

6.1

9.1

(1.0

6)3

2

XZ

SO2C

H3

YZ

SC6H

5p-

Dio

xan

e34

44.

419

(1.0

6)3

2

XZ

SO2C

H3

YZ

N(C

H3) 2

p-D

ioxa

ne

376

6.9

66(1

.06)

32

XZ

SO2C

H3

YZ

N(C

H2C

2H

3) 2

Ch

loro

form

391

mb

Z57

!10

K4

7(1

.9)2

64

XZ

SO2C

F3

YZ

OC

H3

p-D

ioxa

ne

347

7.8

14(1

.9)4

6

p-D

ioxa

ne

350

6.6

34(1

.06)

32

XZ

SO2C

6F

13

YZ

N(C

H3) 2

Ch

loro

form

8.0

59(1

.9)4

3

XZ

CO

CF

3Y

ZO

CH

3p-

Dio

xan

e36

84.

216

(1.9

)46

XZ

CO

HY

ZN

(CH

3) 2

Ch

loro

form

360

3.5

24(1

.9)2

54

XZ

CN

YZ

OH

p-D

ioxa

ne

344

4.5

13(1

.9)4

6

XZ

CN

YZ

OC

H3

DM

SO34

2m

bZ

82!

10K

47

(1.9

)55

Ch

loro

form

340

3.8

19(1

.9)4

6

XZ

CN

YZ

N(C

H3) 2

DM

SO39

0m

bZ

98!

10K

48

(1.9

)55

Ch

loro

form

382

5.7

36(1

.9)4

6

XZ

NO

2Y

ZH

Ben

zen

e4.

629

(1.0

6)1

89

p-D

ioxa

ne

345

4.2

11(1

.9)4

6

XZ

NO

2Y

ZC

H3

DM

SO36

8m

bZ

20!

10K

48

(1.9

)55

p-D

ioxa

ne

351

4.7

15(1

.9)4

6

15018—Chapter7—26/8/2006—22:10—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-30 Handbook of Photonics

Article in Press

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

Page 31: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

XZ

NO

2Y

ZC

lC

hlo

rofo

rm3.

139

(1.0

6)1

89

XZ

NO

2Y

ZB

rp-

Dio

xan

e34

43.

214

(1.9

)46

Ch

loro

form

356

3.4

18(1

.9)4

6

XZ

NO

2Y

ZO

HC

hlo

rofo

rm93

(1.0

6HR

)48

p-D

ioxa

ne

370

5.5

17(1

.9)4

6

XZ

NO

2Y

ZO

C6H

5p-

Dio

xan

e35

04.

618

(1.9

)46

XZ

NO

2Y

ZO

CH

3p-

Dio

xan

e5.

781

(1.0

6)9

8

Ch

loro

form

105

(1.0

6HR

)48

p-D

ioxa

ne

364

4.5

28(1

.9)4

6

Ch

loro

form

370

4.5

34(1

.9)4

6

p-D

ioxa

ne

364

4.5

60(1

.06)

32

XZ

NO

2Y

ZSC

H3

p-D

ioxa

ne

374

4.3

26(1

.9)4

6

Ch

loro

form

380

4.3

34(1

.9)4

6

p-D

ioxa

ne

378

5.1

68(1

.06)

32

XZ

NO

2Y

ZN

H2

Ace

ton

e7.

526

0(1

.06)

18

9

Ch

loro

form

402

5.1

40(1

.9)4

6

XZ

NO

2Y

ZN

(CH

3) 2

Ace

ton

e7.

445

0(1.

06)1

93

DM

SO44

7m

bZ

42!

10K

46

(1.9

)55

DM

SO45

3m

bZ

76!

10K

47

(1.3

6)2

31

7.1

323

(1.0

6S)1

95

Ch

loro

form

427

6.6

73(1

.9)4

6

NM

P7.

270

(1.9

)46

p-D

ioxa

ne

mb

Z58

!10

K4

7(1

.9)1

07

Ch

loro

form

438

6.7

42(b

0)1

77

XZ

NO

2Y

ZN

(CH

2C

2H

3) 2

Ch

loro

form

452

mb

Z57

!10

K4

7(1

.9)2

64

XZ

NO

2Y

ZN

(C6H

5) 2

Ch

loro

form

436

4.8

37(b

0)1

77

XZ

NO

2Y

ZC

OO

CH

3C

H2C

l 235

04.

04

(1.9

)46

XZ

NO

2Y

ZC

OH

p-D

ioxa

ne

352

4.1

6(1

.9)4

6

XZ

CH

C(C

N) 2

YZ

N(C

H3) 2

Ch

loro

form

7.8

210

(1.9

)43

XZ

CH

C(C

N) 2

YZ

N(C

2H

5) 2

CH

2C

l 248

58.

218

0(1

.58)

54

p-D

ioxa

ne

468

mb

Z11

!10

K4

6(1

.9)1

06

XZ

Br

YZ

OC

H3

p-D

ioxa

ne

325

4.0

25(1

.9)4

6

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:10—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-31

Article in Press

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

Page 32: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

NN

O2

Ch

loro

form

438

796

(1.9

)46

NO

2

OC

H3

Ch

loro

form

360

3.8

4.4

(1.9

)46

NO

2

OC

H3

Ch

loro

form

370

3.7

1.6

(1.9

)46

NO

2

H3C

OC

hlo

rofo

rm39

03.

53.

8(1

.9)4

6

NO

2

OC

H3

Ch

loro

form

320

4.4

5.5

(1.9

)46

NO

2

OC

H3

Ch

loro

form

292

3.9

4.5

(1.9

)46

15018—Chapter7—26/8/2006—22:10—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-32 Handbook of Photonics

Article in Press

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

Page 33: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

NO

2

H3C

Op-

Dio

xan

e31

83.

95.

3(1

.9)4

6

NO

2

OC

H3

Ch

loro

form

362

5.0

22(1

.9)4

6

NO

2

OC

H3

Ch

loro

form

352

4.0

21(1

.9)4

6

NO

2

Br

Ch

loro

form

346

4.6

12(1

.9)4

6

NO

2

Br

Ch

loro

form

346

3.4

14(1

.9)4

6

H3C

O

F F

322

3.1

9.2

(1.0

6)1

75

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:10—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-33

Article in Press

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

Page 34: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

H3C

O

F

F

F

320

4.6

6.8

(1.0

6)1

75

H3C

O

FF

F

322

3.4

10(1

.06)

17

5

H3C

O

F

F

F

F

324

3.5

12(1

.06)

17

5

H3C

O

F

F

F

FF

322

3.3

16(1

.06)

17

5

H3C

O

F

CF

3

F

FF

334

4.0

23(1

.06)

17

5

15018—Chapter7—26/8/2006—22:11—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-34 Handbook of Photonics

Article in Press

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

Page 35: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

CF

3

CF

3

H3C

O

326

4.2

11(1

.06)

17

5

CF

3

X

CN

XZ

Hp-

Dio

xan

e31

44.

74.

5(1

.06)

24

4

XZ

Cl

p-D

ioxa

ne

318

4.2

5.1

(1.0

6)2

44

XZ

Br

p-D

ioxa

ne

320

4.6

8.1

(1.0

6)2

44

XZ

CH

3p-

Dio

xan

e32

34.

87.

4(1

.06)

24

4

XZ

OC

H3

p-D

ioxa

ne

340

5.3

15(1

.06)

24

4

XZ

OH

p-D

ioxa

ne

348

5.5

16(1

.06)

24

4

XZ

SCH

3p-

Dio

xan

e36

25.

016

(1.0

6)2

44

XZ

N(C

H3) 2

p-D

ioxa

ne

410

6.4

29(1

.06)

24

4

NO

2

H3C

Op-

Dio

xan

e36

65.

226

(1.9

)46

NO

2

H3C

O

OC

H3

p-D

ioxa

ne

380

4.7

23(1

.9)4

6

NO

2

H3C

O

F

p-D

ioxa

ne

363

4.1

18(1

.9)4

6

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:11—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-35

Article in Press

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

Page 36: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

NO

2

H3C

O

OC

H3

p-D

ioxa

ne

395

4.8

32(1

.9)4

6

NO

2

H3C

O

CN

p-D

ioxa

ne

361

5.3

21(1

.9)4

6

NO

2

Br

CN

p-D

ioxa

ne

340

4.6

8(1

.9)4

6

NO

2B

r

CN

Np-

Dio

xan

e38

24.

12.

1(1

.9)4

6

NO

2

NO

2

p-D

ioxa

ne

355

410

(1.9

)46

NO

2

NO

2

NO

2

p-D

ioxa

ne

354

25

(1.9

)46

15018—Chapter7—26/8/2006—22:11—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-36 Handbook of Photonics

Article in Press

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

Page 37: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

NO

2

NO

2

OC

H3

p-D

ioxa

ne

378

5.0

12(1

.9)2

55

NO

2

NO

2

H3C

Op-

Dio

xan

e38

44.

722

(1.9

)46

NO

2

NO

2

Np-

Dio

xan

e46

67.

057

(1.9

)25

5

p-D

ioxa

ne

mb

Z66

!10

K4

7(1

.9)1

07

NO

2

NO

2

H3C

OC

hlo

rofo

rm4.

115

(1.9

)43

NO

2

NO

2

NC

hlo

rofo

rm6.

245

(1.9

)43

NO

2

NO

2

H3C

O

OC

H3

p-D

ioxa

ne

404

5.6

25(1

.9)4

6

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:12—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-37

Article in Press

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

Page 38: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

NO

2

NO

2

H3C

O

OC

H3

OC

H3

p-D

ioxa

ne

390

3.1

11(1

.9)4

6

NO

2

Np-

Dio

xan

e34

64.

44.

9(1

.9)4

6

NO

2

Np-

Dio

xan

e35

14.

715

(1.9

)46

H3C

ON

O2

Np-

Dio

xan

e37

64.

414

(1.9

)46

NN

O2

ND

MSO

458

mb

Z50

!10

K4

7(1

.36)

23

1

H3C

ON

O2

Np-

Dio

xan

e34

95.

46.

6(1

.9)4

6

YN

XN

15018—Chapter7—26/8/2006—22:12—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-38 Handbook of Photonics

Article in Press

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

Page 39: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

XZ

SO2C

H3

YZ

N(C

4H

9) 2

Ch

loro

form

461

mb

Z51

!10

K4

7(1

.9)2

64

XZ

NO

2Y

ZN

H2

p-D

ioxa

ne

420

5.8

29(1

.9)4

6

DM

SO47

0m

bZ

77!

10K

47

(1.3

6)2

31

XZ

NO

2Y

ZN

(CH

3) 2

Ch

loro

form

498

mb

Z13

!10

K4

6(1

.9)2

64

Ch

loro

form

480

7.7

40(b

0)1

77

XZ

NO

2Y

ZN

(C2H

5) 2

Ch

loro

form

494

8.0

50(b

0)1

77

XZ

N0 2

YZ

N(C

2H

5)C

2H

4)O

HC

H2C

l 248

08.

990

(1.5

7)5

4

p-D

ioxa

ne

455

7.0

49(1

.9)4

6

DM

SO50

8m

bZ

11!

10K

46

(1.3

6)2

31

XZ

NO

2Y

ZN

(C6H

5) 2

Ch

loro

form

486

5.9

54(b

0)1

77

XZ

CH

C(C

N) 2

YZ

N(C

H3) 2

DM

SO49

2m

bZ

27!

10K

46

(1.3

6)2

31

XZ

C2(C

N) 3

YZ

N(C

2H

5) 2

DM

SOm

bZ

41!

10K

46

(1.5

8)2

64

XZ

C2(C

N) 3

YZ

N(C

2H

5)(

C2H

4)O

HC

H2C

l 251

310

190

(1.5

7)5

4

Pyr

idin

ed

eriv

ativ

es NO

2H

2N

NA

ceto

ne

6.5

3.7

(1.9

)46

NO

2N

OHN

p-D

ioxa

ne

376

7.2

18(1

.06)

25

p-D

ioxa

ne

11(1

.32)

25

p-D

ioxa

ne

11(1

.91)

25

p-D

ioxa

ne

5.5

17(1

.06)

26

2

H45

C22

NO

2N

Np-

Dio

xan

e35

76.

713

(1.0

6)2

5

p-D

ioxa

ne

9.3

(1.3

2)2

5

p-D

ioxa

ne

6.0

(1.9

1)2

5

NO

2N

N

p-D

ioxa

ne

361

6.8

22(1

.06)

25

p-D

ioxa

ne

12(1

.32)

25

p-D

ioxa

ne

11(1

.91)

25

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:12—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-39

Article in Press

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

Page 40: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

NO

2N

Np-

Dio

xan

e6.

115

(1.0

6)2

62

NO

2H

3CO

Np-

Dio

xan

e3.

52.

2(1

.9)4

6

H3C

ON

O2

Np-

Dio

xan

e3.

52.

2(1

.9)4

6

NB

rC

hlo

rofo

rm0.

910

(1.9

)46

NO

CH

3C

hlo

rofo

rm33

53.

816

(1.9

)43

NN

O2

Ch

loro

form

1.3

8(1

.9)4

6

15018—Chapter7—26/8/2006—22:12—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-40 Handbook of Photonics

Article in Press

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

Page 41: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

N

CN

CF

3p-

Dio

xan

e31

26.

24.

3(1

.06)

24

4

N

CN

CF

3p-

Dio

xan

e30

95.

54.

4(1

.06)

24

4

CN

NC

F3

p-D

ioxa

ne

307

5.1

4.2

(1.0

6)2

44

Cou

mar

ind

eriv

ativ

es

NO

O

Ch

loro

form

515

(1.9

)43

CH

3OO

OO

Ch

loro

form

58

(1.9

)43

ON

OO

Ch

loro

form

7.3

30(1

.9)4

3

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:13—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-41

Article in Press

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

Page 42: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

ON

NO

2OO

Ch

loro

form

8.8

50(1

.9)4

3

O

OC

H3

CH

3OOO

Ch

loro

form

5.8

9.5

(1.9

)43

O

OC

H3

CH

3OOO

CN

Ch

loro

form

7.3

15(1

.9)4

3

Oth

erpo

lycy

clic

arom

atic

der

ivat

ives

NX

N

XZ

Hp-

Dio

xan

e3.

6!

1(1

.9)4

3

XZ

SHp-

Dio

xan

e4

!1

(1.9

)43

XZ

CO

OH

p-D

ioxa

ne

2.6

!1

(1.9

)43

NO

2

N

N

p-D

ioxa

ne

X

SS

Y

XZ

HY

ZO

p-D

ioxa

ne

340

4.8

(1.3

4)2

8

XO

CH

3Y

ZO

p-D

ioxa

ne

312

13(1

.34)

28

15018—Chapter7—26/8/2006—22:13—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-42 Handbook of Photonics

Article in Press

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

Page 43: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

XZ

HY

ZS

p-D

ioxa

ne

438

11(1

.34)

28

XZ

OC

H3

YZ

Sp-

Dio

xan

e43

821

(1.3

4)2

8

OH

N33

34.

0b

0Z

12(S

)7

NO

H35

66.

2b

0Z

11(S

)7

NO

2

H2N

DM

SOm

bZ

23!

10K

47

(1.3

6)2

31

O2N

NN

NO

2

Ch

loro

form

7.6

36(1

.9)4

3

N

CN

CN

N

Ch

loro

form

7.3.

20(1

.9)4

3

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:13—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-43

Article in Press

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

Page 44: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

N

N C+

Cl−

N

CC

l 459

058

0(1

.06H

R)2

91

N

O

NC

hlo

rofo

rm4

10(1

.9)4

3

CN

NN

O

Ch

loro

form

400

6.7

31(1

.9)4

3

NO

2

N

O

NC

hlo

rofo

rm42

37

45(1

.9)4

3

NO

2

p-D

ioxa

ne

65

(1.9

)43

15018—Chapter7—26/8/2006—22:13—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-44 Handbook of Photonics

Article in Press

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

Page 45: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

NO

2

p-D

ioxa

ne

811

(1.9

)43

O

OO N

N N

NH

2p-

Dio

xan

e57

5m

bZ

30!

10K

47

(z2)

22

6

NO

2

NC

hlo

rofo

rm6.

535

(1.9

)43

NO

2

H3C

ON

MP

364

718

(1.9

)43

N

SO O

NM

P40

68

30(1

.9)4

3

H3C

O

NO

2

Ch

loro

form

394

852

(1.9

)43

NN

O2

NO

2

p-D

ioxa

ne

mb

Z13

!10

–4

6(1

.9)1

07

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:14—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-45

Article in Press

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

Page 46: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

Pol

yen

ed

eriv

ativ

es

CN

NC

N

Ch

loro

form

352

7.6

1(1

.9)1

56

S

X

nY

S

CO

HC

hlo

rofo

rm37

2m

bZ

30!

10K

48

(1.3

4)1

4

nZ

1X

ZC

OH

YZ

N(C

H3) 2

Ch

loro

form

284

6.3

3.3

(1.9

)15

6

nZ

2X

ZC

OH

YZ

N(C

2H

5) 2

Ch

loro

form

363

6.5

20(1

.9)1

56

nZ

3X

ZC

OH

YZ

N(C

H3) 2

Ch

loro

form

422

6.9

53(1

.9)1

56

nZ

1X

ZC

HC

(CN

) 2Y

ZN

(CH

3) 2

Ch

loro

form

374

8.9

6.1

(1.9

)15

6

nZ

2X

ZC

HC

(CN

) 2Y

ZN

(C2H

5) 2

Ch

loro

form

476

10.7

45(1

.9)1

56

nZ

3X

ZC

HC

(CN

) 2Y

ZN

(CH

3) 2

Ch

loro

form

550

9.9

211

(1.9

)15

6

nZ

1X

ZN

O2

YZ

N(C

H3) 2

Ch

loro

form

6.3

4.8

(1.9

)43

nZ

2X

ZN

O2

YZ

N(C

H3) 2

Ch

loro

form

6.7

21(1

.9)4

3

nZ

3X

ZN

O2

YZ

N(C

H3) 2

Ch

loro

form

8.4

73(1

.9)4

3

nZ

3X

ZSO

2C

F3

YZ

N(C

H3) 2

Ch

loro

form

9.8

40(1

.9)4

3

CO

H

S

SC

hlo

rofo

rm45

6m

bZ

12!

10K

46

(1.3

4)1

4

CO

H

S

SC

hlo

rofo

rm46

6m

bZ

22!

10K

46

(1.3

4)1

4

15018—Chapter7—26/8/2006—22:14—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-46 Handbook of Photonics

Article in Press

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

Page 47: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

S

CO

HS

Ch

loro

form

500

mb

Z73

!10

K4

6(1

.34)

14

CO

HD

MSO

380

mb

Z23

!10

K4

7(1

.06)

10

1

CN

CN

DM

SO47

0R

e(m

b)Z

13!

10K

46

(1.0

6)1

01

Im(m

b)Z

15!

10K

46

(1.0

6)1

01

CN

NO

2

DM

SO48

0R

e(m

b)Z

14!

10K

46

(1.0

6)1

01

Im(m

b)Z

35!

10K

46

(1.0

6)1

01

N

N

DM

SO44

0R

e(m

b)Z

15!

10K

46

(1.0

6)1

01

Im(m

b)Z

17!

10K

46

(1.0

6)1

01

CO

HC

l 2C

HC

HC

l 247

0R

e(m

b)Z

10!

10K

47

(1.0

6)1

01

Im(m

b)Z

44!

10K

46

(1.0

6)1

01

Ch

loro

form

476

mb

Z96

!10

K4

7(1

.9)5

3

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:14—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-47

Article in Press

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

Page 48: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

NO

2C

l 2C

HC

HC

l 250

0R

e(m

b)Z

K20

!10

K4

6(1

.06)

10

1

Im(m

b)Z

25!

10K

46

(1.0

6)1

01

CN

CN

Cl 2

CH

CH

Cl 2

570

Re(

mb

)Z35

!10

K4

6(1

.06)

10

1

Im(m

b)Z

47!

10K

46

(1.0

6)1

01

Ch

loro

form

566

mb

Z44

!10

K4

6(1

.9)5

3

CN

CO

2C2H

5R

e(m

b)Z

K12

!10

K4

5(1

.06)

10

1

Cl 2

CH

CH

Cl 2

510

Im(m

b)Z

73!

10K

46

(1.0

6)1

01

Ch

loro

form

502

mb

Z15

!10

K4

6(1

.9)5

3

a-P

hen

ylpo

lyen

eD

eriv

ativ

es

nY

X

nZ

2X

ZC

OH

YZ

OC

H3

Ch

loro

form

350

4.3

28(1

.9)4

5

nZ

3X

ZC

OH

YZ

OC

H3

Ch

loro

form

376

4.6

42(1

.9)4

5

nZ

2X

ZC

OH

YZ

N(C

H3) 2

Ch

loro

form

412

6.0

52(1

.9)4

5

nZ

3X

ZC

OH

YZ

N(C

H3) 2

Ch

loro

form

434

6.3

88(1

.9)4

5

Ch

loro

form

6.6

105

(1.9

)43

15018—Chapter7—26/8/2006—22:14—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-48 Handbook of Photonics

Article in Press

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

Page 49: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

nZ

4X

ZC

OH

YZ

N(C

H3) 2

Ch

loro

form

8.0

138

(1.9

)43

nZ

2X

ZC

OC

F3

YZ

N(C

H3) 2

Ch

loro

form

6.6

126

(1.9

)43

nZ

2X

ZN

O2

YZ

OC

H3

DM

SO37

0m

bZ

81!

10K

48

(1.0

6)1

02

Ch

loro

form

4.6

42(1

.9)4

5

nZ

3X

ZN

O2

YZ

OC

H3

DM

SO40

0m

bZ

30!

10K

47

(1.0

6)1

02

nZ

2X

ZN

O2

YZ

N(C

H3) 2

Ace

ton

e8.

863

0(1

.06)

18

9

DM

SO46

0m

bZ

17!

10K

46

(1.0

6)1

02

Ch

loro

form

466

6.5

140

(1.9

)25

4

nZ

3X

ZN

O2

YZ

N(C

H3) 2

DM

SO49

0m

bZ

55!

10K

46

(1.0

6)1

02

Ch

loro

form

487

6.6

240

(1.9

)25

4

nZ

4X

ZN

O2

YZ

N(C

H3) 2

Ch

loro

form

502

7.6

280

(1.9

)25

4

nZ

2X

ZC

HC

(CN

) 2Y

ZN

(CH

3) 2

DM

SO50

0m

bZ

36!

10K

46

(1.0

6)1

02

Ch

loro

form

520

9.0

163

(1.9

)45

nZ

3X

ZC

HC

(CN

) 2Y

ZN

(CH

3) 2

Ch

loro

form

8.8

432

(1.9

)43

nX

N

nZ

3X

ZC

OH

Ch

loro

form

7.1

162

(1.9

)43

nZ

3X

ZN

O2

Ch

loro

form

7.8

287

(1.9

)43

nZ

4X

ZN

O2

Ch

loro

form

mb

Z26

!10

K4

6(1

.9)4

3

nZ

3X

ZC

HC

(CN

) 2C

hlo

rofo

rm8.

748

5(1

.9)4

3

NC

OH

Ch

loro

form

450

mb

Z20

!10

K4

6(1

.34)

14

N

CO

H

Ch

loro

form

461

mb

Z42

!10

K4

6(1

.34)

14

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:15—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-49

Article in Press

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

Page 50: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

NC

OH

Ch

loro

form

498

mb

Z89

!10

K4

6(1

.34)

14

Dip

hen

ylpo

lyen

ed

eriv

ativ

es

nY

X

nZ

2X

ZC

NY

ZO

CH

3C

hlo

rofo

rm36

04.

327

(1.9

)45

nZ

3X

ZC

NY

ZO

CH

3C

hlo

rofo

rm38

04.

640

(1.9

)45

nZ

2X

ZN

O2

YZ

Br

Ch

loro

form

378

3.5

21(1

.9)4

5

nZ

3X

ZN

O2

YZ

Br

Ch

loro

form

400

3.8

35(1

.9)4

5

nZ

2X

ZN

O2

YZ

OC

H3

p-D

ioxa

ne

6.0

135

(1.0

6)9

8

Ch

loro

form

397

4.8

47(1

.9)4

5

nZ

3X

ZN

O2

YZ

OC

H3

p-D

ioxa

ne

6.6

274

(1.0

6)9

8

Ch

loro

form

414

5.1

76(1

.9)4

5

nZ

4X

ZN

O2

YZ

OC

H3

p-D

ioxa

ne

6.7

367

(1.0

6)9

8

Ch

loro

form

430

5.8

55(1

.9)4

5

nZ

5X

ZN

O2

YZ

OC

H3

p-D

ioxa

ne

7.0

623

(1.0

6)9

8

nZ

2X

ZN

O2

YZ

SCH

3C

hlo

rofo

rm39

84.

510

1(1

.9)4

5

nZ

2X

ZN

O2

YZ

N(C

H3) 2

Ch

loro

form

442

7.6

107

(1.9

)45

p-D

ioxa

ne

mb

Z75

!10

K4

7(1

.9)1

07

nZ

3X

ZN

O2

YZ

N(C

H3) 2

Ch

loro

form

458

8.2

131

(1.9

)45

NZ

4X

ZN

O2

YZ

N(C

H3) 2

Ch

loro

form

464

919

0(1

.9)4

5

NZ

2X

ZC

2H

CN

2Y

ZN

(CH

3) 2

DM

SO48

1m

bZ

13!

10K

46

(1.3

6)2

31

n

Y

X

nZ

2X

ZC

NY

ZO

CH

3C

hlo

rofo

rm35

43.

84.

5(1

.9)4

5

nZ

3X

ZC

NY

ZO

CH

3C

hlo

rofo

rm37

63.

87.

1(1

.9)4

5

15018—Chapter7—26/8/2006—22:15—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-50 Handbook of Photonics

Article in Press

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

Page 51: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

nZ

2X

ZN

O2

YZ

OC

H3

Ch

loro

form

376

3.7

6.4

(1.9

)45

nZ

3X

ZN

O2

YZ

OC

H3

Ch

loro

form

392

4.1

11(1

.9)4

5

n

Y

X

nZ

2X

ZO

CH

3Y

ZC

NC

hlo

rofo

rm35

63.

92.

6(1

.9)4

5

nZ

3X

ZO

CH

3Y

ZC

NC

hlo

rofo

rm37

83.

94.

3(1

.9)4

5

nZ

2X

ZC

NY

ZO

CH

3C

hlo

rofo

rm35

84.

94.

3(1

.9)4

5

nZ

2X

ZO

CH

3Y

ZN

O2

Ch

loro

form

376

3.8

4.9

(1.9

)45

nZ

3X

ZO

CH

3Y

ZN

O2

Ch

loro

form

392

3.8

11(1

.9)4

5

nZ

2X

ZN

O2

YZ

OC

H3

Ch

loro

form

380

4.3

17(1

.9)4

5

nZ

3X

ZN

O2

YZ

OC

H3

Ch

loro

form

412

4.8

56(1

.9)4

5

NO

2

NO

2

Np-

Dio

xan

e48

07.

198

(1.9

)25

5

p-D

ioxa

ne

mb

Z13

!10

K4

6(1

.9)1

07

NN

O2

NO

2

Ch

loro

form

6.2

71(1

.9)2

55

a,u

-Dip

hen

ylpo

lyen

ed

eriv

ativ

es

XY

n

nZ

2X

ZC

NY

ZSC

H3

Ch

loro

form

330

3.7

17(1

.9)4

5

nZ

2X

ZC

NY

ZN

H2

NM

P38

8m

bZ

11!

10K

47

(1.9

)45

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:15—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-51

Article in Press

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

Page 52: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

nZ

2X

ZN

O2

YZ

SCH

3C

hlo

rofo

rm33

83.

917

(1.9

)45

nZ

2X

ZN

O2

YZ

NH

2C

hlo

rofo

rm33

46.

328

(1.9

)45

nZ

2X

ZN

O2

YZ

NH

2N

MP

416

mb

Z24

!10

K4

7(1

.9)4

5

nZ

3X

ZN

O2

YZ

NH

2N

MP

440

mb

Z41

!10

K4

7(1

.9)4

5

Cu

mu

len

ed

eriv

ativ

es

XY

CC

CC

XZ

NO

2Y

ZH

p-D

ioxa

ne

442

mb

Z15

!10

K4

7(1

.9)6

1

XZ

NO

2Y

ZH

p-D

ioxa

ne

442

mb

Z66

!10

K4

7(1

.06)

61

XZ

NO

2Y

ZC

H3

p-D

ioxa

ne

448

mb

Z60

!10

K4

7(1

.06)

61

XZ

NO

2Y

ZO

CH

3p-

Dio

xan

e45

9m

bZ

85!

10K

47

(1.0

6)6

1

XZ

NO

2Y

ZO

(CH

2) 1

1

CH

3

p-D

ioxa

ne

461

mb

Z28

!10

K4

7(1

.9)6

1

a,u

-Pol

yph

enyl

der

ivat

ives

XY

n

nZ

3X

ZN

O2

YZ

OC

H3

p-D

ioxa

ne

340

5.0

11(1

.9)4

5

nZ

3X

ZN

O2

YZ

NH

2N

MP

360

7.8

24(1

.9)4

5

nZ

4X

ZN

O2

YZ

NH

2N

MP

344

7.6

16(1

.9)4

5

Pyr

rol

der

ivat

ives

CN

CF

3

N

p-d

ioxa

ne

376

5.8

11(1

.06)

24

4

CN

CF

3

Np-

dio

xan

e38

17.

212

(1.0

6)2

44

15018—Chapter7—26/8/2006—22:15—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-52 Handbook of Photonics

Article in Press

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

Page 53: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

NO

2

Np-

dio

xan

e41

05.

526

(1.9

)43

N

N

X

O XZ

OC

H3

DM

SO48

51.

432

(1.9

S)6

4

XZ

N(C

H3) 2

DM

SO55

31.

243

9(1

.9S)

64

N

NX

Y

Y

O XZ

NH

YZ

CH

3D

MSO

539

3.7

20(1

.9S)

64

XZ

SY

ZH

DM

SO49

32.

510

(1.9

S)6

4

N

NS S

OD

MSO

553

2.5

578

(1.9

S)6

4

Fu

ran

der

ivat

ives

CF

3

CN

O

p-D

ioxa

ne

345

5.7

7.7

(1.0

6)2

44

CF

3

CN

Op-

Dio

xan

e31

45.

47.

1(1

.06)

24

4

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:16—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-53

Article in Press

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

Page 54: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

ON

O2

NC

hlo

rofo

rm47

86.

983

(1.9

)45

ON

O2

NC

hlo

rofo

rm5.

917

3(1

.9)4

3

ON

O2

NC

hlo

rofo

rm48

87.

211

3(1

.9)4

5

ON

O2

H3C

OC

hlo

rofo

rm40

05.

240

(1.9

)45

Th

ioph

ene

der

ivat

ives

NO

2

SC

hlo

rofo

rm35

15.

220

(1.0

6)1

17

NO

2

S

Ch

loro

form

382

5.4

67(1

.06)

11

7

15018—Chapter7—26/8/2006—22:16—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-54 Handbook of Photonics

Article in Press

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

Page 55: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

CN

CF

3

S

p-D

ioxa

ne

346

6.8

6.6

(1.0

6)2

44

CN

CF

3

Sp-

Dio

xan

e32

16.

75.

4(1

.06)

24

4

CH

ON

SC

hlo

rofo

rm5.

87.

5(1

.9)4

3

NS

CN

CN

Ch

loro

form

9.0

21(1

.9)4

3

NS

CN

CN

Ch

loro

form

8.8

21(1

.9)4

3

SO

N

CN

CN

Ch

loro

form

5.9

23(1

.9)4

3

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:16—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-55

Article in Press

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

Page 56: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

NS

CN

CN

InP

MM

A51

0m

b0Z

60!

10K

47

(fro

m

EO

at63

3n

m)1

65

NO

2N

S

CN

InP

MM

A49

9m

b0Z

26!

10K

47

(fro

m

EO

at63

3n

m)1

65

NC

HO

SC

hlo

rofo

rm3.

730

(1.9

)43

S

NN

O2

Ch

loro

form

492

7.4

98(1

.9)4

5

S

NN

O2

p-D

ioxa

ne

478

mb

Z60

!10

K4

7(1

.9)2

03

N

SN

O2

Ch

loro

form

7.0

197

(1.9

)43

15018—Chapter7—26/8/2006—22:17—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-56 Handbook of Photonics

Article in Press

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

Page 57: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

S

NC

N

CN

p-D

ioxa

ne

584

mb

Z26

!10

K4

6(1

.9)1

06

S

NC

N

CN

CN

p-D

ioxa

ne

640

mb

Z62

!10

K4

6(1

.9)2

03

S

NC

N

CN

Ch

loro

form

7.5

161

(1.9

)43

S

SN

CN

CN

Ch

loro

form

7.6

250

(1.9

)72

S

S

N

CN

CN

CN

p-D

ioxa

ne

718

mb

Z69

!10

K4

6(1

.9)2

03

S

2N

CN

CN

CN

p-D

ioxa

ne

662

mb

Z91

!10

K4

6(1

.9)2

03

S

nN

CN

CN

nZ

1p-

Dio

xan

e51

3m

bZ

13!

10K

46

(1.9

)10

6

nZ

2p-

Dio

xan

e54

7m

bZ

23!

10K

46

(1.9

)10

6

nZ

3p-

Dio

xan

e55

6m

bZ

38!

10K

46

(1.9

)10

6

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:17—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-57

Article in Press

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

Page 58: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

S

2N

CN

CN

CN

p-d

ioxa

ne

653

mb

Z74

!10

K4

6(1

.9)2

03

XY

n

S

nZ

1X

ZN

O2

YZ

OC

H3

CC

l 434

95.

57.

6(1

.06)

27

1

nZ

2X

ZN

O2

YZ

HC

6H

11C

H3

378

5.0

19(1

.06)

27

1

nZ

2X

ZN

O2

YZ

OC

H3

C6H

11C

H3

411

6.0

41(1

.06)

27

1

nZ

2X

ZN

O2

YZ

OC

H3

CC

l 441

86.

046

(1.0

6)2

71

nZ

2X

ZN

O2

YZ

SCH

3C

6H

11C

H3

394

5.0

49(1

.06)

27

1

nZ

2X

ZN

O2

YZ

N(C

H3) 2

C6H

11C

H3

472

8.0

319

(1.0

6)2

71

nZ

3X

ZN

O2

YZ

OC

H3

CC

l 445

26.

016

2(1

.06)

27

1

Azo

led

eriv

ativ

es

Z

NN

YX

XZ

NO

2Y

ZC

H3O

C6H

4Z

ZH

p-D

ioxa

ne

354

6.6

31(1

.06)

16

6

XZ

NO

2Y

ZC

6H

5C

H–C

H–

ZZ

Hp-

Dio

xan

e34

66.

132

(1.0

6)1

66

XZ

NO

2Y

Zp-

CH

3O

C6H

4C

H–

CH

–Z

ZH

p-D

ioxa

ne

368

5.7

40(1

.06)

16

6

XZ

SO2C

H3

YZ

p-C

H3O

C6H

4C

H–

CH

–Z

ZH

p-D

ioxa

ne

330

5.6

16(1

.06)

16

6

XZ

NO

2Y

Zp-

CH

3SC

6H

4C

H–

CH

–Z

ZN

O2

p-D

ioxa

ne

354

4.1

42(1

.06)

16

6

XZ

CH

3O

YZ

p-O

2N

C6H

4C

H–

H–

ZZ

Hp-

Dio

xan

e37

07.

048

(1.0

6)1

66

15018—Chapter7—26/8/2006—22:17—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-58 Handbook of Photonics

Article in Press

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

Page 59: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

Z

XN

N

Y

XZ

NO

2Y

Zp-

CH

3O

C6H

4C

bC

–Z

ZH

p-d

ioxa

ne

340

5.6

20(1

.06)

16

6

XZ

NO

2Y

Zp-

CH

3O

C6H

4C

H–

CH

–Z

ZH

p-D

ioxa

ne

358

5.1

63(1

.06)

16

6

Z

XN

N

Y

XZ

NO

2Y

ZC

H3O

C6H

4Z

ZH

p-D

ioxa

ne

306

6.3

13(1

.06)

16

6

XZ

NO

2Y

ZC

6H

5C

HZ

CH

–Z

ZH

p-D

ioxa

ne

298

4.6

7(1

.06)

16

6

XZ

NO

2Y

Zp-

CH

3O

C6H

4C

HZ

CH

–Z

ZH

p-D

ioxa

ne

302

5.5

14(1

.06)

16

6

XZ

NO

2Y

Zp-

CH

3SC

6H

4C

HZ

CH

–Z

ZN

O2

p-D

ioxa

ne

312

3.3

12(1

.06)

16

6

XZN

YY

XZ

NO

2Y

Zp-

(CH

2) 6

NZ

ZN

Ch

loro

form

476

8.3

79(1

.9)1

76

XZ

NO

2Y

Zp-

CH

3O

C6H

4C

bC

–Z

ZN

p-D

ioxa

ne

344

8.0

53(1

.06)

17

6

XZ

NO

2Y

Zp-

(CH

2) 5

NZ

ZN

Ch

loro

form

438

7.2

46(1

.9)1

76

XZ

O2N

C6H

4C

b

C-

YZ

p-C

H3O

C6H

4Z

ZN

p-D

ioxa

ne

400

8.1

69(1

.06)

17

6

XZ

NO

2Y

Zp-

CH

3O

C6H

4S

ZZ

Np-

Dio

xan

e39

86.

656

(1.0

6)1

76

XZ

NO

2Y

Zp-

CH

3O

C6H

4Z

ZN

p-D

ioxa

ne

410

7.0

52(1

.06)

17

6

XZ

NO

2Y

Zp-

C4H

9C

H(C

2H

5)C

H2O

C6H

4Z

ZN

Ch

loro

form

416

6.3

25(1

.9)1

76

XZ

NO

2Y

Zp-

CH

3O

C6H

4Z

ZN

Ch

loro

form

412

6.4

20(1

.9)1

76

XZ

SO2C

4F

9Y

Zp-

C4H

9C

H(C

2H

5)C

H2O

C6H

4Z

ZN

Ch

loro

form

384

6.5

14(1

.9)1

76

XZ

SO2C

6H

5Y

Zp-

CH

3O

C6H

4Z

ZN

p-D

ioxa

ne

362

8.0

10(1

.06)

17

6

XZ

O2N

C6H

4C

b-

YZ

p-C

H3O

C6H

4Z

ZO

p-D

ioxa

ne

378

7.1

64(1

.06)

17

6

XZ

SO2C

6H

4C

F3

YZ

p-C

H3O

C6H

4Z

ZO

Ch

loro

form

370

8.0

32(1

.06)

17

6

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:17—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-59

Article in Press

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

Page 60: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

XZ

NO

2Y

Zp-

CH

3O

C6H

4Z

ZO

p-D

ioxa

ne

390

6.3

47(1

.06)

17

6

XZ

SO2C

4F

9Y

Zp-

CH

3O

C6H

4Z

ZO

p-D

ioxa

ne

378

7.9

31(1

.06)

17

6

XZ

SO2C

6H

5Y

Zp-

CH

3O

C6H

4Z

ZO

p-D

ioxa

ne

358

7.0

17(1

.06)

17

6

XZ

SO2C

H3

YZ

p-C

H3O

C6H

4Z

ZO

p-D

ioxa

ne

352

7.0

15(1

.06)

17

6

XZ

C6F

16

YZ

p-C

H3O

C6H

4Z

ZO

p-D

ioxa

ne

344

5.7

13(1

.06)

17

6

XZ

CF

3Y

Zp-

CH

3O

C6H

4Z

ZO

p-D

ioxa

ne

338

5.3

9(1

.06)

17

6

XZ

NO

2Y

Zp-

CH

3O

C6H

4Z

ZS

400

8.1

21(b

0)1

76

NN

NC

OH

Cl

N

S

Ch

loro

form

564

6.2

71(1

.9)4

3

NN C

O2C

H3

NC

OH

Cl

N

S

N

Ch

loro

form

578

6.1

83(1

.9)4

3

CO

2CH

3

NN

N

CO

H

Cl

N

S

N

Ch

loro

form

596

6.5

75(1

.9)4

3

NN

NN

O2

N

S

CH

2C

l 257

98.

526

0(1

.58)

54

15018—Chapter7—26/8/2006—22:18—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-60 Handbook of Photonics

Article in Press

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

Page 61: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

NO

N

NO

2N

N

SC

hlo

rofo

rm58

29.

052

(b0)1

77

NN

NO

2

H5C

6

H5C

6N

N

S

Ch

loro

form

582

6.9

68(b

0)1

77

NN

Cl

NN

SC

N CN

CH

2C

l 264

510

530

(1.5

8)5

4

NN

Cl

N-C

O2C

H3

NN

SC

N CN

Ch

loro

form

634

6.9

100

(1.9

)43

NN

Cl

N-C

O2C

H3

OC

H3

NN

SC

N CN

Ch

loro

form

670

6.9

130

(1.9

)43

Azu

len

ed

eriv

ativ

es

Ch

loro

form

1.2

!1

(1.9

)43

CO

H

Ch

loro

form

2.5

!1

(1.9

)43

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:18—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-61

Article in Press

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

Page 62: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

NO

2

Ch

loro

form

4!

1(1

.9)4

3

Pen

tafu

lven

ed

eriv

ativ

es

Ch

loro

form

17

(1.9

)43

Br

Ch

loro

form

15

(1.9

)43

CH

3O

Ch

loro

form

210

(1.9

)43

N

Ch

loro

form

330

(1.9

)43

DM

SO42

0m

bZ

44!

10K

47

(1.0

6)1

02

O

DM

SO37

0m

bZ

70!

10K

48

(1.0

6)1

02

15018—Chapter7—26/8/2006—22:18—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-62 Handbook of Photonics

Article in Press

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

Page 63: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

N

Ch

loro

form

3.6

74(1

.9)4

3

DM

SO45

0m

bZ

20!

10K

46

(1.0

6)1

02

N

n

Ch

loro

form

mb

Z73

!10

K4

7(1

.9)4

3

OO

Ch

loro

form

4.0

0.9

(1.9

)43

O O

N N

SC

hlo

rofo

rm3.

54.

6(1

.9)4

3

N+

C18

H37

O–

Met

han

ol

444

26K

100

(1.3

)14

4

Pyr

idin

e60

617

K21

0(1

.3)1

44

DM

SO57

08

1000

(1.9

)57

O

NN

Ch

loro

form

590

4.0

190

(1.9

)15

3

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:18—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-63

Article in Press

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

Page 64: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

O

NN

Ch

loro

form

580

4.0

79(1

.9)1

53

O

NN

Ch

loro

form

610

4.3

91(1

.9)1

53

O

NX X

ZH

Ch

loro

form

428

1.5

5.9

(1.9

)15

4

XZ

Br

Ch

loro

form

432

1.3

13(1

.9)1

54

XZ

OC

H3

Ch

loro

form

469

2.4

17(1

.9)1

54

XZ

OC

H3;

orth

o:O

CH

3C

hlo

rofo

rm49

83.

419

(1.9

)15

4

XZ

SCH

3C

hlo

rofo

rm47

62.

317

(1.9

)15

4

XZ

NH

2C

hlo

rofo

rm—

3.3

38(1

.9)1

54

XZ

N(C

H3) 2

Ch

loro

form

558

3.9

78(1

.9)1

54

XZ

CH

–C

H–

C6H

4–

OC

H3

Ch

loro

form

497

2.6

48(1

.9)1

54

XZ

CH

–C

H–

C6H

4–

N(C

H3) 2

Ch

loro

form

512

3.7

116

(1.9

)15

4

NN

O

SS

DM

SO47

0m

bZ

74!

10K

47

(1.0

6)1

04

N

2

ON

O

SS

DM

SO55

0R

e(m

b)Z

48!

10K

45

(1.0

6)1

04

15018—Chapter7—26/8/2006—22:19—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-64 Handbook of Photonics

Article in Press

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

Page 65: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

Im(m

b)Z

61!

10K

45

(1.0

6)1

04

N

O

N

X

Y

DM

SO55

0R

e(m

b)Z

48!

10K

45

(1.0

6)1

04

Im(m

b)Z

61!

10K

45

(1.0

6)1

04

XZ

NY

ZO

DM

SO39

0m

bZ

12!

10K

47

(1.0

6)1

03

XZ

SY

ZS

DM

SO48

0R

e(m

b)Z

11!

10K

46

(1.0

6)1

03

Im(m

b)Z

31!

10K

47

(1.0

6)1

03

N

2

OO

ON

N

S

DM

SO53

0R

e(m

b)Z

21!

10K

45

(1.0

6)1

04

Im(m

b)Z

30!

10K

45

(1.0

6)1

04

O OnN

NXN

Sn

Z2

XZ

C(C

H3) 2

DM

SOR

e(m

b)Z

17!

10K

45

(1.0

6)1

04

Im(m

b)Z

24!

10K

45

(1.0

6)1

04

nZ

3X

ZS

DM

SOR

e(m

b)Z

13!

10K

45

(1.0

6)1

04

Im(m

b)Z

23!

10K

45

(1.0

6)1

04

nZ

3X

ZC

–C

H2

DM

SOR

e(m

b)Z

20!

10K

45

(1.0

6)1

04

Im(m

b)Z

27!

10K

45

(1.0

6)1

04

O OnN

NN

X

nZ

3X

ZO

Ch

loro

form

6.9

360

(1.9

)43

nZ

1X

ZS

Ch

loro

form

7.4

K46

(1.9

)43

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:19—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-65

Article in Press

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

Page 66: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

nZ

2X

ZS

Ch

loro

form

8.9

52(1

.9)4

3

nZ

3X

ZS

Ch

loro

form

9.1

300

(1.9

)43

O O

N

nNN

SD

MSO

Re(

mb

)Z13

!10

K4

5(1

.06)

10

4

Im(m

b)Z

15!

10K

45

(1.0

6)1

04

nZ

1D

MSO

Re(

mb

)Z27

!10

K4

5(1

.06)

10

4

nZ

3Im

(mb

)Z49

!10

K4

5(1

.06)

10

4

O O

N

NN

X

XZ

OC

hlo

rofo

rm51

0m

bZ

K37

!10

K4

7(1

.9)6

0

XZ

SC

hlo

rofo

rm52

6m

bZ

K60

!10

K4

7(1

.9)6

0

n

NY Y

O

ON

N

Z

ZX

nZ

0X

ZO

YZ

CH

3Z

ZH

DM

SO47

0m

bZ

63!

10K

47

(1.0

6)1

03

nZ

0X

ZO

YZ

C2H

5Z

ZC

H3

Ch

loro

form

470

6.2

20(b

0)1

77

nZ

0X

ZO

YZ

4-

CH

3C

6H

4

ZZ

CH

3C

hlo

rofo

rm48

64.

540

(b0)1

77

nZ

0X

ZO

YZ

CH

3Z

ZC

2H

5C

hlo

rofo

rm46

45.

147

(1.9

)43

nZ

1X

ZO

YZ

CH

3Z

ZC

H3

DM

SO54

0R

e(m

b)Z

13!

10K

46

(1.0

6)1

03

Im(m

b)Z

52!

10K

46

(1.0

6)1

03

15018—Chapter7—26/8/2006—22:19—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-66 Handbook of Photonics

Article in Press

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

Page 67: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

nZ

1X

ZO

YZ

C2H

5Z

ZC

6H

5C

hlo

rofo

rm55

87.

191

(b0)1

77

nZ

1X

ZO

YZ

4-

CH

3C

6H

4

ZZ

C6H

5C

hlo

rofo

rm56

04.

097

(b0)1

77

nZ

1X

ZO

YZ

CH

3Z

ZC

2H

5C

hlo

rofo

rm53

25.

117

3(1

.9)4

3

nZ

2X

ZO

YZ

CH

3Z

ZC

2H

5C

hlo

rofo

rm55

45.

833

8(1

.9)4

3

nZ

3X

ZO

YZ

CH

3Z

ZC

2H

5C

hlo

rofo

rm57

25.

366

0(1

.9)4

3

nZ

0X

ZS

YZ

CH

3Z

ZH

DM

SO50

0R

e(m

b)Z

12!

10K

46

(1.0

6)1

03

Im(m

b)Z

60!

10K

47

(1.0

6)1

03

nZ

0X

ZS

YZ

CH

3Z

ZC

2H

5C

hlo

rofo

rm49

46.

420

(b0)1

77

Ch

loro

form

484

5.4

68(1

.9)1

55

nZ

0X

ZS

YZ

C2H

5Z

ZC

2H

5C

hlo

rofo

rm50

07.

120

(b0)1

77

nZ

0X

ZS

YZ

4-

CH

3C

6H

4

ZZ

C2H

5C

hlo

rofo

rm51

85.

245

(b0)1

77

nZ

0X

ZS

YZ

C2H

5Z

ZC

6H

5C

hlo

rofo

rm50

27.

625

(b0)1

77

nZ

0X

ZS

YZ

4-

CH

3C

6H

4

ZZ

C6H

5C

hlo

rofo

rm52

05.

757

(b0)1

77

nZ

0X

ZS

YZ

CH

3Z

ZC

6H

5C

hlo

rofo

rm5.

558

(1.9

)43

nZ

0X

ZS

YZ

CH

3Z

Z4-

NO

2C

6H

4C

hlo

rofo

rm9.

080

(1.9

)43

nZ

1X

ZS

YZ

C2H

5Z

ZC

6H

5C

hlo

rofo

rm58

88.

394

(b0)1

77

nZ

1X

ZS

YZ

4-

CH

3C

6H

4

ZZ

C6H

5C

hlo

rofo

rm59

46.

511

9(b

0)1

77

nZ

1X

ZS

YZ

CH

3Z

ZC

2H

5C

hlo

rofo

rm57

25.

725

6(1

.9)1

55

nZ

2X

ZS

YZ

CH

3Z

ZC

2H

5C

hlo

rofo

rm60

46.

263

6(1

.9)1

55

nZ

3X

ZS

YZ

CH

3Z

ZC

2H

5C

hlo

rofo

rm62

46.

614

90(1

.9)1

55

Ch

loro

form

4.2

299

(1.9

)43

3

OO

ON

N

S

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:19—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-67

Article in Press

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

Page 68: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

n

NO

ON

N

S

nZ

2C

hlo

rofo

rm6.

863

0(1

.9)4

3

nZ

3C

hlo

rofo

rm7.

277

1(1

.9)4

3

nZ

4C

hlo

rofo

rm7.

589

3(1

.9)4

3

Ch

loro

form

mb

Z71

!10

K4

6(1

.9)4

3

N

O

ON

N

S

O N

N

OnN

X

nZ

0X

ZO

Ch

loro

form

480

5.7

64(1

.9)4

3

nZ

1X

ZO

Ch

loro

form

574

5.9

213

(1.9

)43

nZ

2X

ZO

Ch

loro

form

616

6.5

504

(1.9

)43

nZ

3X

ZO

Ch

loro

form

7.1

935

(1.9

)43

nZ

0X

ZS

Ch

loro

form

522

7.0

87(1

.9)1

55

nZ

1X

ZS

Ch

loro

form

614

6.6

355

(1.9

)15

5

15018—Chapter7—26/8/2006—22:20—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-68 Handbook of Photonics

Article in Press

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

Page 69: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

nZ

2X

ZS

Ch

loro

form

680

6.3

1141

(1.9

)15

5

nZ

3X

ZS

Ch

loro

form

686

8.8

2169

(1.9

)15

5

NN

N

SO

O

Ch

loro

form

mb

Z19

!10

K4

5(1

.9)4

3

NN

N

SO

O

Ch

loro

form

mb

Z12

!10

K4

5(1

.9)4

3

NN

N

SO

O

Ch

loro

form

680

mb

Z35

!10

K4

6(1

.9)1

55

N

N

SO

O

SN

Ch

loro

form

7.9

11(1

.9)4

3

N

N

SO

O

SN

Ch

loro

form

7.5

13(1

.9)4

3

N

N

SO

O

SN

O

Ch

loro

form

5.5

14(1

.9)4

3

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:20—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-69

Article in Press

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

Page 70: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

N

N

SO

O

XS

XZ

OC

H3

Ch

loro

form

2.7

171

(1.9

)43

XZ

N(C

H3) 2

Ch

loro

form

5.6

339

(1.9

)43

NX

XN

SO

On

SS

N

nZ

0X

ZC

2H

5C

hlo

rofo

rmm

bZ

37!

10K

46

(1.9

)43

nZ

1X

ZC

2H

5C

hlo

rofo

rmm

bZ

71!

10K

46

(1.9

)43

nZ

1X

ZC

6H

5C

hlo

rofo

rmm

bZ

86!

10K

46

(1.9

)74

O

O3

NN

Ch

loro

form

1128

0(1

.9)4

3

OOn

N

N

15018—Chapter7—26/8/2006—22:20—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-70 Handbook of Photonics

Article in Press

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

Page 71: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

nZ

0C

hlo

rofo

rm47

88.

337

(1.9

)15

5

nZ

1C

hlo

rofo

rm53

08.

614

0(1

.9)1

55

nZ

2C

hlo

rofo

rm56

28.

736

2(1

.9)1

55

nZ

3C

hlo

rofo

rm58

28.

991

8(1

.9)1

55

O

ONN

Ch

loro

form

mb

Z67

!10

K4

5(1

.9)4

3

N

n OON

nZ

0C

hlo

rofo

rm50

49.

551

(1.9

)15

5

nZ

1C

hlo

rofo

rm58

69.

118

0(1

.9)1

55

nZ

2C

hlo

rofo

rm62

09.

065

6(1

.9)1

55

nZ

3C

hlo

rofo

rm64

09.

899

5(1

.9)1

55

O

NN

O

Ch

loro

form

647

mb

Z29

!10

K4

5(1

.9)1

55

OO

N O

SC

hlo

rofo

rm6.

546

(1.9

)43

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:20—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-71

Article in Press

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

Page 72: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

NS

SN

O

On

nZ

0C

hlo

rofo

rmm

bZ

25!

10K

46

(1.9

)72

nZ

1C

hlo

rofo

rmm

bZ

41!

10K

46

(1.9

)72

N

X X

O

OnC

hlo

rofo

rm4.

450

0(1

.9)4

3

N

X X

O

On

nZ

0X

ZC

2H

5C

hlo

rofo

rm49

03.

738

(b0)1

77

nZ

0X

Z4-

CH

3C

5H

4

Ch

loro

form

498

2.0

64(b

0)1

77

nZ

0X

ZC

H3

Ch

loro

form

3.7

58(1

.9)4

3

nZ

1X

ZC

2H

5C

hlo

rofo

rm55

24.

492

(b0)1

77

nZ

1X

Z4-

CH

3C

5H

4

Ch

loro

form

544

2.0

93(b

0)1

77

nZ

1X

ZC

H3

Ch

loro

form

3.6

191

(1.9

)43

nZ

2X

ZC

H3

Ch

loro

form

4.9

266

(1.9

)43

15018—Chapter7—26/8/2006—22:21—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-72 Handbook of Photonics

Article in Press

3622

3623

3624

3625

3626

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

3672

Page 73: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

nZ

3X

ZC

H3

Ch

loro

form

5.3

347

(1.9

)43

O

On

N

nZ

0C

hlo

rofo

rm4.

010

4(1

.9)4

3

nZ

1C

hlo

rofo

rm4.

521

5(1

.9)4

3

N

N

NN

S

N

O

CI

O

CO

2CH

3

Ch

loro

form

670

6.1

84(1

.9)4

3

N

N

NS

N

O

CI

O

CO

2CH

3

OC

H3

HN

Ch

loro

form

680

6.6

118

(1.9

)43

N

SO

CN

CN

O

DM

SO62

06.

816

3(1

.58)

34

K11

8(0

.95)

34

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:21—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-73

Article in Press

3673

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

Page 74: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

CN

CN

N

n O

nZ

0C

hlo

rofo

rm5.

098

(1.9

)43

nZ

1C

hlo

rofo

rm6.

026

4(1

.9)4

3

nZ

2C

hlo

rofo

rm6.

946

6(1

.9)4

3

nZ

3C

hlo

rofo

rm6.

575

0(1

.9)4

3

N

CN

CN

On

nZ

0C

hlo

rofo

rm6.

312

4(1

.9)4

3

nZ

1C

hlo

rofo

rm6.

126

8(1

.9)4

3

nZ

2C

hlo

rofo

rm6.

853

4(1

.9)4

3

NN

CN

CN

O

Ch

loro

form

5.0

98(1

.9)4

3

NN

N CO

2CH

3

O CN

CN

Ch

loro

form

5.6

64(1

.9)4

3

15018—Chapter7—26/8/2006—22:21—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-74 Handbook of Photonics

Article in Press

3724

3725

3726

3727

3728

3729

3730

3731

3732

3733

3734

3735

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

3770

3771

3772

3773

3774

Page 75: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

N

CN

CN

NC

CN

Ch

loro

form

6.7

97(1

.9)4

3

CN

CN

NC

N

CN

Ch

loro

form

8.0

89(1

.9)4

3

SX

CN

CN

NC

CN

XZ

OC

H3

Ch

loro

form

6.0

165

(1.9

)43

XZ

N(C

H3) 2

Ch

loro

form

6.0

1024

(1.9

)43

NN

N

OC

N

O

Ch

loro

form

7.8

169

(1.9

)43

NN

N CO

2CH

3

N

CN

O

O

Ch

loro

form

7.7

83(1

.9)4

3

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:21—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-75

Article in Press

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

Page 76: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

1(C

on

tin

ued

)

Stru

ctu

reSo

lven

tl

max

(nm

)m

(10K

18

esu

)b

m(l

)ref.

(10K

30

esu

)

CN

NN

N

N

SN

N

O

O

CI

NC

O2C

H3

Ch

loro

form

696

8.1

432

(1.9

)43

NO

2N

NN

NX X

O

XZ

C2H

5;

XZ

HO

(CH

2) 6

Ch

loro

form

548

9.5

60(b

0)1

77

XZ

4-C

H3C

5H

4C

hlo

rofo

rm55

07.

272

(b0)1

77

NN

N

N

SN O

CI

CI

NC

O2C

H3

Ch

loro

form

5.5

164

(1.9

)43

N

CN

CN

Ch

loro

form

8.7

129

(1.9

)43

CN

CN

N

Ch

loro

form

7.0

87(1

.9)4

3

15018—Chapter7—26/8/2006—22:22—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-76 Handbook of Photonics

Article in Press

3826

3827

3828

3829

3830

3831

3832

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

3875

3876

Page 77: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

N

CN

CN

Ch

loro

form

7.5

93(1

.9)4

3

CN

CN

NO

Ch

loro

form

8.6

82(1

.9)4

3

N

O

N

NC

CN

Ch

loro

form

7.9

102

(1.9

)43

NC

CN

O

NN

Ch

loro

form

8.5

95(1

.9)4

3

15018—Chapter7—26/8/2006—22:22—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-77

Article in Press

3877

3878

3879

3880

3881

3882

3883

3884

3885

3886

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

3902

3903

3904

3905

3906

3907

3908

3909

3910

3911

3912

3913

3914

3915

3916

3917

3918

3919

3920

3921

3922

3923

3924

3925

3926

3927

Page 78: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

2Si

ngl

eC

ryst

alR

esu

lts

on

Org

anic

No

nli

nea

rM

ater

ials

:ni,

refr

acti

vein

dex

at63

3n

m;l

NC

(q),

q-n

on

crit

ical

ph

ase-

mat

chin

gw

avel

engt

h;l

NC

(l),

l-n

on

crit

ical

ph

ase-

mat

chin

gw

avel

engt

h;

and

at1.

064

mm

:D

T(t

),o

pti

cal

dam

age

thre

sho

ld(p

uls

ed

ura

tio

n);

def

f,ef

fect

ive

no

nli

nea

rity

(ph

ase-

mat

chin

gty

pe)

;D

ql,

angu

lar

acce

pta

nce

;D

Tl,

tem

per

atu

reac

cep

tan

ce;

dq

pm

/dT

,te

mp

erat

ure

tun

ing

of

ph

ase-

mat

chin

gan

gle;

and

r,w

alk-

off

angl

e(p

has

e-m

atch

ing

typ

e)

Ab

stra

ct

Stru

ctu

rean

dN

om

encl

atu

re(a

cro

nym

)P

oin

t

Gro

up

SHG

dij(l

)&

EO

r ij(

l)

(pm

/v)

(mm

)

Cu

t-O

ffl

(nm

)R

ef.

Pro

per

ties

H2N

H2N

O

Ure

a

md

36(1

.06)

z1.

3

r 41(0

.63)

z1.

9

r 63(0

.63)

z0.

83

200

&18

0021

2

80 18,2

1,

172

DT

(10

ns)

Z5

GW

/cm

2.

noZ

1.48

5,n

eZ1.

567.

O

HO

OH

O

S

p,p0 -D

ihyd

roxy

dip

hen

ylsu

lfo

ne

(DH

DP

S)

mm

2d

33(1

.06)

z7

d3

2(1

.06)

z0.

4

D1

1(1

.06)

z3

300

&15

0027

5R

elat

ivel

yh

igh

har

dn

ess,

no

nh

ygro

sco

pic

,an

d

ph

oto

chem

ical

lyst

able

.

Cry

stal

scl

eave

atin

pu

tp

ow

erO

400

MW

/cm

2,

nxZ

2.00

9,n

yZ2.

000,

nzZ

1.92

1.l

NC

(q)Z

865

nm

.

OC

H3

CH

OH

O

3-M

eth

oxy

-4-h

ydro

xy-b

enza

ldeh

yde

(MH

BA

)

2d

13(1

.06)

z13

d1

1(1

.06)

z9.

8

d1

2(1

.06)

z3.

9

d1

4(1

.06)

z3.

2

370

248

286

DT

(10

ns)

Z2

GW

/cm

2.

nxZ

1.54

5,n

yZ1.

685,

nzZ

1.78

0.

Dq

lZ0.

9m

rad

-cm

.

rZ

68

O

O ON

8-(4

0 -Ace

tylp

hen

yl)-

1,4-

dio

xa-8

-

azas

pir

o[4

,5]d

ecan

e(A

PD

A)

mm

2d

33(1

.06)

z50

d3

2(1

.06)

z7

384

217

nxZ

1.56

,n

yZ1.

66,

nzZ

1.68

.

def

f(1.

06)z

14.9

pm

/V.

NO

2

HH

O

ONN

5-N

itro

ura

cil

(5N

U)

222

d1

4(1

.06)

z8.

741

0&

1550

201

Rel

ativ

ely

tran

spar

ent

atn

ear

IR,

DT

(10

ns)

Z3

GW

/cm

2.

nxZ

1.56

9,n

yZ1.

901,

nzZ

1.70

7.

Dq

lZ8

mra

d-c

m,

rZ

78,

lN

C(l

)Z14

40n

m.

15018—Chapter7—26/8/2006—22:22—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-78 Handbook of Photonics

Article in Press

3928

3929

3930

3931

3932

3933

3934

3935

3936

3937

3938

3939

3940

3941

3942

3943

3944

3945

3946

3947

3948

3949

3950

3951

3952

3953

3954

3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

3966

3967

3968

3969

3970

3971

3972

3973

3974

3975

3976

3977

3978

Page 79: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

H2N

OH

m-A

min

op

hen

ol

(mA

P)

mm

2d

33(1

.06)

z3.

3

d3

2(1

.06)

z2.

4

d3

1(1

.06)

z0.

7

320

&17

0036

Po

or

mec

han

ical

stre

ngt

h,

nxZ

1.65

9,n

yZ1.

765,

nzZ

1.57

8.

CI

NO

2

m-C

hlo

ron

itro

ben

zen

e(m

CN

B)

mm

2d

33(1

.06)

z7.

8

d3

2(1

.06)

z4

d3

1(1

.06)

z4.

5

400

&20

0036

Cle

aves

easi

ly,

no

tp

has

e-m

atch

able

for

SHG

at1.

064

mm

,n

xZ

1.67

6,n

yZ1.

684,

nzZ

1.64

9.

Br

NO

2

m-B

rom

on

itro

ben

zen

e(m

BN

B)

mm

2d

33(1

.06)

z8

d3

2(1

.06)

z4.

5

d3

1(1

.06)

z4

420

&21

0036

lN

C(q

)at

1.06

4m

mfo

rso

lid

solu

tio

no

f

mC

0.9

5B

r 0.0

5N

B,

nxZ

1.64

9,n

yZ1.

729,

nzZ

1.67

8.

–O Na+

NO

2

4-N

itro

ph

eno

lso

diu

md

ihyd

rate

(NP

Na)

mm

2T

ype

I

def

f(1.

06)z

8

515

167

Vic

kers

har

dn

ess:

34,

goo

dth

erm

alco

nd

uct

ivit

y.

H2N

NO

2

m-N

itro

anil

ine

(mN

A)

mm

2d

33(1

.06)

z20

d3

2(1

.06)

z1.

5

d3

1(1

.06)

z20

r 33(0

.63)

z17

r 23(0

.63)

z0.

1

r 13(0

.63)

z7.

5

500

&19

0025

6

36 240

Cle

aves

easi

ly,

mel

tgr

ow

nin

toch

ann

elw

aveg

uid

e

(un

favo

ura

ble

ori

enta

tio

nfo

rSH

G),

nxZ

1.75

2,n

yZ1.

715,

nzZ

1.66

5.

H2N

NO

2

2-M

eth

yl-4

-nit

roan

ilin

e(M

NA

)

md

11(1

.06)

z16

7

d1

2(1

.06)

z25

r 11(0

.63)

z67

500

&19

0014

3

170

181

150

Mel

tgr

ow

nin

toch

ann

elw

aveg

uid

e(o

rien

tati

on

con

tro

lled

by

elec

tric

or

tem

per

atu

regr

adie

nts

).

DT

(20

ns)

Z0.

2G

W/c

m2.

nxZ

2.00

1,n

yZ1.

658,

nzZ

1.43

5,

nea

ro

pti

mu

mm

ole

cula

ral

ign

men

tfo

rE

O.

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:23—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-79

Article in Press

3979

3980

3981

3982

3983

3984

3985

3986

3987

3988

3989

3990

3991

3992

3993

3994

3995

3996

3997

3998

3999

4000

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

4029

Page 80: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

2(C

on

tin

ued

)

Ab

stra

ct

Stru

ctu

rean

dN

om

encl

atu

re(a

cro

nym

)P

oin

t

Gro

up

SHG

dij(l

)&

EO

r ij(

l)

(pm

/v)

(mm

)

Cu

t-O

ffl

(nm

)R

ef.

Pro

per

ties

N

HN

O

NO

2

4-(N

,N-d

imet

hyl

amin

o)-

3-ac

etam

ido

nit

rob

enze

ne

(DA

N)

2d

21(1

.06)

z1.

5

d2

2(1

.06)

z5.

2

d2

3(1

.06)

z50

d2

5(1

.06)

z1.

5

r 11(0

.63)

z13

485

&22

7012

1

122

123

Fib

erw

aveg

uid

eal

low

sfu

llu

seo

fn

on

zero

dij,

DT

(15

ns)

Z80

MW

/cm

2

def

fz35

.5(I

)&

9(I

I)p

m/v

.

nxZ

1.53

9,n

yZ1.

682,

nzZ

1.94

9.

Dq

lz1.

5m

rad

-cm

.

OH

NO

2N

N-(

4-n

itro

ph

enyl

)-(s

)-p

roli

no

l(N

PP

)

2d

22(1

.06)

z28

d2

1(1

.06)

z85

500

&20

0028

9

138

Nea

ro

pti

mu

mm

ole

cula

ral

ign

men

tfo

rla

rges

td

21

.

nxZ

2.06

6,n

yZ1.

876,

nzZ

1.47

8.

lN

C(q

)Z1.

15m

mu

sin

gd

21

lN

C(l

)Z1.

5m

m.

NO

2H

N

2-M

eth

yl-4

-nit

ro-N

-met

hyl

anil

ine

(MN

MA

)

mm

2d

33(1

.06)

z2.

6

d3

1(1

.06)

z13

d1

5(1

.06)

z12

r 13(0

.63)

z8

r 33(0

.63)

z7.

5

510

245

nxZ

2.14

8,n

xZ

1.52

0.

NC

NO

2N

N-(

4-n

itro

ph

enyl

)-N

-am

ino

acet

on

itri

le(N

PAN

)

mm

2d

33(1

.06)

z27

d3

2(1

.06)

z57

d3

3(1

.34)

z24

d3

2(1

.34)

z48

500

171

15

Nea

ro

pti

mu

mm

ole

cula

ral

ign

men

tfo

rla

rges

td

32.

Dq

lz2

mra

d-c

m.

DT

1z58

C-c

m

OH

NO

2N

L-N

-(5-

nit

ro-2

-pyr

idyl

)leu

cin

ol(

NP

LO

)

2T

ype

I:d

eff(

1.06

)z37

Typ

eII

:d

eff(

1.06

)z3

480

263

Vic

kers

har

dn

ess:

34,

no

nh

ygro

sco

pic

,D

T(8

ns)

Z6

GW

/cm

2.

nxZ

1.45

7,n

yZ1.

631,

nzZ

1.93

3.

rZ

0.22

(I)

&0.

24(I

)m

rad

.

15018—Chapter7—26/8/2006—22:23—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-80 Handbook of Photonics

Article in Press

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

4059

4060

4061

4062

4063

4064

4065

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

Page 81: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

NN

O2

3,5-

Dim

eth

yl-1

-(4-

nit

rop

hen

yl)

pyr

azo

le(D

MN

P)

mm

2d

33(0

.84)

z29

d3

2(0

.84)

z90

450

83 100

(100

)o

rien

ted

core

fib

ers

allo

wfu

llu

seo

fd

32,

lN

C(q

)Z94

4n

mu

sin

gd

32

.

NO

2

NO

2

m-D

init

rob

enze

ne

(mD

B)

mm

2d

33(1

.06)

z0.

7

d3

2(1

.06)

z2.

7

d3

1(1

.06)

z1.

8

400

&22

0020

nxZ

1.73

8,n

yZ1.

680,

nzZ

1.48

3.

NO

2

NO

2

HN

O

CH

3O

Met

hyl

-(2,

4-d

init

rop

hen

yl)-

amin

op

rop

ano

ate

(MA

P)

2d

22(1

.06)

z18

d2

1(1

.06)

z17

d2

3(1

.06)

z3.

7

500

&20

0019

2D

T(1

0n

s)Z

3G

W/c

m2.

def

fz3.

8(I

)&

8.8

(II)

pm

/v.

nxZ

1.53

1,n

yZ1.

653,

nzZ

1.93

5.

Dq

lz1.

5m

rad

-cm

.

rZ

11.58

(I)

&2.

48(I

)

NO

2N

O 3-M

eth

yl-4

-nit

rop

yrid

ine-

N-o

xid

e(P

OM

)

222

d1

4(1

.06)

z10

r 52(0

.63)

z5.

2

450

&21

0028

8

230

DT

(20

ps)

Z2

GW

/cm

2.

def

fz7.

9(I

)&

4.0

(II)

pm

/v.

nxZ

1.66

3,n

yZ1.

829,

nzZ

1.62

5.

rZ

6.38

(I)

1.48

(I).

NO

2H

2N

HP

O4H

2–

N+

2-A

min

o-5

-nit

rop

yrid

iniu

m-d

ihyd

roge

n

ph

osp

hat

e(2

A5N

PD

P)

mm

2d

33(1

.06)

z12

d1

5(1

.06)

z7

d2

4(1

.06)

z1

420

&20

0013

5n

xZ

1.75

2,n

yZ1.

715,

nzZ

1.66

5.

lN

C(q

)Z10

84&

1129

nm

.

lN

C(l

)Z13

40n

m.

No

tp

has

e-m

atch

able

for

typ

e-II

SHG

at1.

064

mm

.

Typ

e-I

def

fz2

pm

/V..

dq

pm

/dT

Z2.

40 /8

Cat

1.3

mm

.

HN

N

NO

2

(K)2

-(a

-Met

hyl

ben

zyla

min

o)-

5-n

itro

pyr

idin

e

(MB

AN

P)

2d

22(1

.06)

z60

58

d2

2(1

.06)

z35

57

430

&15

0012 11 13

4

DT

(425

ns)

Z1

GW

/cm

2.

nyZ

1.81

3,n

cZ1.

676.

def

fz1.

2!L

iIO

3z

6p

m/V

.

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:23—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-81

Article in Press

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

4117

4118

4119

4120

4121

4122

4123

4124

4125

4126

4127

4128

4129

4130

4131

Page 82: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

2(C

on

tin

ued

)

Ab

stra

ct

Stru

ctu

rean

dN

om

encl

atu

re(a

cro

nym

)P

oin

t

Gro

up

SHG

dij(l

)&

EO

r ij(

l)

(pm

/v)

(mm

)

Cu

t-O

ffl

(nm

)R

ef.

Pro

per

ties

N

HN

NO

2

2-N

-cyc

loo

ctyl

amin

o-5

-nit

rop

yrid

ine

(CO

AN

P)

mm

2d

33(1

.06)

z14

d3

2(1

.06)

z32

d3

1(1

.06)

z15

r 33(0

.63)

z15

r 13(0

.63)

z3.

4

r 23(0

.63)

z13

470

77 26 27

lN

C(q

)Z10

23n

mu

sin

gd

32.

lN

C(q

)Z14

13n

mu

sin

gd

31.

nxZ

1.68

,n

yZ1.

78,

nzZ

1.64

.

def

fz24

pm

/V

r 33(0

.52)

z28

,r 3

3(1

.06)

z7.

7.

r 13(0

.52)

z6.

8,r 1

3(1

.06)

z0.

9.

r 23(0

.52)

z26

,r 2

3(1

.06)

z6.

3.

N

HN

NO

2

2-A

dam

anty

lam

ino

-5-n

itro

pyr

idin

e(A

AN

P)

mm

2d

33(1

.06)

z60

d3

1(1

.06)

z80

460

257

At

533

nm

:

nxZ

1.77

,n

yZ1.

61,

nzZ

1.86

.

At

1.06

mm

:

nxZ

1.67

,n

yZ1.

59,

nzZ

1.71

.

N

NH

OH

NO

2

N-(

4-n

itro

-2-p

yrid

inyl

)-(s

)-p

hen

ylal

anin

ol

(NP

PA)

2d

22(1

.06)

z2.

6

d2

1(1

.06)

z0.

4

d2

3(1

.06)

z31

d1

6(1

.06)

z0.

5

d3

4(1

.06)

z25

480

261

247

lN

C(q

)fo

rSH

Gan

dSF

Gw

ith

inab

sorp

tio

ned

ge,

calc

ula

ted

def

fz31

pm

/V.

nxZ

1.52

4,n

yZ1.

694,

nzZ

1.90

7.

N

NO

H

NO

2

2-(N

-pro

lin

ol)

-5-n

itro

pyr

idin

e(P

NP

)

2d

22(1

.06)

z17

d2

1(1

.06)

z48

r 22(0

.63)

z13

490

&20

8024

6

27

lN

C(q

)Z10

20n

mu

sin

gd

21.

def

fz47

pm

/V.

nxZ

1.99

0,n

yZ1.

788,

nzZ

1.46

7.

rZ

78

r 22(0

.52)

z28

,r 1

2(0

.52)

z20

.

r 22(1

.06)

z8,

r 12(1

.06)

z9.

15018—Chapter7—26/8/2006—22:23—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-82 Handbook of Photonics

Article in Press

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

4180

4181

4182

Page 83: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

O

CN

CN

2-D

icya

no

vin

ylan

iso

le(D

IVA

)

2d

22(1

.06)

z10

78d

eff(

1.06

)z20

pm

/V.

nZ

1.65

.

NN

CN

CN

3-(1

,1-D

icya

no

eth

enyl

)-1-

ph

enyl

-4,5

-dih

ydro

-1H

-

pyr

azo

le(D

CN

P)

mr 3

3(0

.63)

z87

700

&16

003

Hig

hm

elti

ng

po

int:

1908

C,

nea

ro

pti

mu

m

mo

lecu

lar

alig

nm

ent

for

EO

,n

xZ

1.9,

nzZ

2.7.

OC

H3

u-(

p-M

eth

oxy

ph

enyl

)b

enzo

fulv

ene

(MP

BF

)

mm

2d

eff(

1.06

)z7

O45

013

3d

effz

7p

m/V

.

Dq

lZ0.

32m

rad

-cm

.

DT

1z4.

68C

-cm

.

CN

OC

H3C

OO

CH

3

2-C

yan

o-3

-(2-

met

ho

xyp

hen

yl)-

2-p

rop

eno

icac

id

met

hyl

este

r(C

MP

-met

hyl

)

2d

22(1

.06)

z29

410

183

nyZ

1.85

N

NO O

O

p-M

eth

ylb

enza

l-1,

3-d

imet

hyl

bar

bit

uri

cac

id

2d

eff(

1.06

)z8

460

132

Vic

kers

har

dn

ess:

25.5

.

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:24—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-83

Article in Press

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

4233

Page 84: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E7.

2(C

on

tin

ued

)

Ab

stra

ct

Stru

ctu

rean

dN

om

encl

atu

re(a

cro

nym

)P

oin

t

Gro

up

SHG

dij(l

)&

EO

r ij(

l)

(pm

/v)

(mm

)

Cu

t-O

ffl

(nm

)R

ef.

Pro

per

ties

Br

O

OC

H3

4-B

r-40 -m

eth

oxy

chal

con

e

md

33(1

.06)

z6

d1

3(1

.06)

z27

420

285

nxZ

1.55

,n

yZ1.

47,

nzZ

1.90

.

EtO

O

OC

H3

4-E

thox

y-40 -m

eth

oxy

chal

con

e

mm

2d

eff(

1.06

)z5.

743

012

9L

ow

har

dn

ess,

DT

(1n

s)O

30G

W/c

m2.

At

532

nm

:

nxZ

1.49

3,n

yZ1.

710,

nzZ

1.98

3.

At

1.06

mm

:

nxZ

1.47

7,n

yZ1.

663,

nzZ

1.85

0.

def

fz3.

5(I)

&5.

7(I

I)p

m/v

.

O

S

4-M

eth

yl-2

-th

ien

ylch

alco

ne

2d

eff(

1.06

)z7

430

128

Lo

wh

ard

nes

s,n

xZ

1.64

8,n

yZ1.

696,

nzZ

1.77

5.

def

fz7

pm

/V.

Dq

lZ0.

9m

rad

-cm

.

rZ

3.68

DT

1Z2.

28C

-cm

CH

3ON

O2

3-M

eth

yl-4

-met

hox

y-40 -n

itro

stil

ben

e(M

MO

NS)

mm

2d

33(1

.06)

z18

4

d3

2(1

.06)

z41

d2

4(1

.06)

z71

r 33(0

.63)

z40

515

&20

0022 22

0

lN

C(q

)Z10

28n

mu

sin

gd

24.

def

fz43

pm

/V.7

1

nxZ

1.56

9,n

yZ1.

693,

nzZ

2.12

9.

rZ

9.68

DT

1Z0.

178C

-cm

15018—Chapter7—26/8/2006—22:24—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-84 Handbook of Photonics

Article in Press

4234

4235

4236

4237

4238

4239

4240

4241

4242

4243

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

4269

4270

4271

4272

4273

4274

4275

4276

4277

4278

4279

4280

4281

4282

4283

4284

Page 85: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

NO

2

N

4-N

itro

-40 -m

eth

ylb

enzy

lid

ien

ean

ilin

e(N

MB

A)

md

11(1

.06)

z13

9

d3

3(1

.06)

z0.

6

d3

1(1

.06)

z41

r 11(0

.63)

z25

480

&16

008,

9N

ear

op

tim

um

mo

lecu

lar

alig

nm

ent

for

EO

,lN

C(q

)

for

SHG

wit

hin

abso

rpti

on

edge

,l

NC

(l)Z

1500

nm

.

nxZ

1.95

1,n

yZ1.

657,

nzZ

1.51

0.

dD

n/d

TZ

15.8

!10

K5

KK

1.

def

fz2

pm

/V.

O

NH

CO

CH

3

NO

2

N

40 -N

itro

ben

zyli

den

e-3-

acet

amin

o-4

-

met

hox

ylan

ilin

e(M

NB

A)

md

11(1

.06)

z17

5

d3

1(1

.06)

z2

d3

3(1

.06)

z2

r 11(0

.63)

z29

r 13(0

.63)

z0.

5

r 33(0

.63)

z2.

4

505

131

Nea

ro

pti

mu

mm

ole

cula

ral

ign

men

tfo

rE

O,

nxZ

2.02

4,n

yZ1.

648,

nzZ

1.58

3.

CH

N+

– SO

3

Cya

no

stil

baz

oli

um

p-to

luen

esu

lfo

nat

eco

mp

lex

mm

2d

33(1

.06)

z21

415

258

Mel

tin

gp

oin

t:27

98C

,n

zZ1.

775.

N+ CH

3SO

4–N 40 -D

imet

hya

min

o-N

-met

hyl

-4-s

tilb

azo

liu

mm

eth

yl

sulf

ate

(SP

CD

)

mm

2r 3

3(0

.63)

z43

060

028

2O

nly

thin

-film

cyst

alre

po

rted

,n

yZ1.

31,

nzZ

1.55

.

N+

N– S

O3

40 -D

imet

hya

min

o-N

-met

hyl

-4-s

tilb

azo

liu

m

tosu

late

(DA

ST)

md

11(1

.91)

z60

0

d2

2(1

.91)

z10

0

d1

2(1

.91)

z30

r 33(0

.82)

z40

0

700

&20

0015

7

198

Nea

ro

pti

mu

mm

ole

cula

ral

ign

men

tfo

rE

O.

At

820

nm

:

nxZ

2.21

6,n

yZ1.

66,

nzZ

1.65

.

Die

lect

ric

con

stan

t:3 a

bZ

5.1,

3 cZ

3.1.

15018—Chapter7—26/8/2006—22:24—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-85

Article in Press

4285

4286

4287

4288

4289

4290

4291

4292

4293

4294

4295

4296

4297

4298

4299

4300

4301

4302

4303

4304

4305

4306

4307

4308

4309

4310

4311

4312

4313

4314

4315

4316

4317

4318

4319

4320

4321

4322

4323

4324

4325

4326

4327

4328

4329

4330

4331

4332

4333

4334

4335

Page 86: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E6.

3E

xper

imen

tal

Res

ult

so

fP

ole

dP

oly

mer

Stu

die

s:M

w,

mo

lecu

lar

wei

ght;

r#,

chro

mo

ph

ore

nu

mb

erd

ensi

ty;

a(w

avel

engt

h),

op

tica

lp

rop

agat

ion

loss

;t

1an

dt

2,

rela

xati

on

tim

ein

def

f(t)

/def

f(0)

ZA

eKt/

t1C

BeK

t/t

2

Stru

ctu

rean

dN

om

encl

atu

re(R

ef)

Pro

per

ties

Gu

est-

hos

tpo

lym

erco

mpo

site

s

NN

NN

O2

CH

3O

CH

3

On

HO

(4[N

-eh

tyl-

N-(

2-h

ydro

xyet

hyl

)]am

ino

-40 -n

itro

azo

ben

zen

e)(D

R1)

do

ped

inp

oly

-(m

eth

ylm

eth

acry

late

)(P

MM

A)

(Sin

ger

etal

.19

86)

Tgz

1008

C.

lm

axz

470

nm

.

r#Z

2.4!

102

0cm

K3

low

die

lect

ric

con

stan

t:3Z

3.6.

con

tact

po

led

wit

h62

V/m

mat

1008

C.

d3

3(1

.58

mm

)Z2.

5p

m/V

.

No

velt

y:fi

rst

stu

dy

of

amo

rph

ou

sgu

est–

ho

stsy

stem

.

NOO

CN

FF

7n3n

F

FF

OO

NN

4-(4

0 -Cya

no

ph

enyl

azo

)-N

,N-b

is-(

met

ho

xyca

rbo

nyl

met

hyl

)-an

ilin

ed

op

edin

cop

oly

mer

of

vin

ylid

ene

flu

ori

de

and

trifl

uo

roet

hyl

ene

(Fo

rafl

onw

,70

:30

mo

l%)

(Pan

teli

set

al.

1988

;H

ill

etal

.19

87)

Tgz

1008

C.

lm

axZ

400

nm

.

UP

to10

wt%

do

pin

g.

a(1

mm

)zK

1.5

dB

/cm

.

Co

ron

ap

ole

dat

258C

.

d3

3(1

.06

mm

)u

pto

2.6

pm

/V.

Stab

len

on

lin

eari

tyaf

ter

300

day

sat

amb

ien

tco

nd

itio

n.

No

velt

y:fe

rro

elec

tric

ho

stp

oly

mer

pro

vid

esa

stab

lein

tern

alfi

eld

of

150

V/m

m.

NN

O2

OH

OH

RR

'N

N

4-N

,N-d

imet

hyl

amin

o-4

0 -nit

rost

ilb

ene

do

ped

inth

erm

ose

ttin

gep

oxy

(EP

O-T

EKw

301-

2)(H

ub

bar

det

al.

1989

)

Pre

cure

at808C

pri

or

top

oli

ng.

lm

axz

430

nm

.

r#Z

0.2!

102

0cm

K3

Co

nta

ctp

ole

dat

60V

/mm

.

Tem

po

ral

stab

ilit

y:t

1(2

58C

)Z7

day

san

dt

2(2

58C

)Z72

day

s.

No

velt

y:u

seo

fcr

oss

lin

ked

po

lym

eras

ho

st.

HO

N

n

O

NO

2

p-N

itro

ph

eno

ld

op

edin

typ

eA

gela

tin

(Ho

etal

.19

92)

Tgz

60–7

08C

.

lm

ax!

350

nm

.

UP

to35

wt%

do

pin

g.

Spin

coat

ing

fro

maq

ueo

us

solu

tio

n.

Co

nta

ctp

ole

dat

40V

/mm

.

r 33

(633

nm

)Z10

–40

pm

/V.

40%

acti

vity

rem

ain

saf

ter

5d

ays.

No

velt

y:u

seo

fcr

oss

-lin

ked

bio

po

lym

eras

ho

st.

15018—Chapter7—26/8/2006—22:25—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-86 Handbook of Photonics

Article in Press

4336

4337

4338

4339

4340

4341

4342

4343

4344

4345

4346

4347

4348

4349

4350

4351

4352

4353

4354

4355

4356

4357

4358

4359

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

4372

4373

4374

4375

4376

4377

4378

4379

4380

4381

4382

4383

4384

4385

4386

Page 87: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

N

NOF

3CC

F3

O

O O

O

NC O

2n

CN

N

(Dic

yan

om

eth

ylen

e)-2

-met

hyl

-6-(

p-d

imet

hyl

amin

ost

yryl

-4H

-pyr

an(D

CM

)d

op

edin

po

lym

ide

(Am

oco

Ult

rad

elw

)(E

rmer

etal

.19

92)

TgZ

2208

C.

lm

axZ

474

nm

.

Do

pin

gle

vel:

20w

t%

n(8

30n

m)Z

1.65

1

a(8

30n

m)z

K1.

5d

B/c

m.

Mu

ltil

ayer

sco

nta

ctp

ole

dw

ith

312

V=~m

1908

C.

r 33

(830

nm

)Z3.

4p

m/V

.

Lo

wp

oli

ng

fiel

dat

NLO

laye

rd

ue

toh

igh

con

du

ctiv

ity.

No

velt

y:u

seo

fh

igh

Tg

ho

stp

oly

mer

.

N NN

O2

H3C

O

H3C

OH

3CC

H3

NO

nO

NO O

O

O

2,4,

5-T

riar

ylim

idaz

ole

der

ivat

ive

(lo

ph

ine)

do

ped

inp

oly

imid

e(U

ltem

w)

(Sta

hel

inet

al.

1992

a)

TgZ

210–

1508

Cfo

r0–

35w

t%.

lm

axZ

410

nm

.

Ch

rom

op

ho

re:m

gZ7!

10K

18,

b0Z

18!

10K

30

(esu

).

Hig

hlo

adin

g,u

pto

35w

t%.

Fo

r0–

35w

t%d

op

ing,

coro

na

po

lin

ggi

ves

d3

3(1

.047

mm

)Z6–

17p

m/V

.

Fo

r20

wt%

do

pin

g,co

ron

ap

oli

ng

give

sT

gZ

1808

C,

d3

3Z

10.5

pm

/V.,

t(8

08C

)Z1.

5ye

ar.

No

velt

y:u

seo

fth

erm

ally

stab

lech

rom

op

ho

re.

NN

O2

HO

NN

DR

1d

op

edin

ph

enyl

silo

xan

ep

oly

mer

(All

ied

Sign

alA

ccu

glas

s20

4w)

(Jen

get

al.

1992

a)

lm

axZ

493

nm

.

n(5

33n

m)Z

1.62

8.

Do

pin

gle

vel:

35m

gd

yein

2g

of

A20

4.

Co

ron

ap

ole

dat

2008

Cfo

r10

min

.

d3

3(1

.06

mm

)Z11

.43

pm

/V.

d3

3(4

0h

,10

08C

)Z3.

8p

m/V

.

No

velt

y:U

seo

fso

l-ge

las

ho

stp

oly

mer

.

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:25—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-87

Article in Press

4387

4388

4389

4390

4391

4392

4393

4394

4395

4396

4397

4398

4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

4411

4412

4413

4414

4415

4416

4417

4418

4419

4420

4421

4422

4423

4424

4425

4426

4427

4428

4429

4430

4431

4432

4433

4434

4435

4436

4437

Page 88: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E6.

3(C

on

tin

ued

)

Stru

ctu

rean

dN

om

encl

atu

re(R

ef)

Pro

per

ties

Sid

e-C

hain

acry

late

poly

mer

s

N

O

O O

O1-

x

x

NN

NO

2

Met

hyl

met

hac

ryla

te(M

MA

)/D

R1

fun

ctio

nal

ized

met

hac

ryla

teco

po

lym

er(E

ssel

inet

al.

1988

)

TgZ

128–

1348

Cfo

r1–

19m

ol%

.

lm

axZ

470

nm

.

r#:

up

to7.

5!

102

0cm

K3.

Co

nta

ctp

ole

dw

ith

90V

/mm

at13

08C

.

d3

3(1

.064

mm

)Z3–

58p

m/V

.fo

r1–

19m

ol%

No

velt

y:h

igh

r#.

N

O

O O

O1-

x

x

CN

CN

NN

MM

A/4

-dic

yan

ovi

nyl

-40 -(

N,N

-dia

lkyl

amin

o)a

zob

enze

ne

fun

ctio

nal

ized

met

hac

ryla

teco

po

lym

er(S

inge

ret

al.

1988

)

TgZ

1278

C.

r#Z

8!10

20

cmK

3

n(8

00n

m)Z

1.58

.

Co

ron

ap

ole

dab

ove

Tg.

d3

3(1

.58

mm

)Z21

pm

/V.

r 33

(799

nm

)Z15

pm

/V.

90%

of

acti

vity

rem

ain

sst

able

afte

r35

day

sat

amb

ien

tco

nd

itio

ns.

NN

O2

O

On

NN

Po

ly-4

-(40 -n

itro

ph

enyl

azo

)-N

-met

hyl

-N-(

2-ac

royl

oxy

eth

yl)a

nil

ine

(Hil

let

al.

1989

,19

88)

TgZ

1058

C.

lm

axz

470

nm

.

Mw

Z4.

9!10

3.

Co

nta

ctp

oli

ng

at19

0V

/mm

give

sd

33

(1.0

6m

m)Z

55p

m/V

.

Co

nta

ctp

oli

ng

at20

V/m

mgi

ves

r 33

(633

nm

)Z30

pm

/V.

Act

ivit

yre

mai

ns

stab

lefo

ro

ver

2ye

ars

atam

bie

nt

con

dit

ion

s.

15018—Chapter7—26/8/2006—22:25—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-88 Handbook of Photonics

Article in Press

4438

4439

4440

4441

4442

4443

4444

4445

4446

4447

4448

4449

4450

4451

4452

4453

4454

4455

4456

4457

4458

4459

4460

4461

4462

4463

4464

4465

4466

4467

4468

4469

4470

4471

4472

4473

4474

4475

4476

4477

4478

4479

4480

4481

4482

4483

4484

4485

4486

4487

4488

Page 89: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

NO

2

O

O O

O1-

x

x

NN

N

MM

A/4

-(N

-eth

yl-N

-2-m

eth

acro

ylo

xyet

ho

xy)-

2-m

eth

yl-4

0 -nit

roaz

ob

enze

ne

cop

oly

mer

(Ore

etal

.19

89)

lm

axZ

486

nm

.

Mw

Z10

!10

3.

r#Z

9.2!

102

0cm

K3

Co

ron

ap

ole

dd

33

(1.0

6m

m)Z

41p

m/V

.

Stab

len

on

lin

eari

tyaf

ter

75d

ays

atam

bie

nt

con

dit

ion

s.

NO

2N

O

On

Po

ly-N

-(2-

met

hac

royl

oxy

eth

yl)-

N-m

eth

yl-4

0 -nit

roan

ilin

e(H

ayas

hi

etal

.19

92)

TgZ

1008

C.

lm

axZ

390

nm

.

Mw

Z11

–17!

103.

n(6

33n

m)Z

1.66

.

Co

ron

ap

ole

dd

33

(1.5

8m

m)Z

30p

m/V

.

Act

ivit

yd

ecay

sto

65%

in40

day

sat

amb

ien

tco

nd

itio

ns.

O

O O O1-

x

x

NO

2

NN

NN

N

MM

A/4

-N-(

2-m

eth

acro

ylo

xyet

hyl

)-N

-eth

yl-4

0 -am

ino

ph

enyl

azo

-400-n

itro

azo

ben

zen

eco

po

lym

er(A

man

oet

al.

1990

)

Tg

z10

08C

.

lm

axZ

500

nm

.

r#Z

4.3!

102

0cm

K3

Co

ron

ap

ole

dat

1008

C.

d3

3(1

.06

mm

)Z14

2p

m/V

.

d3

3(1

.7m

m)Z

70p

m/V

.

O

O O

O1-

x

x

CN

CN

NN

NN

N

MM

A/2

,5-d

imet

hyl

-4-N

-(2-

met

hac

royl

oxy

eth

yl)-

N-e

thyl

-40 -a

min

op

hen

ylaz

o-4

00-d

icya

no

azo

ben

zen

eco

po

lym

er

(Sh

uto

etal

.19

91)

Tgz

1408

C.

lm

axZ

510

nm

.

r#Z

4!10

20

cmK

3

a(6

33n

m)Z

K50

dB

/cm

du

eto

abso

rpti

on

.

Co

ron

ap

oli

ng

wit

h20

0V

/mm

at14

08C

give

sd

33

(1.0

6m

m)Z

417

pm

/V.

Co

nta

ctp

oli

ng

at15

0V

/mm

at14

08C

give

sr 3

3(6

33n

m)Z

40p

m/V

.

Exc

elle

nt

tem

po

ral

stab

ilit

yat

808C

.

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:26—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-89

Article in Press

4489

4490

4491

4492

4493

4494

4495

4496

4497

4498

4499

4500

4501

4502

4503

4504

4505

4506

4507

4508

4509

4510

4511

4512

4513

4514

4515

4516

4517

4518

4519

4520

4521

4522

4523

4524

4525

4526

4527

4528

4529

4530

4531

4532

4533

4534

4535

4536

4537

4538

4539

Page 90: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E6.

3(C

on

tin

ued

)

Stru

ctu

rean

dN

om

encl

atu

re(R

ef)

Pro

per

ties

O

O O O1-

x

x

CN

NN

N

MM

A/4

-(N

-met

hyl

-N-2

-met

hac

royl

oxy

eth

oxy

)-40 -c

yan

oab

enze

ne

ho

mo

-an

dco

po

lym

ers

(S’h

eere

net

al.

1993

a)

Co

ron

ap

ole

dn

ear

Tg.

d3

3va

lues

are

mea

sure

d10

day

saf

ter

po

lin

gat

1.06

4m

m.

O

O O O1-

x

x

NO

2

X

1 2X

= H C

N

N

MM

A/4

-(N

-met

hyl

-N-2

-met

hac

royl

oxy

eth

oxy

)-40 -n

itro

stil

ben

eco

-po

lym

ers

(S’h

eere

net

al.

1993

c)

Co

ron

ap

ole

dn

ear

Tg.

d3

3va

lues

are

mea

sure

dse

vera

ld

ays

afte

rp

oli

ng

at1.

064

mm

.

O

O

O1-

x

x

N

NO

O

O

O

MM

A/N

-(3-

met

hac

rylo

xyal

ky)-

7-d

ieth

ylam

ino

cou

mar

in-3

-car

bo

xam

ide

(76:

23m

ol%

)co

po

lym

er(M

ort

azav

i

etal

.19

91)

TgZ

1358

C.

lm

axZ

410

nm

.

r#Z

9.8!

102

0cm

K3

Mw

Z89

!10

3.

Co

ron

ap

ole

dfo

rSH

Gan

dco

nta

ctp

ole

dw

ith

100

V/m

mfo

rE

Oat

608C

.

d3

3(1

.06

mm

)Z13

pm

/V.

r 33

(477

–11

00n

m)Z

2–12

pm

/V.

d3

3d

ecay

sb

y25

%at

1008

Cin

50h

.

15018—Chapter7—26/8/2006—22:26—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-90 Handbook of Photonics

Article in Press

4540

4541

4542

4543

4544

4545

4546

4547

4548

4549

4550

4551

4552

4553

4554

4555

4556

4557

4558

4559

4560

4561

4562

4563

4564

4565

4566

4567

4568

4569

4570

4571

4572

4573

4574

4575

4576

4577

4578

4579

4580

4581

4582

4583

4584

4585

4586

4587

4588

4589

4590

Page 91: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

O

O

O1-

x

x

N

NO

O

O

O

Iso

bo

rnyl

met

hac

ryla

te/N

-(3-

met

hac

rylo

xyal

kyl)

-7-d

ieth

lam

ino

cou

mar

in-3

-car

bo

xam

ide

(76:

23m

ol%

)

cop

oly

mer

(Mo

rtaz

avi

etal

.19

91)

TgZ

1708

C.

lm

axZ

410

nm

.

Mw

Z50

!10

3.

Co

ron

ap

ole

dat

2008

C.

d3

3(1

.06

mm

)Z11

pm

/V.

d3

3d

ecay

sb

y10

%at

1008

Can

db

y40

%at

1408

Cin

50h

.

O

R NS

NR

R =

A BO

NO

n

O

Po

ly(p

-N-(

2-m

eth

acro

ylo

xeth

yl)-

N-e

thyl

amin

ob

enza

ll-1

-3-d

ieth

yl(o

rd

iph

enyl

thio

bar

bit

uri

cac

id)

(Ch

eng

and

Tan

1993

)

Co

ron

ap

ole

dn

ear

Tg.

d3

3an

dr 3

3va

lues

are

mea

sure

dat

1.06

4m

m.

At

1008

Cd

33

of

A(B

)d

ecay

sb

y80

%(1

0%)

in15

0m

in(1

5d

ays)

O

ON

O2

On

Po

ly-4

-(6-

acro

ylo

xyh

exyl

oxy

)-40 -n

itro

stil

ben

e(H

uij

tset

al.

1989

b)

TgZ

658C

.

lm

axZ

380

nm

.

r#:1

8!10

20

cmK

3

n(6

33n

m)Z

1.62

.

a(1

.3m

m)z

K1.

5d

B/c

m.

Co

nta

ctp

ole

dw

ith

23V

/mm

at658C

.

r 33

(633

nm

)Z0.

9p

m/V

.

O

NC

H3

SNN

O

On

O

Po

ly-4

0 -N-(

6-m

eth

acro

ylo

xyh

exyl

)-N

-met

hyl

-am

ino

-4-m

eth

ylsu

lfo

nyl

azo

ben

zen

e(R

ob

ello

etal

.19

91a,

1992

)

TgZ

998C

.

lm

axZ

446

nm

.

r#Z

17!

102

0cm

K3

Mw

Z89

!10

3.

n(6

33n

m)Z

1.76

.

a(8

30n

m)Z

K1

dB

/cm

.

Co

nta

ctp

ole

dw

ith

90V

/mm

at10

08C

.

r 33

(633

nm

)Z39

pm

/V.;

r 33

(860

nm

)Z13

pm

/V.

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:26—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-91

Article in Press

4591

4592

4593

4594

4595

4596

4597

4598

4599

4600

4601

4602

4603

4604

4605

4606

4607

4608

4609

4610

4611

4612

4613

4614

4615

4616

4617

4618

4619

4620

4621

4622

4623

4624

4625

4626

4627

4628

4629

4630

4631

4632

4633

4634

4635

4636

4637

4638

4639

4640

4641

Page 92: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E6.

3(C

on

tin

ued

)

Stru

ctu

rean

dN

om

encl

atu

re(R

ef)

Pro

per

ties

OC

H3

SO O

O

O O O1-

x

x MM

A/4

0 -(6-

met

hac

royl

oxy

hex

loxy

)-4-

met

hyl

sulf

on

ylst

ilb

ene

(55:

45w

t%)

cop

oly

mer

(Rik

ken

etal

.19

91;

Sep

pen

etal

.19

91)

TgZ

1178

C.

lm

axZ

355

nm

.

Lo

wab

sorp

tio

nat

420

nm

.

Co

ron

ap

ole

dw

ith

120

V/m

mat

1008

C.

d3

3(8

20n

m)Z

9p

m/V

.

Act

ivit

yd

ecre

ases

toa

qu

asi-

stab

le70

%va

lue

afte

r12

0d

ays

at

amb

ien

t.

Wav

egu

ide

form

atio

nb

yU

Vp

ho

tob

leac

hin

g.

N

O

OSO O

O O1-

x

x MM

A/4

0 -(6-

met

hac

royl

oxy

hex

ylsu

lfo

ny)

-4-N

,Nd

imet

hyl

amin

o-b

iph

enyl

(50:

50w

t%)

cop

oly

mer

(Rik

ken

etal

.

1992

)

Tgz

1008

C.

lm

axZ

340

nm

.

Co

ron

ap

ole

dw

ith

120

V/m

at10

08C

.

d3

3(8

20n

m)Z

45p

m/V

.

po

or

tem

po

ral

stab

ilit

yat

608C

.

N

O

O O O1-

x

x

NO

2N

N

MM

A/4

-(40 -n

itro

ph

enyl

azo

)-N

-met

hyl

-N-(

6-m

eth

acro

ylo

xyh

exyl

)an

ilin

e(8

1:19

mo

l%)

cop

oly

mer

(Mu

ller

etal

.

1992

a)

TgZ

1048

C.

lm

axz

470

nm

.

Mw

Z10

0!10

3.

Th

erm

ally

dec

om

po

ses

at26

78C

.

Po

led

wit

h11

0V

/mm

.

r 33–

r 13

(1.3

mm

)Z9

pm

/V.

15018—Chapter7—26/8/2006—22:26—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-92 Handbook of Photonics

Article in Press

4642

4643

4644

4645

4646

4647

4648

4649

4650

4651

4652

4653

4654

4655

4656

4657

4658

4659

4660

4661

4662

4663

4664

4665

4666

4667

4668

4669

4670

4671

4672

4673

4674

4675

4676

4677

4678

4679

4680

4681

4682

4683

4684

4685

4686

4687

4688

4689

4690

4691

4692

Page 93: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

N

O

O O O O1-

xx

NO

2N

N

Met

hac

ryli

can

hyd

rid

e/4-

(40 -n

itro

ph

enyl

azo

)-N

-met

hyl

-N-(

6-m

eth

acro

ylo

xyl)

anil

ine

(33:

67m

ol%

)co

po

lym

er

(Str

oh

rieg

l19

93;

Mu

ller

etal

.19

92a)

TgZ

908C

.

lm

axz

470

nm

.

Th

erm

ally

dec

om

po

ses

at22

78C

.

Po

led

wit

h11

0V

/mm

.

r 33–

r 13

(1.5

mm

)Z19

pm

/V.

N+

O–

O

O O O1-

x

x MM

A/[

2,6-

di-

tert

-bu

tyl-

4-(1

-u-m

eth

acro

ylo

xyal

yl)-

4-p

yrid

ino

]ph

eno

late

s(8

5:15

mo

l%)

cop

oly

mer

(Co

mb

ella

s

etal

.19

92)

TgZ

1308

C.

lm

axz

525

nm

.

Co

nta

ins

zwit

teri

on

icch

rom

op

ho

rew

ith

b0Z

K30

!10

K3

0es

u.

Solu

ble

inT

HF.

N

O

OSO O

O O3nn

NN

MM

A/4

0 -(6-

met

hac

royl

oxy

hex

lsu

lfo

nyl

)-4-

N,N

-dim

eth

ylam

ino

-azo

ben

zen

e(2

5m

ol%

)co

po

lym

er(X

uet

al.

1993

)

TgZ

1248

C.

lm

axZ

437

nm

.

Mw

Z17

!10

3.

Co

ron

ap

ole

dat

1258

Cfo

r45

min

.

d3

3(1

.06

mm

)Z10

0p

m/V

.

Act

ivit

yst

abil

izes

at95

%va

lue

afte

r10

day

sat

amb

ien

tco

nd

itio

ns.

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:27—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-93

Article in Press

4693

4694

4695

4696

4697

4698

4699

4700

4701

4702

4703

4704

4705

4706

4707

4708

4709

4710

4711

4712

4713

4714

4715

4716

4717

4718

4719

4720

4721

4722

4723

4724

4725

4726

4727

4728

4729

4730

4731

4732

4733

4734

4735

4736

4737

4738

4739

4740

4741

4742

4743

Page 94: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E6.

3(C

on

tin

ued

)

Stru

ctu

rean

dN

om

encl

atu

re(R

ef)

Pro

per

ties

OO N

Ozy

x

O

OO R

N

OO

NS

O2C

3F7

R =

A

B C

N NN

NN

O2

NO

2

Fu

nct

ion

aliz

edh

om

o-a

nd

cop

oly

mer

so

fis

ocy

anat

oet

hyl

met

hac

ryla

te,

MM

A,

and

dim

eth

ylam

ino

eth

yl

met

hac

ryla

te.

(Ch

eng

etal

.19

92)

Co

ron

ap

ole

dn

ear

Tg.

d3

3va

lues

are

mea

sure

dat

1.06

4m

m.

d3

3o

fA

&C

are

stab

leat

roo

mte

mp

erat

ure

.P

oly

mer

Bis

stab

leat

808C

.

a(1

.06

mm

)zK

(1.5

–3)

dB

/cm

.

Sid

e-ch

ain

Non

-acr

ylat

epo

lym

ers

N

n

NO

2

Po

ly-4

-[N

-(40 -n

itro

ph

enyl

)am

ino

-met

hyl

]eth

ylen

e(E

ich

etal

.19

89b

)

TgZ

1258

C.

lm

axz

390

nm

.

Th

erm

ally

dec

om

po

ses

at26

08C

.

Co

ron

ap

ole

dat

1408

C.

d3

3(1

.06

mm

)Z31

pm

/V.

d3

3re

laxe

sto

19p

m/V

in5

day

s.

n

NN

O2

Po

ly-4

-[N

-met

hyl

-N-(

40 -n

itro

ph

enyl

)am

ino

-met

hyl

]sty

ren

e(H

ayas

hi

1991

)

TgZ

1038

C.

lm

axZ

393

nm

.

Mw

Z12

!10

3.

n(6

33n

m)Z

1.73

.

a(6

33n

m)Z

K10

dB

/cm

.

Co

ron

ap

ole

dat

1108

C.

d3

3(1

.06

mm

)Z28

pm

/Vw

hic

hst

abil

izes

to18

pm

/Vin

5m

on

ths

at

amb

ien

tco

nd

itio

ns.

n

NN

O2

Po

ly-4

-[N

-(40 -n

itro

ph

enyl

)am

ino

-met

hyl

]sty

ren

e(H

ayas

hi

etal

.19

92)

TgZ

1238

C.

lm

axZ

383

nm

.

Mw

Z15

!10

3.

n(6

33n

m)Z

1.70

.

Co

ron

ap

ole

dat

Tg.

d3

3(1

.06

mm

)Z10

pm

/V.

Lo

wd

33

du

eto

po

lin

g-in

du

ced

dec

om

po

siti

on

.

15018—Chapter7—26/8/2006—22:27—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-94 Handbook of Photonics

Article in Press

4744

4745

4746

4747

4748

4749

4750

4751

4752

4753

4754

4755

4756

4757

4758

4759

4760

4761

4762

4763

4764

4765

4766

4767

4768

4769

4770

4771

4772

4773

4774

4775

4776

4777

4778

4779

4780

4781

4782

4783

4784

4785

4786

4787

4788

4789

4790

4791

4792

4793

4794

Page 95: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

n

NC

N

Po

ly-4

-[N

-(40 -c

yan

op

hen

yl)a

min

o-m

eth

yl]s

tyre

ne

(Hay

ash

i,et

al.

1992

)

TgZ

1328

C.

lm

axZ

288

nm

.

Mw

Z15

!10

3.

n(6

33n

m)Z

1.65

.

Co

ron

ap

ole

dat

Tg.

d3

3(1

.06

mm

)Z1

pm

/V.

NO

2

1-x

x

O

NN

N

Styr

ene/

p-[4

-nit

ro-4

0 -(N

-eth

yl-N

-2-o

xyet

hyl

)azo

ben

zen

e]m

eth

ylst

yren

eco

po

lym

er(8

8:12

mo

l%)

(Ye

etal

.19

87)

TgZ

1108

C.

lm

axz

470

nm

.

Co

nta

ctp

ole

dw

ith

30V

/mm

atz

1108

C.

d3

3(1

.06

mm

)Z1.

1p

m/V

.

Stab

leac

tivi

tyat

roo

mte

mp

erat

ure

.

NO

2

1-x

x

O

N

Styr

ene/

N-(

4-n

itro

ph

enyl

)-S-

pro

lin

oxy

met

hyl

styr

ene

cop

oly

mer

(64:

36m

ol%

)(Y

eet

al.

1989

)

TgZ

1108

C.

lm

axz

380

nm

.

Co

nta

ctp

ole

dw

ith

70V

/mm

atz

1108

C.

d3

3(1

.06

mm

)Z1.

6p

m/V

.

Lo

wd

33

du

eto

mat

eria

lim

pu

rity

.

NO

2

1-x

x

O

NO

H

p-h

ydro

xyst

yren

e/N

-(4-

nit

rop

hen

yl)-

S-p

roli

no

xyst

yren

eco

po

lym

er(1

0:90

mo

l%)

(Ye

etal

.19

89)

TgZ

968C

.

lm

axz

380

nm

.

r#Z

2.3!

102

1cm

K3

Co

ron

ap

ole

dat

Tg.

d3

3(1

.06

mm

)Z33

pm

/V.

Tg

incr

ease

to14

68C

at16

mo

l%fu

nct

ion

aliz

atio

n.

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:27—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-95

Article in Press

4795

4796

4797

4798

4799

4800

4801

4802

4803

4804

4805

4806

4807

4808

4809

4810

4811

4812

4813

4814

4815

4816

4817

4818

4819

4820

4821

4822

4823

4824

4825

4826

4827

4828

4829

4830

4831

4832

4833

4834

4835

4836

4837

4838

4839

4840

4841

4842

4843

4844

4845

Page 96: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E6.

3(C

on

tin

ued

)

Stru

ctu

rean

dN

om

encl

atu

re(R

ef)

Pro

per

ties

n

nO H

N

O

CN

CN

NN

p-h

ydro

xyst

yren

e/p-

[4-(

2,2-

dic

ryan

ovi

nyl

)-40 -(

N-e

thyl

-N-2

-oxy

eth

yl)a

zob

enze

ne]

styr

ene

cop

oly

mer

(Ye

etal

.

1992

)

Co

ron

ap

ole

dat

1178

Cfo

r15

h.

Th

erm

alan

del

ectr

och

emic

ald

eco

mp

osi

tio

no

bse

rved

at14

78C

.

NO

2

O

NO

Br 1

-y

n

Ry

Br 1

-xR

x

R =

Po

ly-(

2,6-

dim

eth

ylb

rom

o-1

,4-p

hen

ylen

eo

xid

e)p

arti

ally

fun

ctio

nal

ized

wit

hN

-(4-

nit

rop

hen

yl)-

S-p

roli

no

l(D

ai

etal

.19

90)

TgZ

1708

C.

r#Z

2.6!

102

1cm

K3

n(6

33n

m)Z

1.58

4.

Co

ron

ap

ole

dat

1908

Cfo

r30

min

.

aZ

K1

dB

/cm

.

Tem

po

ral

stab

ilit

y:t

1(2

58C

)Z0.

3d

ays

and

t2(2

58C

)Z39

day

s.

O On

NO

CO

NN

N NO

2

OO N

p-n

itro

anil

ine

fun

ctio

nal

ized

po

lyim

ide

(Lin

etal

.19

92)

TgZ

2368

C.

lm

axZ

390

nm

.

r#Z

7!10

20

cmK

3

Fil

ms

are

cure

dan

dco

ron

ap

ole

dat

2408

C.

d3

3(1

.06

mm

)Z5.

4p

m/V

.

d3

3(2

4h

,858C

)z5

pm

/Van

dst

able

.

15018—Chapter7—26/8/2006—22:27—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-96 Handbook of Photonics

Article in Press

4846

4847

4848

4849

4850

4851

4852

4853

4854

4855

4856

4857

4858

4859

4860

4861

4862

4863

4864

4865

4866

4867

4868

4869

4870

4871

4872

4873

4874

4875

4876

4877

4878

4879

4880

4881

4882

4883

4884

4885

4886

4887

4888

4889

4890

4891

4892

4893

4894

4895

4896

Page 97: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

NO

2n

OO

NN

Po

ly-(

4-n

itro

-40 -(

vin

ylo

oxy

eth

ylo

xy)a

zob

enze

ne,

1,an

do

ther

po

ly-(

vin

ylet

her

s)(S

0 hee

ren

etal

.19

92)

CN

n

OO

NN

Po

ly-(

4-cy

ano

-40 -(

vin

ylo

oxy

eth

ylo

xy)

azo

ben

zen

e2

n

O

CN

CN

O

Po

ly-(

4-d

icya

no

vin

yl-4

0 -(vi

nyl

oo

xyet

hyl

oxy

)b

enze

ne

3

n

OO

NC

OC

H3

O

Po

ly-(

4-cy

ano

-4-c

arb

om

eth

oxy

vin

yl-4

0 -(vi

nyl

oo

xyet

hyl

oxy

)b

enze

ne

4

OH O

NN

O2

O x1-x

Po

lyvi

nyl

alco

ho

l/N

-eth

yl-N

-met

hyl

amin

on

itro

anil

ine

cop

oly

mer

(Sas

aki

1993

)

TgZ

1208

C.

lm

axz

380

nm

.

Co

ron

ap

ole

dat

Tg.

d3

3(1

.06

mm

)Z10

pm

/V.

d3

3re

laxe

sto

7p

m/V

in40

day

s.

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:28—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-97

Article in Press

4897

4898

4899

4900

4901

4902

4903

4904

4905

4906

4907

4908

4909

4910

4911

4912

4913

4914

4915

4916

4917

4918

4919

4920

4921

4922

4923

4924

4925

4926

4927

4928

4929

4930

4931

4932

4933

4934

4935

4936

4937

4938

4939

4940

4941

4942

4943

4944

4945

4946

4947

Page 98: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E6.

3(C

on

tin

ued

)

Stru

ctu

rean

dN

om

encl

atu

re(R

ef)

Pro

per

ties

NO

2N

O

O OH O

n

NN

DR

1/P

oly

(mal

eic

anh

ydri

de-

co-p

rop

ylen

eco

po

lym

er(1

6:84

mo

l%)

(Bau

eret

al.

1993

)

TgZ

1808

C.

lm

axz

470

nm

.

Co

ron

ap

ole

dat

1858

C.

r 33

(780

nm

)Z6

pm

/V.

wit

h38

C/m

inh

eati

ng

rate

,r 3

3is

stab

leu

pto

1008

C.

NO

2R =

A BO

n

R

O

NN

N

N

Azo

dye

/Po

ly(m

alei

can

hyd

rid

e-co

-sty

ren

eo

rco

-no

rbo

rnad

ien

eco

po

lym

er(A

hlh

eim

and

Leh

r19

94)

Mai

n-C

hai

nP

olym

ers

CN

CN

O

O n

Vin

ylid

ene

cyan

ide/

vin

ylac

etat

eco

po

lym

er(5

0:50

mo

l%)

(Azu

mai

etal

.19

90;

Eic

het

al.

1988

;Sa

toet

al.

1987

)

TgZ

1808

C.

Mw

Z47

0!10

3.

n(2

.94

mm

)Z1.

434.

a(2

.94

mm

)Z1.

4m

mK

1.

Co

ron

ap

ole

dat

1808

Cfo

r2

h.

d3

3(1

.064

mm

)Z0.

3p

m/V

.[E

ich

].

No

te:

larg

ed

iscr

epan

cyin

SHG

dco

effi

cien

ts.

15018—Chapter7—26/8/2006—22:28—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-98 Handbook of Photonics

Article in Press

4948

4949

4950

4951

4952

4953

4954

4955

4956

4957

4958

4959

4960

4961

4962

4963

4964

4965

4966

4967

4968

4969

4970

4971

4972

4973

4974

4975

4976

4977

4978

4979

4980

4981

4982

4983

4984

4985

4986

4987

4988

4989

4990

4991

4992

4993

4994

4995

4996

4997

4998

Page 99: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

O

NN

Nn

O

N

Aro

mat

icp

oly

ure

a(N

agam

ori

etal

.19

92;

kaji

kaw

aet

al.

1991

)

Th

infi

lmp

rep

ared

by

vap

or

dep

osi

tio

np

oly

mer

izat

ion

.

TgZ

O15

08C

.

lcu

t-o

ffZ

400

nm

.

Co

ron

ap

ole

dat

1808

Cfo

r3

min

.

d3

3(1

.06

mm

)Z1.

7p

m/V

.

Neg

ligi

ble

rela

xati

on

of

acti

vity

ove

r2

mo

nth

sat

amb

ien

tco

nd

itio

ns.

Act

ivit

yre

mai

ns

stab

leaf

ter

sho

rt-t

erm

hea

tin

gto

2008

C.

O

NN

N

nO

N

N-p

hen

ylat

edp

oly

ure

a(N

alw

aet

al.

1993

a;N

alw

aet

al.

1993

b;

Azu

mai

etal

.19

90;

Stat

oet

al.

1987

)

TgZ

1238

C.

lm

axZ

253

nm

.

n(6

33n

m)Z

1.57

7.

a(6

33n

m)Z

K1.

2d

B/c

m.

Co

ron

ap

ole

dat

1308

Cfo

r1

h.

d3

3(1

.064

mm

)Z5.

5p

m/V

.

90%

of

acti

vity

rem

ain

sst

able

afte

r40

day

sat

amb

ien

t.

N NO

2

OO

n

1

OH

OH

n

2

O

N NO

2

N

OH

OO

H

Ep

oxy

po

lym

ers

con

tain

ing

4-am

ino

-40 -n

itro

azo

ben

zen

e(T

erao

kaet

al.

1991

)

Po

lym

ers

pre

par

edb

ym

elt

con

den

sati

on

at15

08C

un

der

N2

.

d3

3va

lues

are

mea

sure

dat

1.06

4m

md

uri

ng

coro

na

po

lin

g. (con

tin

ued

)

15018—Chapter7—26/8/2006—22:28—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-99

Article in Press

4999

5000

5001

5002

5003

5004

5005

5006

5007

5008

5009

5010

5011

5012

5013

5014

5015

5016

5017

5018

5019

5020

5021

5022

5023

5024

5025

5026

5027

5028

5029

5030

5031

5032

5033

5034

5035

5036

5037

5038

5039

5040

5041

5042

5043

5044

5045

5046

5047

5048

5049

Page 100: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E6.

3(C

on

tin

ued

)

Stru

ctu

rean

dN

om

encl

atu

re(R

ef)

Pro

per

ties

OO

n

NO

2

N N

N

OH

OH

Ep

oxy

po

lym

ers

con

tain

ing

p-am

ino

nit

rob

enze

ne

(Gad

ret

etal

.19

91)

TgZ

778C

.

lm

axZ

480

nm

.

Co

ron

ap

ole

daf

ter

pro

curi

ng.

d3

3(1

.06

mm

)Z25

pm

/V.

Stab

leac

tivi

tyat

amb

ien

tco

nd

itio

ns

for

O20

day

s.A

ctiv

ity

dec

reas

es

rap

idly

toze

row

hen

hea

ted

abo

ve808C

.

OO

n

NO

2

N

OH

OH

Ep

oxy

po

lym

erco

nta

inin

g4-

amin

o-4

0 nit

roto

lan

e(J

un

gbau

eret

al.

1991

)

TgZ

1258

C.

lm

axZ

418

nm

.

n(6

33n

m)Z

1.71

.

Co

ron

ap

ole

dat

1358

Cfo

r1

h.

d3

3(1

.064

mm

)Z89

pm

/V.

r 13

(633

nm

)Z8

pm

/V.

Stab

leb

iref

rin

gen

ceat

amb

ien

tco

nd

itio

ns.

Bir

frin

gen

ced

ecay

sw

ith

tZ

448

han

db

Z0.

45at

1008

C.

15018—Chapter7—26/8/2006—22:28—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-100 Handbook of Photonics

Article in Press

5050

5051

5052

5053

5054

5055

5056

5057

5058

5059

5060

5061

5062

5063

5064

5065

5066

5067

5068

5069

5070

5071

5072

5073

5074

5075

5076

5077

5078

5079

5080

5081

5082

5083

5084

5085

5086

5087

5088

5089

5090

5091

5092

5093

5094

5095

5096

5097

5098

5099

5100

Page 101: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

OO

n

SO

2CH

3

N

OH

12

OH

SO

2CH

3

N

nO

H

Ep

oxy

po

lym

ers

con

tain

ing

4-am

ino

-40 m

eth

ylsu

lfo

nyl

tola

ne

(Tw

ieg

etal

.19

92)

Po

lym

ers

pre

par

edb

ym

elt

con

den

sati

on

at15

08C

.

d3

3va

lues

are

mea

sure

dat

1.06

4m

md

uri

ng

coro

na

po

lin

g.

O

O

OO

O

On

NO

2N N

N

Ep

oxy

po

lym

ers

con

tain

ing

4-am

ino

-40 n

itro

azo

ben

zen

e(J

eng

etal

.19

92c)

TgZ

1158

C.

lm

axZ

461

nm

.

n(5

33n

m)Z

1.71

8.

Co

ron

ap

ole

dat

1158

Cfo

r1

h.

d3

3(1

.06

mm

)Z34

pm

/V.

70%

of

SHG

acti

vity

rem

ain

sst

able

afte

r20

day

sat

amb

ien

t

con

dit

ion

s.

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:28—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-101

Article in Press

5101

5102

5103

5104

5105

5106

5107

5108

5109

5110

5111

5112

5113

5114

5115

5116

5117

5118

5119

5120

5121

5122

5123

5124

5125

5126

5127

5128

5129

5130

5131

5132

5133

5134

5135

5136

5137

5138

5139

5140

5141

5142

5143

5144

5145

5146

5147

5148

5149

5150

5151

Page 102: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E6.

3(C

on

tin

ued

)

Stru

ctu

rean

dN

om

encl

atu

re(R

ef)

Pro

per

ties

OO

NX

OO

nX

=

1 2 3

NN N

N NO

2

Po

lyu

reth

anes

con

tain

ing

4-am

ino

-40 n

itro

azo

ben

zen

e[M

eyru

eix

etal

.19

91a,

1991

b]

Po

lym

ers

pre

par

edb

ym

elt

con

den

sati

on

at15

08C

.

c3

33

(Ku

,u

,0)

valu

esar

em

easu

red

at83

0n

maf

ter

con

tact

po

lin

g

wit

h25

V/m

mat

1008

C.

OO

O

O

X =

O1

X

nO O

N N

N NO

2

OO

NN

O

O

O

O

O

O3

4

2

O

Po

lyu

reth

anes

con

tain

ing

4-am

ino

-40 n

itro

azo

ben

zen

e[C

hen

etal

.19

91]

Po

lym

ers

pre

par

edb

yco

nd

ensa

tio

nin

dio

xan

eso

luti

on

.

d3

3is

stab

iliz

edva

lue

mea

sure

dat

1.06

4m

maf

ter

coro

na

po

lin

gat

abo

ut

1308

C.

Act

ivit

yis

stab

leat

amb

ien

tco

nd

itio

ns.

15018—Chapter7—26/8/2006—22:29—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-102 Handbook of Photonics

Article in Press

5152

5153

5154

5155

5156

5157

5158

5159

5160

5161

5162

5163

5164

5165

5166

5167

5168

5169

5170

5171

5172

5173

5174

5175

5176

5177

5178

5179

5180

5181

5182

5183

5184

5185

5186

5187

5188

5189

5190

5191

5192

5193

5194

5195

5196

5197

5198

5199

5200

5201

5202

Page 103: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

NO

2

NO

2

O

OO

NN

n

R =

N R

1

2 3

4

5

O

NN

CN

CN

CN

O

O

NN

NO

2

Po

lyu

reth

anes

der

ived

fro

m2,

4-to

luen

edii

socy

anat

e/2-

met

hyl

-4-n

itro

-[N

,N-b

is(2

-hyd

roxy

eth

yl)]

-an

ilin

ean

d

oth

erd

iols

[Kit

ipic

hai

etal

.199

3]

Insi

tuco

ron

ap

oli

ng

du

rin

gm

elt

po

lym

eriz

atio

nat

1208

C.

d3

3va

lues

are

mea

sure

dat

1.06

4m

m;

stab

iliz

edva

lues

afte

r18

0d

ays

at258C

are

give

nin

ital

ics.

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:29—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-103

Article in Press

5203

5204

5205

5206

5207

5208

5209

5210

5211

5212

5213

5214

5215

5216

5217

5218

5219

5220

5221

5222

5223

5224

5225

5226

5227

5228

5229

5230

5231

5232

5233

5234

5235

5236

5237

5238

5239

5240

5241

5242

5243

5244

5245

5246

5247

5248

5249

5250

5251

5252

5253

Page 104: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E6.

3(C

on

tin

ued

)

Stru

ctu

rean

dN

om

encl

atu

re(R

ef)

Pro

per

ties

O(C

H2)

3O

OC

H3

N N

x x

CN

OO

O(C

H2)

11

1-x

CN

O

1 2O

O(C

H2)

11

1-x

O

O(C

H2)

θS

xC

N

3O

O(C

H2)

11

1-x

O

Mai

n-c

hai

np

oly

mer

sd

eriv

edfr

om

(1)

a-c

yan

o-e

ster

qu

ino

dim

eth

anes

,(2)

p-o

xy-a

-cya

no

cin

nam

ates

,(3)

p-th

io-

a-c

yan

oci

nn

amat

es[F

uso

1991

;Hal

let

al.

1988

;G

reen

1987

a,19

87b

]

Po

lym

ers

pre

par

edb

yh

igh

tem

per

atu

retr

anse

ster

ifica

tio

n.

Ho

mo

po

lym

ers

are

typ

ical

lyin

solu

ble

and

hig

hm

elti

ng.

Un

itm

ole

cula

rn

on

lin

eari

tym

b/n

valu

esar

em

easu

red

at1.

064

mm

.

nC

N

O

ON

Mai

n-c

hai

nh

om

op

oly

mer

sd

eriv

edfr

om

(4-N

-eth

yl-N

-(2-

hyd

roxy

eth

yl)a

min

o-a

-cya

no

cin

nam

ates

(1)

and

the

corr

esp

on

din

gac

id(2

)[S

ten

ger-

Smit

het

al.

1991

,19

90]

Po

lym

eriz

atio

n:

(1)

mel

ttr

anse

ster

ifica

tio

nat

1608

C;

(2)

solu

tio

n

po

lyco

nd

ensa

tio

nat

258C

.

15018—Chapter7—26/8/2006—22:29—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-104 Handbook of Photonics

Article in Press

5254

5255

5256

5257

5258

5259

5260

5261

5262

5263

5264

5265

5266

5267

5268

5269

5270

5271

5272

5273

5274

5275

5276

5277

5278

5279

5280

5281

5282

5283

5284

5285

5286

5287

5288

5289

5290

5291

5292

5293

5294

5295

5296

5297

5298

5299

5300

5301

5302

5303

5304

Page 105: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

SN

On

O

SO

N

Mai

n-c

hai

np

oly

mer

der

ived

fro

m3-

[(m

eth

yoxy

carb

on

yl)m

eth

yl]-

5-[4

0 -[N

-eth

yl-N

-(200-h

ydro

xyet

hyl

)am

ino

]

ben

zyli

den

e]rh

od

anin

e[F

ran

cis

etal

.19

93b

]

Po

lym

ers

are

pre

par

edb

ytr

anse

ster

icat

ion

inm

elt

at14

08C

for

8h

.

TgZ

638C

.

Mw

Z13

!10

3.

lm

axZ

473

nm

.

n(7

90n

m)Z

1.76

0.

Co

nta

ctp

ole

dw

ith

43V

/mm

at658C

.

d3

3(1

.58

mm

)Z7.

3p

m/V

.

O S O

OH

n

N

C4H

9

4-am

ino

-40 -a

lkyl

sulf

on

ylto

lan

em

ain

-ch

ain

po

lym

er[Z

ente

let

al.

1993

]

Po

lym

ers

are

coro

na

po

led

du

rin

gm

elt

po

lym

eriz

atio

nat

1508

Cfo

ra

few

ho

urs

.

TgZ

608C

.

lm

axZ

366

nm

.

d3

3(1

.064

mm

)Z12

.5p

m/V

.

Act

ivit

yd

ecay

sb

y40

%in

25d

ays

atam

bie

nt

con

dit

ion

s.

1 4

2 &

3

O(C

H2)

6O

O(C

H2)

6O

O(C

H2)

6O

O(C

H2)

15

O(C

H2)

15

O(C

H2)

15

OO

CN

xO

O

OO

N

N

1-x

x1-

x

x1-

x

Mai

n-c

hai

np

oly

este

rsd

eriv

edfr

om

6-h

ydro

xyh

exyl

oxy

ph

enyl

pro

pen

oic

,az

ob

enzo

ic,

or

eth

enyl

ben

zoic

acid

s

[S’h

eere

net

al.

1993

b]

Po

lym

ers

are

pre

par

edb

ym

elt

po

lyco

nd

ensa

tio

nat

2208

C,

1.3

mb

ar

for

4h

.

Fil

ms

are

of

pal

eye

llo

win

colo

r.

d3

3va

lues

are

mea

sure

dat

1.06

4m

maf

ter

coro

na

po

lin

gat

108C

abo

veT

g.

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:29—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-105

Article in Press

5305

5306

5307

5308

5309

5310

5311

5312

5313

5314

5315

5316

5317

5318

5319

5320

5321

5322

5323

5324

5325

5326

5327

5328

5329

5330

5331

5332

5333

5334

5335

5336

5337

5338

5339

5340

5341

5342

5343

5344

5345

5346

5347

5348

5349

5350

5351

5352

5353

5354

5355

Page 106: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E6.

3(C

on

tin

ued

)

Stru

ctu

rean

dN

om

encl

atu

re(R

ef)

Pro

per

ties

1

2

NN

CN

NC

OO

O

OO

n

N

CN

NC

N

n

N

NO

Mai

n-c

hai

nac

cord

ion

po

lym

ers

of

a-c

yan

oci

nn

amam

ides

[Lin

dsa

yet

al.

1992

;W

ang

and

Gu

an19

92]

Po

lym

er2

was

coro

na

po

led

.A

ctiv

ity

isfo

un

dto

be

stab

leat

roo

m

tem

per

atu

re.

X =

1 2 3

NN

NO

SO

OO O

NN

O

O

O

(CH

2)6O

X

n

O

Ran

do

mm

ain

-ch

ain

po

lym

ers

con

tain

ing

4-N

,N-d

ialk

ylam

ino

-40 -h

exyl

sulf

on

ylaz

ob

enze

ne

[Xu

etal

.199

3,19

92a]

Po

lym

ers

are

pre

par

edb

yC

on

den

sati

on

ind

ioxa

ne

solu

tio

n.

d3

3va

lues

are

mea

sure

dat

1.06

4m

maf

ter

coro

na

po

lin

gat

abo

ut

1208

C.

15018—Chapter7—26/8/2006—22:30—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-106 Handbook of Photonics

Article in Press

5356

5357

5358

5359

5360

5361

5362

5363

5364

5365

5366

5367

5368

5369

5370

5371

5372

5373

5374

5375

5376

5377

5378

5379

5380

5381

5382

5383

5384

5385

5386

5387

5388

5389

5390

5391

5392

5393

5394

5395

5396

5397

5398

5399

5400

5401

5402

5403

5404

5405

5406

Page 107: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

Cro

ss-l

inke

dpo

lym

ers

N NO

2

OO

nN

OH

OH

Cro

ss-L

inke

dep

oxy

po

lym

erfr

om

4-n

itro

-1,

2-p

hen

ylen

edia

min

ean

db

isp

hen

ol-

Ad

igly

cid

ylet

her

[Eic

het

al.

1989

a]

Th

erm

alcr

oss

-lin

kin

gis

ach

ieve

db

yp

rocu

rin

gat

1008

Cfo

r3

hat

1408

Cfo

r16

hu

nd

era

coro

na

po

lin

gfi

eld

.

lm

axZ

410

nm

.

n(6

33n

m)

Z1.

629.

d3

3(1

.06

mm

)Z13

.5p

m/V

.

No

dec

ayo

fSH

Gac

tivi

tyis

ob

serv

edfo

r36

min

sat

808C

.

OH

N NO

2N

O2

N

OH

Nn

Cro

ss-l

inke

dep

oxy

po

lym

erfr

om

N,N

-(d

igly

cid

yl)-

4-n

itro

anil

ine

and

N-(

2-am

ino

ph

enyl

)-4-

nit

roan

ilin

e

[Ju

ngb

auer

etal

.19

90]

Th

erm

alcr

oss

-lin

kin

gis

ach

ieve

db

yp

rocu

rin

gat

1308

Cfo

r4

min

and

at12

08C

for

24h

un

der

aco

ron

ap

oli

ng

fiel

d.

lm

axZ

397

nm

.

Hig

hd

yeco

nte

nt:

63w

t%.

n(6

33n

m)Z

1.74

.

d3

3(1

.064

mm

)Z50

pm

/V.

Stab

leac

tivi

tyis

ob

serv

edat

80%

of

init

ial

valu

eat

808C

. (con

tin

ued

)

15018—Chapter7—26/8/2006—22:30—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-107

Article in Press

5407

5408

5409

5410

5411

5412

5413

5414

5415

5416

5417

5418

5419

5420

5421

5422

5423

5424

5425

5426

5427

5428

5429

5430

5431

5432

5433

5434

5435

5436

5437

5438

5439

5440

5441

5442

5443

5444

5445

5446

5447

5448

5449

5450

5451

5452

5453

5454

5455

5456

5457

Page 108: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E6.

3(C

on

tin

ued

)

Stru

ctu

rean

dN

om

encl

atu

re(R

ef)

Pro

per

ties

O

O

O

O

ON

N

N

NO

SN

O

O

O

OO

OON

NN

O

O

S

O

A

B

Cro

ss-l

inke

dm

eth

acry

late

po

lym

erco

nta

inin

g4-

N,N

-dia

lkyl

amin

o-4

0 -N,N

-dia

lkyl

amin

osu

lfo

nyl

azo

ben

zen

e

[Wan

get

al.

1993

;A

llen

etal

.19

91]

Cro

ss-l

inki

ng

isin

itia

ted

wit

hfr

eera

dic

als

un

der

aco

ron

ap

oli

ng

fiel

d.

lm

axZ

480

nm

.

r 33

(633

mm

)Z36

pm

/V;

r 33

(1.3

mm

)Z6.

6p

m/V

.

No

dec

ayo

fac

tivi

tyis

ob

serv

edo

ver

8m

on

ths

atam

bie

nt

con

dit

ion

s

for

A.

Hig

her

tem

po

ral

stab

ilit

yfo

un

dfo

rB

.

OO

OH

OH

OO

OH

OH

OO

OH

OH

N NO

2

OO

OH

OH

OO

OH

OH

N

N N

N

A B

Cro

ss-l

inke

dp

oly

mer

fro

ma

reac

tive

dia

min

ed

eriv

ativ

eo

f4-

N,

N-d

imet

hyl

amin

o-4

0 -nit

roaz

ob

enze

ne

and

oli

gom

eric

der

ivat

ive

of

dig

lyci

dyl

eth

ero

fb

isp

hen

ol

A[H

ub

bar

d19

92]

Th

erm

alcr

oss

-lin

kin

gis

ach

ieve

dp

rocu

rin

gat

1008

Cfo

r3

han

dat

1308

Cfo

r2

ho

ur

aco

ron

ap

oli

ng

fiel

d.

r#Z

6!10

20

cm-3

for

B.

d3

3(1

.064

mm

)Z3(

A)-

6(B

)p

m/V

.

Tem

po

ral

stab

ilit

y:t

1(2

58C

)Z6(

A)–

4.1(

B)

day

san

dt

2(2

58C

)Z12

0(A

)K30

0(B

)d

aya;

t1(8

58C

)Z1.

6(B

)d

ays

and

t2(8

58C

)Z12

0(B

)

day

s.

15018—Chapter7—26/8/2006—22:30—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-108 Handbook of Photonics

Article in Press

5458

5459

5460

5461

5462

5463

5464

5465

5466

5467

5468

5469

5470

5471

5472

5473

5474

5475

5476

5477

5478

5479

5480

5481

5482

5483

5484

5485

5486

5487

5488

5489

5490

5491

5492

5493

5494

5495

5496

5497

5498

5499

5500

5501

5502

5503

5504

5505

5506

5507

5508

Page 109: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

N

O

N

N

NN

NR

O O

N

OO

R

N

ON

R

N

NR

=

NC

CN

CN

Tri

azin

ecr

oss

-lin

ked

po

lym

ero

bta

ined

fro

mp(

N,N

-bis

(40 -c

yan

ato

ben

zyl)

amin

o-p

0 -(2,

2dic

yan

ovi

nyl

)azo

ben

zen

e

(Ho

llan

dan

dF

ang

1992

;Si

nge

ret

al.

1991

)

Po

lym

ers

are

pre

par

edb

yp

oly

-acy

clo

trim

eriz

atio

nat

1508

Cu

nd

era

po

lin

gfi

eld

for

seve

ral

ho

urs

.

r 33(8

30n

m)Z

11p

m/V

.

Hig

hst

abil

ity

iso

bse

rved

at858C

.

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:30—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-109

Article in Press

5509

5510

5511

5512

5513

5514

5515

5516

5517

5518

5519

5520

5521

5522

5523

5524

5525

5526

5527

5528

5529

5530

5531

5532

5533

5534

5535

5536

5537

5538

5539

5540

5541

5542

5543

5544

5545

5546

5547

5548

5549

5550

5551

5552

5553

5554

5555

5556

5557

5558

5559

Page 110: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E6.

3(C

on

tin

ued

)

Stru

ctu

rean

dN

om

encl

atu

re(R

ef)

Pro

per

ties

O

N

NC

O

NC

O

OO

OC

NON

NN

S

SN N

H2

HO

Iso

cyan

ate

cro

ss-l

inke

dp

oly

mer

der

ived

fro

mtr

is-1

-hex

amet

hyl

enei

socy

anat

eis

ocy

anu

rate

and

3-am

ino

-5-[

40 (N

-

eth

yl-N

-(200-h

ydro

xyet

hyl

)am

ino

)ben

zyli

den

e]-r

ho

dan

ine

(Fra

nci

set

al.

1993

a)

Th

erm

ally

cro

ss-l

inke

dat

1358

Cfo

r16

h.

lm

axZ

470

nm

.

n(1

.3m

m)Z

1.61

1.

Do

pin

gle

vel:

60m

ol%

.

Co

nta

ctp

ole

dw

ith

100

V/m

mat

1358

C.

d3

3(1

.58

mm

)Z6.

9p

m/V

.

r 33(1

.3m

m)Z

3.6

pm

/V.

Act

ivit

yd

ecay

sb

y30

%in

150

day

sat

1008

Cd

ue

toth

erm

al

dec

om

po

siti

on

.

O

Nx

1-x

O

O*

NO

2

OO

Cro

ss-l

inke

dep

oxy

po

lym

erfr

om

1,2,

7,8-

die

po

xyo

ctan

ean

dN

-(3-

hyd

roxy

-4-n

itro

ph

enly

)-(S

)-p

roli

no

xy

fun

ctio

nal

ized

po

ly(p

-hyd

roxy

styr

ene)

cop

oly

mer

(Par

ket

al.

1990

)

Th

erm

alcr

oss

-lin

kin

gis

ach

ieve

db

yp

rocu

rin

gat

1008

Cfo

r24

han

d

at18

08C

for

1h

ou

ru

nd

era

coro

na

po

lin

gfi

eld

.

Hig

hd

yeco

nte

nt:

16w

t%.

die

po

xid

e/p

hen

ol

rati

o:

0.5.

d3

3(1

.06

mm

)Z3

pm

/V.

Tem

po

ral

stab

ilit

y:t

1(2

58C

)Z79

day

san

dt

2(2

58C

)Z10

0d

ays.

15018—Chapter7—26/8/2006—22:31—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-110 Handbook of Photonics

Article in Press

5560

5561

5562

5563

5564

5565

5566

5567

5568

5569

5570

5571

5572

5573

5574

5575

5576

5577

5578

5579

5580

5581

5582

5583

5584

5585

5586

5587

5588

5589

5590

5591

5592

5593

5594

5595

5596

5597

5598

5599

5600

5601

5602

5603

5604

5605

5606

5607

5608

5609

5610

Page 111: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

N N

N

SO

2C3F

7

NO

2

NO

2

R =

ZY

X

OO

OO

OO N

A B C

N

OO

Cro

ss-l

inke

dh

om

o-a

nd

cop

oly

mer

so

fis

ocy

anat

oet

hyl

met

hac

ryla

te,

MM

A,

and

dim

eth

ylam

ino

eth

yl

met

hac

ryla

te.

(Ch

eng

etal

.19

92)

Co

ron

ap

ole

dn

ear

Tg.

d3

3va

lues

are

mea

sure

dat

1.06

4m

m.

d3

3o

fA

are

stab

leat

roo

mte

mp

erat

ure

.

Act

ivit

yd

ecay

sb

y10

%in

100

day

sat

808C

for

po

lym

erB

and

C.

a(1

.06

mm

)z-(

1.5-

3)d

B/c

m.

O O

O

O O

O

O

m

n

n

NN

NSO

O

OO

SN

NN

O O

O OO

O

N

n

O

ON

1 2

Cro

ss-l

inke

dsi

de-

chai

np

oly

mer

sco

nta

inin

g4-

N,N

-dia

lkyl

amin

o-4

0 -alk

ylsu

lfo

nyl

azo

ben

zen

e[X

uet

al.1

992b

;Sh

i

etal

.19

93]

Th

erm

alcr

oss

-lin

kin

gu

nd

erco

ron

ap

oli

ng

fiel

d:

(1)

wit

hin

itia

tors

;

(2)

wit

ho

ut

init

iato

r.

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:31—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-111

Article in Press

5611

5612

5613

5614

5615

5616

5617

5618

5619

5620

5621

5622

5623

5624

5625

5626

5627

5628

5629

5630

5631

5632

5633

5634

5635

5636

5637

5638

5639

5640

5641

5642

5643

5644

5645

5646

5647

5648

5649

5650

5651

5652

5653

5654

5655

5656

5657

5658

5659

5660

5661

Page 112: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E6.

3(C

on

tin

ued

)

Stru

ctu

rean

dN

om

encl

atu

re(R

ef)

Pro

per

ties

O O O

O

O

O

OH

N

NO

2

NO

2

O2N

O

NO

OH

O

O

OH

NN

NN

NO

O

OH

O

OO

H

with

1,2

, or

30.

4

0.6

1 2 3

NN N

N

NN

Cro

ss-l

inke

dep

oxy

po

lym

ers

con

tain

ing

dia

lkya

min

on

itro

azo

ben

zen

ed

eriv

ativ

es[M

ull

eret

al.

1993

]

Cro

ss-l

inke

dp

oly

mer

sar

ep

rep

ared

wit

h10

–20

wt%

PM

MA

asa

bin

der

.

Fil

ms

are

char

acte

rize

das

hav

ing

goo

dto

exce

llen

to

pti

cal

qu

alit

y.

r 33

valu

esar

em

easu

red

at1.

32m

maf

ter

coro

na

po

lin

gat

abo

ut

1408

Cfo

r8

h.

NN

N

OO

NN N

O2

n

Cro

ss-L

inke

dp

oly

mer

con

tain

ing

4-am

ino

-40 -n

itro

azo

ben

zen

e(Y

uet

al.

1992

)

Pre

po

lym

erco

nta

inin

get

hyn

ylgr

ou

pis

ther

mal

lycr

oss

-lin

ked

at

1908

Cfo

r2

hu

nd

era

coro

na

po

lin

gfi

eld

.

lm

axz

470

nm

.

d3

3(1

.064

mm

)Z20

pm

/V.

Act

ivit

yd

ecay

sto

75%

of

init

ial

valu

eaf

ter

30d

ays

at908C

.

15018—Chapter7—26/8/2006—22:31—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-112 Handbook of Photonics

Article in Press

5662

5663

5664

5665

5666

5667

5668

5669

5670

5671

5672

5673

5674

5675

5676

5677

5678

5679

5680

5681

5682

5683

5684

5685

5686

5687

5688

5689

5690

5691

5692

5693

5694

5695

5696

5697

5698

5699

5700

5701

5702

5703

5704

5705

5706

5707

5708

5709

5710

5711

5712

Page 113: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

NN

NN N

O2

N

OO

O

O

O

O

OO

N

O

On

N

O

O

N

O

Cro

ss-L

inke

dp

oly

ure

than

eco

nta

inin

g4-

N,N

-dia

lkyl

amin

o-4

0 -nit

roaz

ob

enze

ne(

Ch

enet

al.

1992

;Sh

iet

al.

1992

)

Oli

gom

eric

pre

po

lym

eris

ther

mal

lycr

oss

-lin

ked

wit

h

trie

than

ola

min

eat

1608

Cfo

ran

ho

ur

un

der

aco

ron

ap

oli

ng

fiel

d.

lm

axZ

475

nm

.

n(6

33n

m)Z

1.75

3;n

(800

nm

)Z1.

692.

d3

3(1

.06

mm

)Z12

0p

m/V

.

r 13(6

33m

m)Z

13p

m/V

.;r 1

3(8

00n

m)Z

5p

m/V

.

No

dec

ayo

fac

tivi

tyis

ob

serv

edat

amb

ien

tfo

r4

mo

nth

s;ac

tivi

ty

stab

lize

sto

70%

of

init

ial

valu

eaf

ter

4m

on

ths

at908C

.

ON

OO

NN

On

(CH

2)6

O

O

O

ONNO

S(C

H2)

6ON

N

Cro

ss-L

inke

dra

nd

om

mai

n-c

hai

np

oly

mer

con

tain

ing

4-N

,N-d

ialk

amin

o-4

0 -hex

ylsu

lfo

nyl

azo

ben

zen

ean

d3,

30 -

dia

nis

idin

ed

iiso

cyan

ate

(Xu

1992

;R

ano

net

al.

1993

;X

uet

al.

1993

)

Th

erm

ally

cro

ss-l

inke

du

nd

era

coro

na

po

lin

gfi

eld

at12

58C

for

2h

.

Pre

po

lym

erM

wZ

8!10

3.

lm

axZ

440

nm

.

d3

3(1

.064

mm

)Z40

pm

/V.

90%

acti

vity

rem

ain

sst

able

atam

bie

nt

con

dit

ion

sfo

rO

3m

on

ths.

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:31—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-113

Article in Press

5713

5714

5715

5716

5717

5718

5719

5720

5721

5722

5723

5724

5725

5726

5727

5728

5729

5730

5731

5732

5733

5734

5735

5736

5737

5738

5739

5740

5741

5742

5743

5744

5745

5746

5747

5748

5749

5750

5751

5752

5753

5754

5755

5756

5757

5758

5759

5760

5761

5762

5763

Page 114: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E6.

3(C

on

tin

ued

)

Stru

ctu

rean

dN

om

encl

atu

re(R

ef)

Pro

per

ties

NN

O2

O

OO

OS

i

OH

NN

Alk

oxy

sila

ne

der

ivat

ive

of

4(-4

0 nit

rop

hen

ylaz

o)-

ph

enyl

amin

ecr

oss

-lin

ked

wit

h1,

1,1-

tris

(4-h

ydro

yph

enyl

)eth

ane

(Jen

get

al.

1993

)

Th

erm

ally

cro

ss-l

inki

ng

occ

urs

at20

08C

.

TgZ

1108

C.

lm

axZ

493

nm

.

n(5

33n

m)Z

1.74

4.

Do

pin

gle

vel:

50m

ol%

.

Co

ron

ap

ole

dat

2008

Cfo

r30

min

.

d3

3(1

.06

mm

)Z77

pm

/V.

d3

3(2

4h

rs,

1058

C)Z

62p

m/V

.

No

dec

ayo

fac

tivi

tyis

ob

serv

edfo

r7

day

sat

amb

ien

tco

nd

itio

ns.

OH

(H3C

O) 3

Si

NO

2

[(S

iO)

>1

(C6H

5) <

0.5

(OC

2H5)

<0.

5 (O

H)

<0.

5 ] n

NN

ON

Alk

oxy

sila

ne

der

ivat

ive

of

4-(4

0 nit

rop

hen

ylaz

o)-

ph

enyl

amin

ecr

oss

-lin

ked

wit

hp

hen

ylsi

loxa

ne

po

lym

er(A

llie

d

Sign

alA

ccu

glas

s20

4w)

(Jen

get

al.

1992

a)

Th

erm

alcr

oss

-lin

kin

go

ccu

rsat

2008

C.

lm

axZ

493

nm

.

n(5

33n

m)Z

1.53

7.

Do

pin

gle

vel:

0.1

gd

yein

4g

of

A20

4.

Co

ron

ap

ole

dat

2008

Cfo

r10

min

.

d3

3(1

.06

mm

)Z5.

28p

m/V

.

d3

3(4

0h

,10

08C

)Z2.

9p

m/V

.

NN

OH

(H3C

O) 3

Si

O O

N

HO

NO

2

OO

OH

N

nO

ON

Alk

oxy

sila

ne

der

ivat

ive

of

4-(4

0 -nit

rop

hen

ylaz

o)p

hen

ylam

ine/

po

lyim

ide(

Skyb

on

dw

)co

mp

osi

te(J

eng

etal

.199

2b)

Tg

O27

58C

.

lm

axZ

466

nm

.

Do

pin

gle

vel:1

6w

t%.

Exc

elle

nt

op

tica

lq

ual

ity.

Co

ron

ap

ole

dat

2208

C.

d3

3(1

.06

mm

)Z13

.7p

m/V

.

Stab

led

33

(168

h,

1208

C)Z

10p

m/V

.

No

velt

y:co

mp

osi

teo

fp

oly

imid

ean

dSi

-O-S

in

etw

ork

.

15018—Chapter7—26/8/2006—22:32—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-114 Handbook of Photonics

Article in Press

5764

5765

5766

5767

5768

5769

5770

5771

5772

5773

5774

5775

5776

5777

5778

5779

5780

5781

5782

5783

5784

5785

5786

5787

5788

5789

5790

5791

5792

5793

5794

5795

5796

5797

5798

5799

5800

5801

5802

5803

5804

5805

5806

5807

5808

5809

5810

5811

5812

5813

5814

Page 115: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

O N

O

OO

O

O

O

O

NO

2

O

n

N

NO

2

N

Si

OH

NN

ON

Inte

rpen

etra

tin

gn

etw

ork

of

epo

xyan

dsi

lico

n-b

ased

cro

ss-l

inke

dp

oly

mer

s(M

artu

run

kaku

let

al.

1993

)

Eq

ual

wei

ght

rati

oo

fth

etw

op

oly

mer

sis

hea

ted

at20

08C

for

1h

un

der

aco

ron

ap

oli

ng

fiel

d.

Fil

ms

are

hig

ho

pti

cal

qu

alit

y.

TgZ

1768

C.

lm

axZ

458

nm

.

N(5

33n

m)Z

1.70

8.

d3

3(1

.064

mm

)Z33

pm

/V.

No

dec

ayo

fac

tivi

tyis

ob

serv

edat

1008

Cfo

r7

day

s,50

%d

ecay

is

ob

serv

edaf

ter

15h

at16

08C

.

O

ON

SO

2CH

3

O

O

Cro

ss-l

inke

dac

ryla

tep

oly

mer

of

40 -N

,N-b

is(6

-met

hac

royl

oxy

hex

yl)-

amin

o-4

-met

hyl

sulf

on

ylst

ilb

ene

(Ro

bel

lo

etal

.19

91b

)

Liq

uid

mo

no

mer

sar

ecr

oss

-lin

ked

by

UV

irra

dia

tio

nw

ith

init

iato

rat

roo

mte

mp

erat

ure

.

Tg

!708C

.

Go

od

op

tica

lq

ual

ity.

Co

nta

ctp

ole

dw

ith

6.7

V/m

m.

d3

3(1

.06

mm

)Z0.

7p

m/V

.

Act

ivit

yd

ecay

sto

zero

inse

vera

lm

on

ths

atam

bie

nt

con

dit

ion

s.

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:32—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-115

Article in Press

5815

5816

5817

5818

5819

5820

5821

5822

5823

5824

5825

5826

5827

5828

5829

5830

5831

5832

5833

5834

5835

5836

5837

5838

5839

5840

5841

5842

5843

5844

5845

5846

5847

5848

5849

5850

5851

5852

5853

5854

5855

5856

5857

5858

5859

5860

5861

5862

5863

5864

5865

Page 116: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E6.

3(C

on

tin

ued

)

Stru

ctu

rean

dN

om

encl

atu

re(R

ef)

Pro

per

ties

O

On

O

N

ON

NO

O

NO

2

Cro

ss-l

inke

dp

oly

mer

of

po

lyvi

nyl

cin

nam

ate

do

ped

wit

h3-

cin

nam

oyl

oxy

-4-[

4-(N

,N-d

ieth

ylam

ino

)-2-

cin

nam

oyl

oxy

ph

enyl

azo

]n

itro

ben

zen

e(M

and

alet

al.

1991

a,19

91b

)

Cro

ss-l

inki

ng

isin

du

ced

by

UV

irra

dia

tio

n(2

mw

/cm

2at

254

nm

for

3to

10m

in)

at708C

.

TgZ

848C

(bef

ore

cro

ss-l

inki

ng)

.

lm

axZ

520

nm

.

Do

pin

gle

vel:

10w

t%.

n(6

33n

m)Z

1.67

7.

Co

ron

ap

ole

dat

708C

du

rin

gU

Vir

rad

iati

on

.

d3

3(1

.064

mm

)Z11

.5p

m/V

.

d3

3(1

.54

mm

)Z3.

7p

m/V

.

r 33(6

33n

m)Z

9pm

/V.

No

dec

ayo

fac

tivi

tyis

ob

serv

edin

22h

atam

bie

nt

con

dit

ion

s

N

O

NO

2

O

N

NO

O

O

RO O

O

OO

O

R

Br

R =

A

= B

R

0.72

Cro

ss-l

inke

dsi

de-

chai

nci

nn

amat

eo

rfu

ryla

cryl

ate

po

lym

ers

do

ped

wit

hci

nn

amo

ylo

xyo

rfu

ryla

cryl

oyl

oxy

fun

ctio

nal

ized

4-N

,N-d

ieth

ylam

ino

40 -a

zon

itro

ben

zen

e(M

ull

eret

al.

1992

b)

Ph

oto

-cro

ss-l

inki

ng

wit

h1.

8m

w/c

m2

at31

2n

mat

758C

for

4(A

)

and

2(B

)h

toac

hie

ve60

%re

acti

on

.

Bca

nn

ot

be

po

led

un

der

irra

dia

tio

nan

dis

po

led

wit

ha

cycl

eo

f

po

lin

g(1

0m

inat

258C

)an

dcr

oss

-lin

kin

g(2

0m

inat

K158C

)fo

ra

tota

lex

po

sure

tim

eo

f2

h.

r 33(1

.32

mm

)Z0.

6p

m/V

.

Act

ivit

yre

mai

ns

stab

leaf

ter

3h

at808C

.

15018—Chapter7—26/8/2006—22:32—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-116 Handbook of Photonics

Article in Press

5866

5867

5868

5869

5870

5871

5872

5873

5874

5875

5876

5877

5878

5879

5880

5881

5882

5883

5884

5885

5886

5887

5888

5889

5890

5891

5892

5893

5894

5895

5896

5897

5898

5899

5900

5901

5902

5903

5904

5905

5906

5907

5908

5909

5910

5911

5912

5913

5914

5915

5916

Page 117: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

O

O

O

O

O R

NO

2

N

NN

NO

2

mn

R =

AB

Cro

ss-l

inke

dsi

de-

chai

nci

nn

amat

eco

po

lym

ers

fun

ctio

nal

ized

wit

h4-

alko

xy-4

0 -bip

hen

ylo

f4-

N,N

-die

thyl

amin

o

40 -a

zon

itro

ben

zen

e[K

ato

etal

.19

93]

Ph

oto

-cro

ss-l

inki

ng

wit

hU

Vli

ght

un

der

coro

na

po

lin

gfi

eld

:(A

)

1.5

min

at508C

;(B

)10

min

atro

om

tem

per

atu

re.

Bo

thp

oly

mer

s

wer

esu

bse

qu

entl

yp

ole

dat

1508

Cfo

r20

min

.

Act

ivit

ies

are

stab

leat

roo

mte

mp

erat

ure

.

N N

N NO

2

O

O

OO

nO

O

Cro

ss-l

inke

dep

oxy

po

lym

erco

nta

inin

g4-

amin

o-4

0 -nit

roaz

ob

enze

ne

(Jen

get

al.

1992

c)

Pre

po

lym

erco

nta

inin

gci

nn

amo

ylgr

ou

pis

cro

ss-l

inke

db

yU

V

irra

dia

tio

nat

3M

W/c

m2

for

10m

in.

lm

axZ

461

nm

.

n(5

33n

m)Z

1.71

8.

Co

ron

ap

ole

dat

1158

Cfo

r1

ho

ur.

d3

3(1

.064

mm

)Z22

pm

/V.

95%

of

SHG

acti

vity

rem

ain

sst

able

afte

r20

day

sat

amb

ien

t

con

dit

ion

s.

(con

tin

ued

)

15018—Chapter7—26/8/2006—22:32—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Second- and Third-Order Nonlinear Optical Materials 7-117

Article in Press

5917

5918

5919

5920

5921

5922

5923

5924

5925

5926

5927

5928

5929

5930

5931

5932

5933

5934

5935

5936

5937

5938

5939

5940

5941

5942

5943

5944

5945

5946

5947

5948

5949

5950

5951

5952

5953

5954

5955

5956

5957

5958

5959

5960

5961

5962

5963

5964

5965

5966

5967

Page 118: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

TA

BL

E6.

3(C

on

tin

ued

)

Stru

ctu

rean

dN

om

encl

atu

re(R

ef)

Pro

per

ties

NS

(CH

2)6O

OOO

O

On

NN

Cro

ss-l

inke

d,

ran

do

m,

mai

n-c

hai

np

oly

mer

con

tain

ing

4-N

,N-d

ialk

yam

ino

-40 -h

exyl

sulf

on

ylaz

ob

enze

ne

and

cin

nam

oyl

gro

up

s(X

uet

al.

1993

;C

hen

etal

.19

91)

Ph

oto

-cro

ss-l

inke

du

nd

era

coro

na

po

lin

gfi

eld

.

Pre

po

lym

erM

wZ

8.5!

103.

Dye

con

ten

tZ53

wt%

.

lm

axZ

443

nm

.

d3

3(1

.064

mm

)Z15

0p

m/V

.

90%

acti

vity

rem

ain

sst

able

atam

bie

nt

con

dit

ion

sfo

r25

day

s.

15018—Chapter7—26/8/2006—22:33—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

7-118 Handbook of Photonics

Article in Press

5968

5969

5970

5971

5972

5973

5974

5975

5976

5977

5978

5979

5980

5981

5982

5983

5984

5985

5986

5987

5988

5989

5990

5991

5992

5993

5994

5995

5996

5997

5998

5999

6000

6001

6002

6003

6004

6005

6006

6007

6008

6009

6010

6011

6012

6013

6014

6015

6016

6017

6018

Page 119: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

Q2

Second- and Third-Order Nonlinear Optical Materials 7-119

Article in Press

6019

6020

6021

6022

6023

6024

6025

6026

6027

6028

6029

6030

6031

6032

6033

6034

6035

6036

6037

6038

6039

6040

6041

6042

6043

6044

6045

6046

6047

6048

6049

6050

6051

6052

6053

6054

6055

6056

6057

6058

6059

6060

6061

6062

6063

6064

6065

6066

6067

6068

6069

References

1. Shen, Y. R. 1984. Principles of Nonlinear Optics. Wiley, New York.

2. Butcher, P. N. and Corter, D. 1990. The Elements of Nonlinear Optics. Cambridge University Press,

New York.

3. Prasad, P. and Williams, D. J. 1991. Introduction to Nonlinear Optical Effects in Molecules and

Polymers. Wiley, New York.

4. Hornak, L. A. ed. 1992. Polymers for Lightwave and Integrated Optics, pp. 609–661. Marcel Dekker,

New York.

5. Zyss, J. ed. 1994. Molecular Nonlinear Optics, pp. 609–661. Academic Press, New York.

6. Nalwa, H. S. and Miyata, S. eds. 1997. Nonlinear Optics of Organic Molecules and Polymers,

pp. 609–661. CRC Press, Boca Raton, FL.

7. Dalton, L. R. 1998. Polymers for electro-optic modulator waveguides, In Electrical and Optical

Polymer Systems: Fundamentals, Methods, and Applications, D. L. Wise, T. M. Cooper, J. D.

Gresser, D. J. Trantolo, and G. W. Wnek, eds., pp. 609–661. World Scientific, Singapore.

8. Kuzyk, M. G. and Dirk, C. W. eds. 1998. Characterization Techniques and Tabulations for Organic

Nonlinear Optical Materials, pp. 8–33. Marcel Dekker, New York.

9. Dalton, L. R., Harper, A. W., Ren, A., Wang, F., Todorova, G., Chen, J., Zhang, C., and Lee, M.

1999. Polymeric electro-optic modulators: from chromophore design to integration with

semiconductor VLSI electronics and silica fiber optics. Industrial and Engineering Chemistry

Research, 38, 8–33.

10. Dalton, L. R. 2001. Nonlinear optical polymeric materials: from chromophore design to

commercial applications. Advances in Polymer Science., Vol. 158 Heidelberg, pp. 1–86.

11. Dalton, L. R. 2003. Rational design of organic electro-optic materials. Journal of Physics:

Condensed Matter, 15, R897–R934.

12. Dalton, L. R. 2004. Nonlinear optics—applications: electro-optics, EO. R.D. Guenther, ed., In

Encyclopedia of Modern Optics, vol. 3, pp. 121–129. Elsevier, Amsterdam.

13. Bosshard, C., Sutter, K., Pretre, P., Hulliger, J., Florsheimer, M., Kaatz, P., and Gunter, P. 1995. In

Organic nonlinear optical materials, A. Garito and F. Kajzar, eds., In Advances in Nonlinear Optics,

vol. 1, pp. 776–789. Gordon Breach, Basel.

14. Agawal, G. P., Cojan, C., and Flytzanis, C. 1978. Nonlinear optical properties of one-dimensional

semiconductors and conjugated polymers. Physical Review B, Condensed Matter, 17, 776–789.

15. Heflin, J. R., Wong, K. Y., Zamani-Kharmiri, O., and Garito, A. F. 1988. Nonlinear optical

properties of linear chains and electron-correlation effects. Physical Review B, Condensed Matter,

38, 1573–1576.

16. Kanis, D. R., Ratner, M. A., and Marks, T. J. 1994. Design and construction of molecular

assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chemical

Reviews, 94, 195–242.

17. Albert, I. D. L., Marks, T. J., and Ratner, M. A. 1998. Practical computational approaches to

molecular properties, In Characterization Techniques and Tabulations for Organic Nonlinear

Optical Materials, M. G. Kuzyk and C.W. Dirk, eds., pp. 37–109. Marcel Dekker, New York.

18. Qin, A., Bai, F., and Ye, C. 2003. Design of novel X-type second-order nonlinear optical

chromophores with low ground state dipole moment and large first hyperpolarizabilities.

Journal of Molecular Structure: Theochem, 631, 79–85.

19. Kang, H., Zhu, P., Yang, Y., Facchetti, A., and Marks, T. J. 2004. Self-Assembled electrooptic thin

films with remarkably blue-shifted optical absorption based on an X-shaped chromophore.

Journal of the American Chemical Society, 126, 15974–15975.

20. Keinan, S., Zojer, E., Bredas, J., Ratner, M., and Marks, T. 2003. Twisted p-system electro-optic

chromophores: a CIS vs. MRD-CI theoretical investigation. Journal of Molecular Structure:

Theochem, 633, 227–235.

15018—Chapter7—26/8/2006—22:33—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 120: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

Q3

7-120 Handbook of Photonics

Article in Press

6070

6071

6072

6073

6074

6075

6076

6077

6078

6079

6080

6081

6082

6083

6084

6085

6086

6087

6088

6089

6090

6091

6092

6093

6094

6095

6096

6097

6098

6099

6100

6101

6102

6103

6104

6105

6106

6107

6108

6109

6110

6111

6112

6113

6114

6115

6116

6117

6118

6119

6120

21. Kang, H., Facchetti, A., Zhu, P., Jiang, H., Yang, Y., Cariati, E., Righetto, S., Ugo, R., Liu, Z., Ho, S.,

and Marks, T. 2005. Exceptional molecular hyperpolarizabilities in twisted p-system chromo-

phores. Angewandte Chemie & Angewandte Chemie, International Edition in English, 44, 7922–

7925.

22. Breitung, E. M., Shu, C. F., and McMahon, R. J. 2000. Thiazole and thiophene analogues of

donor–acceptor stilbenes: Molecular hyperpolarizabilities and structure-property relationships.

Journal of the American Chemical Society, 122, 1154–1160.

23. Liao, Y., Eichinger, B., Firestone, K., Haller, M., Luo, J., Kaminsky, W., Benedict, J., Reid, P., Jen,

A., Dalton, L., and Robinson, B. 2005. Systematic study of the structure-property relationship of a

series of ferrocenyl nonlinear optical chromophores. Journal of the American Chemical Society,

127, 2758–2766.

24. Dalton, L. R., Robinson, B. H., Jen, A. K. Y., Reid, P., Eichinger, B., Sullivan, P., Akelaitis, A., Bale,

D., Haller, M., Luo, J., Liu, S., Liao, Y., Firestone, K., Bhatambrekar, N., Bhattacharjee, S., Sinness,

J., Hammond, S., Buker, N., Snoeberger, R., Lingwood, M., Rommel, H., Amend, J., Jang, S. H.,

Chen, A., and Steier, W. 2005. Acentric lattice electro-optic materials by rational design.

Proceedings of SPIE, 5912, 43–54.

25. Minhaeng, C., Sun, Y. A., Hochan, L., Ledoux, I., and Zyss, J. 2002. Nonlinear optical properties

of tetrahedral donor–acceptor octupolar molecules. Journal of Chemical Physics, 116, 9165–9173.

26. Le Bozec, H., Renouard, T., Bourgault, M., Dhenaut, C., Brasselet, S., Ledoux, I., and Zyss, J. 2001.

Molecular engineering of octupolar tris(bipyridyl) metal complexes. Synthetic Metals, 124, 185–

189.

27. Brunel, J., Juland, A., Ledoux, I., Zyss, J., and Blanchard-Desce, M. 2001. Boomerang-shaped

octupolar molecules derived from triphenylbenzene. Synthetic Metals, 124, 195–199.

28. Stegeman, G. I. and Torreuellas 1994. Issues in organics for nonlinear optics, In Electrical, Optical,

and Magnetic Properties of Prganic Solid State Materials, A. F. Garito, A. K. Y. Jen, C. Y. C. Lee, and

L. R. Dalton, eds., pp. 397–412. Materials Research Society, Pittsburgh.

29. Perry, J. W., Marder, S. R., Perry, K. J., Sleva, E. T., Yakymyshyn, C., Stewart, K. R., and Boden,

E. P. 1991. Organic salts with large electro-optic coefficient. Proceedings of SPIE, 1560, 302–309.

30. Burland, D. M., Miller, R. D., and Walsh, C. A. 1994. Second-order nonlinearity in poled-polymer

systems. Chemical Reviews, 94, 31–75.

31. Dalton, L. R., Harper, A. W., Ghosn, R., Steier, W. H., Ziari, M., Fetterman, H., Shi, Y., Mustacich,

R., Jen, A. K. Y., and Shea, K. J. 1995. Synthesis and processing of improved second order

nonlinear optical materials for applications in photonics. Chemistry of Materials, 7, 1060–1081.

32. Barto, R., Bedworth, P., Frank, C., Ermer, S., and Taylor, R. 2005. Near-infrared optical-

absorption behavior in high-beta nonlinear optical chromophore-polymer guest-host materials.

II. Dye spacer length effects in an amorphous polycarbonate copolymer host. Journal of Chemical

Physics, 122, 23, 1–14. 234907.

33. Barto, R., Frank, C., Bedworth, P., Ermer, S., and Taylor, R. 2004. Near-infrared optical absorption

behavior in high-b nonlinear optical chromophore-polymer guest-host materials. 1. Continuum

dielectric effects in polycarbonate hosts. Journal of Physical Chemistry B: Materials, Surfaces,

Interfaces & Biophysical, 108, 8702–8715.

34. Oviatt, H. W., Shea, K. J., Kalluri, S., Shi, Y., Steier, W. H., and Dalton, L. R. 1995. Applications of

organic bridged polysilsesquioxane xerogels to nonlinear optical materials by the sol-gel method.

Chemistry of Materials, 7, 493–498.

35. Mao, S. S. H., Ra, Y., Guo, L., Zhang, C., Dalton, L. R., Chen, A., Garner, S., and Steier, W. H.

1998. Progress towards device-quality second-order nonlinear optical materials: 1influence of

composition and processing conditions on nonlinearity, temporal stability and optical loss.

Chemistry of Materials, 10, 146–155.

36. Suresh, S., Chen, S., Topping, C., Ballato, J., and Smith, D. 2003. Novel perfluorocyclo-butyl

(PFCB) polymers containing isophorone derived chromophore for electro-optic [EO] appli-

cations. Proceedings of SPIE, 4991, 530–536.

15018—Chapter7—26/8/2006—22:33—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 121: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

Q

Second- and Third-Order Nonlinear Optical Materials 7-121

Article in Press

6121

6122

6123

6124

6125

6126

6127

6128

6129

6130

6131

6132

6133

6134

6135

6136

6137

6138

6139

6140

6141

6142

6143

6144

6145

6146

6147

6148

6149

6150

6151

6152

6153

6154

6155

6156

6157

6158

6159

6160

6161

6162

6163

6164

6165

6166

6167

6168

6169

6170

6171

37. Jin, D., Londergan, T., Huang, D., Wolf, N., Condon, S., Tolstedt, D., Guan, H., Cong, S., Johnson,

E., and Dinu, R. 2004. Achieving large electro-optic response: DH-type chromophores in both

crosslinked systems and linear high Tg systems. Proceedings of SPIE, 5351, 44–56.

38. Zhang, C., Zhang, H., Oh, M., Dalton, L., and Steier, W. 2003. What the ultimate polymeric

electro-optic materials will be: guest-host, crosslinked, or side-chain. Proceedings of SPIE, 4991,

537–551.

39. Bai, Y., Song, N., Gao, J. P., Yu, G., Sun, X., Wang, X., and Wang, Z. Y. 2005. A new approach to

highly electro-optically active materials using cross-linkable hyperbranched chromophore-

containing oligomers as a macromolecular dopant. Journal of the American Chemical Society,

127, 2060–2061.

40. Song, N., Men, L., Gao, J. P., Bai, Y., Beaudin, A. M. R., Yu, G., and Wang, Z. Y. 2004. Cross-

linkable zwitterionic polyimides with high electrooptic ceofficients at telecommunication

wavelengths. Chemistry of Materials, 16, 3708–3713.

41. Ma, H., Chen, B., Takafumi, S., Dalton, L. R., and Jen, A. K. Y. 2001. Highly efficient and thermally

stable nonlinear optical dendrimer for electro-optics. Journal of the American Chemical Society,

123, 986–987.

42. Jen, A. K. Y., Ma, J., Sassa, T., Liu, S., Suresh, S., Dalton, L. R., and Haller, M. 2001. Highly efficient

and thermally stable organic/polymeric electro-optic materials by dendritic approach. Proceed-

ings of SPIE, 4461, 172–179.

43. Ma, H., Liu, S., Luo, J., Suresh, S., Liu, L., Kang, S. H., Haller, M., Sassa, T., Jen, A. K. Y., and

Dalton, L. R. 2002. Highly efficient and thermally stable electro-optical dendrimers for photonics.

Advanced Functional Materials, 12, 565–574.

44. Luo, J., Haller, M., Ma, H., Liu, S., Kim, T. D., Tian, Y., Chen, B., Jang, S. H., Dalton, L. R., and Jen,

A. K. Y. 2004. Nanoscale architectural control and macromolecular engineering of nonlinear

optical dendrimers and polymers for electro-optics. Journal of Physical Chemistry B, 108, 8523–

8530.

45. Sullivan, P. A., Akelaitis, A. J. P., Lee, S. K., McGrew, G., Lee, S. K., Choi, D. H., and Dalton, L. R.

2006. Novel dendritic chromophores for electro-optics: influence of binding mode and

attachment flexibility on EO behavior. Chemistry of Materials, 18, 344–351.

46. Luo, J., Liu, S., Haller, M., Li, H., Kim, T. D., Kim, K. S., Tang, H. Z., Kang, S. H., Jang, S. H., Ma,

H., Dalton, L. R., and Jen, A. K. Y. 2003. Recent progress in developing highly efficient nonlinear

optical chromophores and side-chain dendronized polymers for electro-optics. Proceedings of

SPIE, 4991, 520–529.

47. Luo, J., Kim, T. D., Ma, H., Liu, S., Kang, S. H., Wong, S., Haller, M. A., Jang, S. H., Li, H., Barto,

R. R., Frank, C. W., Dalton, L. R., and Jen, A. K. Y. 2003. Nanoscale architectural control of

organic functional materials for photonics. Proceedings of SPIE, 5224, 104–112.

48. Luo, J., Liu, S., Haller, M., Kang, J. W., Kim, T. D., Jiang, S. H., Chen, B., Tucker, N. H., Li, H.,

Tang, H. Z., Dalton, L. R., Liao, Y., Robinson, B. H., and Jen, A. K. Y. 2004. Recent progress in

developing highly efficient and thermally stable nonlinear optical polymers for electrooptics.

Proceedings of SPIE, 5351, 36–43.

49. Haller, M., Luo, J., Li, H., Kim, T. D., Liao, Y., Robinson, B., Dalton, L. R., and Jen, A. K. Y. 2004.

A novel lattice-hardening process to achieve highly efficient and thermally stable nonlinear optical

polymers. Macromolecules, 37, 688–690.

50. Tucker, N., Li, H., Tang, H., Dalton, L. R., Liao, Y., Robinson, B. H., Jen, A. K. J., Luo, J., Liu, S.,

Haller, M., Kang, J., Kim, T., Jang, S., and Chen, B. 2004. Recent progress in developinghighly

efficient and thermally stable nonlinear optical polymers for electro-optics. Proceedings of SPIE,

5351, 36–43.

51. Jen, A., Luo, J., Kim, T. D., Chen, B., Jang, S. H., Kang, J. W., Tucker, N. M., Hau, S., Tian, Y., Ka,

J. W., Haller, M., Liao, Y., Robinson, B., Dalton, L., and Herman, W. 2005. Exceptional electro-

optic properties through molecular design and controlled self-assembly. Proceedings of SPIE,

4 5935, 5935061–5935113.

15018—Chapter7—26/8/2006—22:33—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 122: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

7-122 Handbook of Photonics

Article in Press

6172

6173

6174

6175

6176

6177

6178

6179

6180

6181

6182

6183

6184

6185

6186

6187

6188

6189

6190

6191

6192

6193

6194

6195

6196

6197

6198

6199

6200

6201

6202

6203

6204

6205

6206

6207

6208

6209

6210

6211

6212

6213

6214

6215

6216

6217

6218

6219

6220

6221

6222

52. Dalton, L., Robinson, B., Jen, A., Ried, P., Eichinger, B., Sullivan, P., Akelaitis, A., Bale, D., Haller,

M., Luo, J., Liu, S., Liao, Y., Firestone, K., Sago, A., Bhatambrekar, N., Bhattacharjee, S., Sinness, J.,

Hammond, S., Buker, N., Snoeberger, R., and Lingwood, M. 2005. Optimizing electro-optic

activity in chromophore/polymer composites and in organic chromophore glasses. Proceedings of

SPIE, 5990, 59000C-1-10.

53. Yitzchaik, S. and Marks, T. J. 1996. Chromophore self-assembled superlattices. Accounts of

Chemical Research, 29, 197–202.

54. Zhao, Y. G., Wu, A., Lu, H. L., Chang, S., Lu, W. K., Ho, S. T., Van der Boom, M., and Marks, T. J.

2001. Traveling wave electro-optic phase modulators based on intrinsically polar self assembled

chromophoric superlattices. Applied Physics Letters, 79, 587–589.

55. Zhu, P., van der Boom, M. E., Kang, H., Evmenenko, G., Dutta, P., and Marks, T. J. 2002.

Realization of expeditious layer-by-layer siloxane-based self-assembly as an efficient route to

structurally regular acentric superlattices with large electro-optic responses. Chemistry of

Materials, 14, 4982–4989.

56. Marks, T. J., Ho, S. T., Liu, Z., Zhu, P., Sun, D. G., Ma, J., Ziao, Y., and Kang, H. 2003. Electro optic

waveguide modulators by the integration of self-assembled superlattices with polymeric and

semiconductor materials. Proceedings of SPIE, 4991, 133–143.

57. Li, J., Neyman, P. J., Vercellino, M., Heflin, J. R., Duncan, R., and Evoy, S. 2004. Active photonic

crystal devices in self-assembled electro-optic polymeric materials. Materials Research Society

Symposia Proceedings, 817, 133–138.

58. Dalton, L. R., Harper, A. W., and Robinson, B. H. 1997. The role of London forces in defining

noncentrosymmetric order of high dipole moment-high hyperpolarizability chromophores in

electrically poled polymeric thin films. Proceedings of the National Academy of Sciences of the

United States of America, 94, 4842–4847.

59. Dalton, L. R., Harper, A. W., Chen, J., Sun, S., Mao, S. S., Garner, S., Chen, A., and Steier, W. H.

1997. The role of intermolecular interactions in fabricating hardened electro-optic materials.

Proceedings of SPIE, CR68, 313–321.

60. Harper, A. W., Sun, S., Dalton, L. R., Garner, S. M., Chen, A., Kalluri, S., Steier, W. H., and

Robinson, B. H. 1998. Translating microscopic optical nonlinearity to macroscopic optical

nonlinearity: The role of chromophore-chromophore electrostatic interactions. Journal of the

Optical Society of America B, Optical Physics, 15, 329–337.

61. Robinson, B. H. and Dalton, L. R. 2000. Monte Carlo statistical mechanical simulations of the

competition of intermolecular electrostatic and poling field interactions in defining macroscopic

electro-optic activity for organic chromophore/polymer materials. Journal of Physical Chemistry,

104, 4785–4795.

62. Dalton, L. R., Robinson, B. H., Jen, A. K. Y., Steier, W. H., and Nielsen, R. 2003. Systematic

development of high bandwidth, low drive voltage organic electro-optic devices and their

applications. Optical Materials, 21, 19–28.

63. Nielsen, R. D., Rommel, H. L., and Robinson, B. H. 2004. Simulation of the loading parameter in

organic nonlinear optical materials. Journal of Physical Chemistry B: Materials, Surfaces, Interfaces

and Biophysical, 108, 8659–8667.

64. Pereverzev, Y. V., Prezhdo, O. V., and Dalton, L. R. 2004. Macroscopic order and electro-optic

response of dipolar chromophore-polymer materials. Chemical Physics, Chemistry, 5, 1–11.

65. Shi, Y., Zhang, C., Zhang, H., Bechtel, J. H., Dalton, L. R., Robinson, B. H., and Steier, W. H. 2000.

Low (sub-1 volt) halfwave voltage polymeric electrooptic modulators achieved by control of

chromophore shape. Science, 288, 119–122.

66. Baehr-Jones, T., Hochberg, M., Wang, G., Lawson, R., Liao, Y., Sullivan, P. A., Dalton, L. R., Jen,

A. K. Y., and Scherer, A. 2005. Optical modulation and detection in slotted silicon waveguides.

Optics Express, 13, 5216–5226.

67. Song, H., Oh, M., Ahn, S., and Steier, W. 2003. Flexible low-voltage electro-optic polymer

modulators. Applied Physics Letters, 82, 4432–4434.

15018—Chapter7—26/8/2006—22:33—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 123: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

Q4

Second- and Third-Order Nonlinear Optical Materials 7-123

Article in Press

6223

6224

6225

6226

6227

6228

6229

6230

6231

6232

6233

6234

6235

6236

6237

6238

6239

6240

6241

6242

6243

6244

6245

6246

6247

6248

6249

6250

6251

6252

6253

6254

6255

6256

6257

6258

6259

6260

6261

6262

6263

6264

6265

6266

6267

6268

6269

6270

6271

6272

6273

68. Paloczi, G., Huang, Y., Yariv, A., Luo, J., and Jen, A. 2004. Replica-molded electro-optic polymer

Mach-Zehnder modulator. Applied Physics Letters, 85, 1662–1664.

69. Zhang, C., Dalton, L. R., Oh, M.-C., Zhang, H., and Steier, W. H. 2001. Low Vp electrooptic

modulators from CLD-1: chromophore design and synthesis, materials processing, and

characterization. Chemistry of Materials, 13, 3043–3050.

70. Sun, L., Kim, J., Jang, C., An, D., Lu, X., Zhou, Q., Taboada, J. M., Chen, R. T., Maki, J. J., Tang, S.,

Zhang, H., Steier, W. H., Zhang, C., and Dalton, L. R. 2001. Polymeric waveguide prism based

electro-optic beam deflector. Optical Engineering, 40, 1217–1222.

71. Zhang, H., Oh, M.-C., Szep, A., Steier, W. H., Zhang, C., Dalton, L. R., Erlig, H., Chang, Y.,

Chang, D. H., and Fetterman, H. R. 2001. Push pull electro-optic polymer modulators with low

half-wave voltage and low loss at both 1310 and 1550 mm. Applied Physics Letters, 78, 3136–3138.

72. Rabiei, P., Steier, W. H., Zhang, C., and Dalton, L. R. 2002. Polymer micro-ring filters and

modulators. Journal of Lightwave Technology, 20, 1968–1975.

73. Liu, S., Haller, M. A., Luo, J., Jang, S. H., Ma, H., Dalton, L. R., and Jen, A. K. Y. 2003. Focused

microwave-assisted synthesis of 2,5-dihydrofuran derivatives as electron acceptors for highly

efficient nonlinear optical chromophores. Materials Research Society Symposia Proceedings, 771,

375–380.

74. Liu, S., Haller, M. A., Ma, H., Dalton, L. R., Jang, S. H., and Jen, A. K. Y. 2003. Focused

microwave-assisted synthesis of 2,5-dihydrofuran derivatives as electron acceptors for highly

efficient nonlinear optical chromophores. Advanced Materials, 15, 603–607.

75. Zhou, Z., Shaojun, L., and Cheng, Y. 2003. Poling properties of guest-host polymer films of

X-type nonlinear optical chromophores. Synthetic Metals, 147, 1519–1520.

76. Sullivan, P. A., Bhattacharjee, S., Eichinger, B. E., Firestone, K., Robinson, B. H., and Dalton, L. R.

2004. Exploration of series type multifuctionalized nonlinear optical chromophore concept.

Proceedings of SPIE, 5351, 253–259.

77. Firestone, K., Bale, D., Liao, Y., Casmier, D., Clot, O., Dalton, L., and Reid, P. 2005. Frequency-

agile Hyper-Rayleigh Scattering studies of electro-optic chromophores. Proceedings of SPIE, 5935,

59350P1–59350P9.

78. Firestone, K. A., Reid, P., Lawson, R., Jang, S. H., and Dalton, L. R. 2004. Advances in organic

electro-optic materials and processing. Inorganic Chemistry Acta, 357, 3957–3966.

79. Jang, S. H., Luo, J., Tucker, N. M., Leclercq, A., Zojer, E., Haller, M. A., Kim, T. D., Kang, J. W.,

Firestone, K., Bale, D., Lao, D., Benedict, J. B., Cohen, D., Kaminsky, W., Kahr, B., Bredas, J. L.,

Reid, P., Dalton, L. R., and Jen, A. K. Y. 2006. Pyrroline chromophores for electro-optics.

Chemistry of Materials, 18, 13, 2982–2988.

80. Kim, W. K. and Hayden, L. M. 1999. Fully atomistic modeling of an electric field poled guest-host

nonlinear optical polymer. Journal of Chemical Physics, 111, 5212–5222.

81. Nagtegaele, P., Brasselet, E., and Zyss, J. E. 2003. Anisotropy and dispersion of a Pockels tensor: a

benchmark for electro-optic organic thin-film assessment. Journal of the Optical Society of

America B: Optical Physics, 20, 1932–1936.

82. Teng, C. and Man, H. 1990. Simple reflection technique for measuring the electro-optic

coefficient of poled polymers. Applied Physics Letters, 56, 1734–1736.

83. Schildkraut, J. 1990. Determination of the electrooptic coefficient of a poled polymer film.

Applied Optics, 29, 2839–2841.

84. Park, D., Kang, J., Luo, J., Lim, T., Jen, A., Lee, C., and Herman, W. 2005. Nonlinear ellipsometric

analysis of poled organic glasses having very large electro-optic coefficients. Proceedings of SPIE,

5935, 59350O-1-12.

85. Chen, A., Chuyanov, V., Garner, S., Steier, W., and Dalton, L. 1997. Modified attenuated total

reflection for the fast and routine electrooptic measurements of nonlinear optical polymer thin

films. In Organic Thin Films for Photonic Applications, Vol. 14, OSA Technical Digest Series,

pp. 158–159. Optical Society of America, Washington DC.

15018—Chapter7—26/8/2006—22:34—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 124: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

7-124 Handbook of Photonics

Article in Press

6274

6275

6276

6277

6278

6279

6280

6281

6282

6283

6284

6285

6286

6287

6288

6289

6290

6291

6292

6293

6294

6295

6296

6297

6298

6299

6300

6301

6302

6303

6304

6305

6306

6307

6308

6309

6310

6311

6312

6313

6314

6315

6316

6317

6318

6319

6320

6321

6322

6323

6324

86. Dumont, M. and Levy, Y. 1989. Measurement of electrooptic properties of organic thin films by

attenuated total reflection, In Nonlinear Optics of Organics and Semiconductors, T. Kobayashi, ed.,

pp. 256–266. Springer, Berlin.

87. Levy, Y., Dumont, M., Shastaing, E., Robin, P., Chollet, P. A., Gadret, G., and Kajzar, F. 1993.

Reflection method for electro-optic coefficient determination in stratified thin film structures.

Molecular Crystals and Liquid Crystals Science and Technology, Section B, 4, 1–6.

88. Meyrueix, R., Lecomte, J., and Tapolsky, G. 1991. A Fabry-Perot interferometric technique for the

electro-optic characterization of nonlinear optical polymers. Nonlinear Optics, 1, 201–211.

89. Meyrueix, R., Dickens, M., Lemonnier, O., Lecomte, J., and Tapolsky, G. 1994. Fabry-Perot

interferometry applied to the study of piezoelectric and electro-optic properties of a poled NLO

polyurethane. Optics Communications, 110, 445–455.

90. Kalluri, S., Garner, S., Ziari, M., Steier, W. H., and Dalton, L. R. 1996. Simple two-slit interference

electrooptic coefficients measurement technique and efficient coplanar electrode poling of

polymer thin films. Applied Physics Letters, 69, 275–277.

91. Donval, A., Toussaere, E., Hierle, R., and Zyss, J. 2000. Polarization insensitive electro-optic

polymer modulator. Journal of Applied Physics, 87, 3258–3262.

92. Shin, M., Cho, H., Han, S., and Wu, J. 1998. Analysis of a Mach-Zehnder interferometry

measurement of the Pockels coefficients in a poled polymer film with a reflection configuration.

Journal of Applied Physics, 83, 1848–1853.

93. Chen, A., Chuyanov, V., Zhang, H., Garner, S., Steier, W. H., Chen, J., Zhu, J., He, M., Mao,

S. S. H., and Dalton, L. R. 1998. “Demonstration of the full potential of second order nonlinear

optic polymers for electrooptic modulation using a high mb chromophore and a constant bias

field. Optics Letters, 23, 478–480.

94. Gopalan, P. and Campbell, V. 2005. Low-loss electro-optic polymers for active wave guide

components, Pacifichem, Honolulu, Hawaii.

95. Liao, Y., Firestone, K. A., Bhattacharjee, S., Luo, J., Haller, M., Hau, S., Anderson, C. A., Lao, D.,

Eichinger, B. E., Robinson, B. H., Reid, P., Jen, A. K. Y., and Dalton, L. R. 2006. Linear and

nonlinear optical properties of a macrocyclic trichromophore bundle with parallel-aligned dipole

moments. Journal of Physical Chemistry B: Materials, Surfaces, Interfaces & Biophysical, 110, 5434–

5438.

96. Steier, W. H., Kalluri, S., Chen, A., Garner, S., Chuyanov, V., Ziari, M., Shi, Y., Fetterman, H.,

Jalali, B., Wang, W., Chen, D., and Dalton, L. R. 1996. Applications of electro-optic polymers in

photonics. In Materials Research Society Symposium Proceedings, Electrical, Optical and Magnetic

Properties of Organic Solid State Materials, Vol. 413, pp. 147–158, Materials Research Society,

Pittsburgh.

97. Chen, A., Chuyanov, V., Marti-Carrera, F. I., Garner, S., Steier, W. H., Chen, J., Sun, S., and

Dalton, L. R. 1997. Integrated polymer waveguide mode size transformer with a vertical taper for

improved fiber coupling. Proceedings of SPIE, 3005, 65–76.

98. Chen, A., Chuyanov, V., Marti-Carrera, F. I., Garner, S. M., Steier, W. H., Chen, J., Sun, S. S., and

Dalton, L. R. 2000. Vertically tapered polymer waveguide mode size transformer for improved

fiber coupling. Optical Engineering, 39, 1507–1516.

99. Oh, M. C., Zhang, C., Lee, H. J., Steier, W. H., and Fetterman, H. R. 2002. Low-loss

interconnection between electrooptic and passive polymer waveguides with a vertical taper.

IEEE Photonics Technology Letters, 14, 1121–1123.

100. Zang, D. Y., Shu, G., Downing, T., Lin, W., Oh, C., and Bechtel, J. 2003. Insertion loss reduction in

high speed polymer electrooptic modulators using tapered waveguide, fiber tip lenses and

modification of waveguide structures. Proceedings of SPIE, 4991, 601–609.

101. Chang, D. H., Azfar, T., Kim, S. K., Fetterman, H. R., Zhang, C., and Steier, W. H. 2003. Vertical

adiabatic transition between silica planar waveguide and electro-optic polymer fabricated using

grayscale lithography. Optics Letters, 28, 869–871.

15018—Chapter7—26/8/2006—22:34—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 125: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

Second- and Third-Order Nonlinear Optical Materials 7-125

Article in Press

6325

6326

6327

6328

6329

6330

6331

6332

6333

6334

6335

6336

6337

6338

6339

6340

6341

6342

6343

6344

6345

6346

6347

6348

6349

6350

6351

6352

6353

6354

6355

6356

6357

6358

6359

6360

6361

6362

6363

6364

6365

6366

6367

6368

6369

6370

6371

6372

6373

6374

6375

102. Ma, H., Wu, J., Herguth, P., Chen, B., and Jen, A. K. Y. 2000. A novel class of high performance

perfluorocyclobutane-containing polymers for second-order nonlinear optics. Chemistry of

Materials, 12, 1187–1189.

103. Zhang, Q., Canva, M., and Stegeman, G. 1998. Wavelength dependence of 4-dimethylamino-4’-

nitrostilbene polymer thin film photodegradation. Applied Physics Letters, 73, 912–914.

104. Galvan-Gonzalez, A., Canva, M., Stegeman, G. I., Twieg, R., Kowalczyk, T. C., and Lackritz, H. S.

1999. Effect of temperature and atmospheric environment on the photodegradation of some

Disperse Red 1 type polymers. Optics Letters, 24, 1741–1743.

105. Galvan-Gonzalez, A., Canva, M., Stegeman, G. I., Twieg, R. J., Chang, K. P., Kowalczyk, T. C.,

Zhang, X. Q., Lackritz, H. S., Marder, S., and Thayumanavan, S. 2000. Systematic behavior of

electro-optic chromophore photostability. Optics Letters, 25, 332–334.

106. Galvan-Gonzalez, A., Canva, M., Stegeman, G. I., Sukhomilinova, L., Twieg, R. J., Chang, K. P.,

Kowalczyk, T. C., and Lackritz, H. S. 2000. Photodegradation of azobenzene nonlinear optical

chromophores: The influence of structure and environment. Journal of the Optical Society of

America B: Optical Physics, 17, 1992–2000.

107. DeRosa, M. E., He, M., Cites, J. S., Garner, S. M., and Tang, Y. R. 2004. Photostability of high mb

electro-optic chromophores at 1550 nm. Journal of Physical Chemistry B: Materials, Surfaces,

Interfaces & Biophysical, 108, 8725–8730.

108. He, M., Leslie, T., Garner, S., DeRosa, M. E., and Cites, J. 2004. Synthesis of new electrooptic

chromophores and their structure-property relationship. Journal of Physical Chemistry B:

Materials, Surfaces, Interfaces & Biophysical, 108, 8731–8736.

109. Ashley, P., Sangnadasa, M., and Lindsay, G. 2005. Investigation of long term thermal stability of

electrically poled CLD and FTC chromophores in amorphous polycarbonates, Pacifichem,

Honolulu, Hawaii.

110. Taylor, E. W., Nichter, J. E., Nash, F. D., Haas, F., Szep, A. A., Michalak, R. J., Flusche, B. M., Cook,

P. R., McEwen, T. A., McKeon, B. F., Payson, P. M., Brost, G. A., Pirich, A. R., Castaneda, C., Tsap,

B., and Fetterman, H. R. 2005. Radiation resistance of electro-optic polymer-based modulators.

Applied Physics Letters, 86, . 201122-1-3.

111. Sinyukov, A. M. and Hayden, L. M. 2004. Efficient electrooptic polymers for THz applications.

Journal of Physical Chemistry B, 108, 8515–8522.

112. Sinyukov, A. M., Leahy, M. R., Hayden, L. M., Haller, M., Luo, J., Jen, A. K. Y., and Dalton, L. R.

2004. Resonance enhanced THz generation in electro-optic polymers near the absorption

maximum. Applied Physics Letters, 85, 5827–5829.

113. Schneider, A. and Gunter, P. 2005. Spectrum of terahertz pulses form organic DAST crystals.

Ferroelectrics, 318, 83–88.

114. Kawase, K., Hatanaka, T., Takahashi, H., Nakamura, K., Taniuchi, T., and Ito, H. 2000. Tunable

terahertz-wave generation from DAST crystal by dual signal-wave parametric oscilation of

periodically poled lithium niobate. Optics Letters, 25, 1714–1716.

115. Kawase, K., Mizuno, M., Sohma, S., Takahashi, H., Taniuchi, T., Urata, Y., Wada, S., Tashiro, H.,

and Ito, H. 1999. Difference-frequency terahertz-wave generation from 4-dimethylamino-N-

methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser. Optics Letters,

24, 1065–1067.

116. Adachi, H., Tamiuchi, T., Yoshimura, M., Brahadeeswaran, S., Higo, T., Takagi, M., Mori, Y.,

Sasaki, T., and Nakanishi, H. 2004. High-quality organic 4-dimentylamino-N-methyl-4-stilba-

zolium tosylate (DAST) crystals for THz wave generation. Japanese Journal of Applied Physics, 43,

L1121–L1123.

117. Zojer, E., Beljonne, D., Kogij, T., Vogel, H., Marder, S. R., Perry, J. W., and Bredas, J. L. 2002.

Tuning the two-photon absorption response of quadrupolar organic molecules. Journal of

Chemical Physics, 116, 3646–3658.

15018—Chapter7—26/8/2006—22:34—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 126: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

Q2

Q2

7-126 Handbook of Photonics

Article in Press

6376

6377

6378

6379

6380

6381

6382

6383

6384

6385

6386

6387

6388

6389

6390

6391

6392

6393

6394

6395

6396

6397

6398

6399

6400

6401

6402

6403

6404

6405

6406

6407

6408

6409

6410

6411

6412

6413

6414

6415

6416

6417

6418

6419

6420

6421

6422

6423

6424

6425

6426

118. Brousmiche, D. W., Senn, J. M., Frechet, J. M. J., He, G. S., Lin, T.-C., Chung, S.-J., Prasad, P. N.,

Kannan, R., and Tan, L.-S. 2004. Fluorescence resonance energy transfer in novel multiphoton

absorbing dendritic structures. Journal of Physical Chemistry B, 108, 8592–8600.

119. Drobizhev, M., Karotki, A., Rebane, A., and Spangler, C. 2001. Dendrimer molecules with record

large two-photon absorption cross section. Optics Letters, 26, 1081–1083.

120. Hochberg, M., Baehr-Jones, T., Wang, G., Parker, J., Harvard, K., Liu, J., Chen, B., Shi, Z., Lawson,

R., Sullivan, P., Jen, A. K. J., Dalton, L., and Scherer, A. Submitted. All optical modulator in

silicon with terahertz bandwidth, Nature Materials.

15018—Chapter7—26/8/2006—22:34—SJAPPIYAR—15018—XML MODEL CRC12a – pp. 1–126.

Page 127: Second- and Third- Order Nonlinear Optical Materialsdepts.washington.edu/eooptic/publications/files... · in ranking third-order nonlinear optical materials. With second-order nonlinear

Author Queries

JOB NUMBER: BK14885 / 15018

TITLE: Second- and Third-Order Nonlinear Optical Materials

Q1 We have made a change to the word ’plasticization’. Please approve.

Q2 References ’118 and 119’ are provided in the list but not cited in the text. Please supply citation

details or delete the reference from the reference list.

Q3 Please provide forename for the author ’Torreuellas’ in reference 28.