Lecture Scour on Offshore Wind Turbines

17
Geotechnical Lectures Evening Delft University of Technology Faculty of Civil Engineering & Geosciences, TU Delft *Formerly School of Civil Engineering, University College Dublin Scour Lecture Scour on Offshore Wind Turbines Luke J. Prendergast PhD 15 th November 2016

Transcript of Lecture Scour on Offshore Wind Turbines

Page 1: Lecture Scour on Offshore Wind Turbines

Geotechnical Lectures Evening

Delft University of Technology

Faculty of Civil Engineering & Geosciences, TU Delft

*Formerly School of Civil Engineering, University College Dublin

Scour

Lecture

Scour on Offshore Wind Turbines

Luke J. Prendergast PhD

15th November 2016

Page 2: Lecture Scour on Offshore Wind Turbines

Scour Erosion - Introduction

2

1. Introduction to Scour 2. Research Approach 3. Experimental Analysis 4. Numerical Modelling 5. Full-Scale Turbine Modelling 6. Summary

Page 3: Lecture Scour on Offshore Wind Turbines

Scour Erosion - Introduction

3

Wake Vortices

Bridge Pier

Scour Hole

Downflow

Horseshoe Vortices

Source: http://www.nortek-as.com/images-repository-1/scour/the-scour-monitor/image_preview

Page 4: Lecture Scour on Offshore Wind Turbines

Wind Turbines – Dynamically Sensitive

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Pow

er

Spectr

al

Densit

y

1P 3P

Frequency (Hz)

Soft -

Stiff

Stiff -

Stiff

Rotor Spinning Blade Passing

Wave Spectrum

Soft -

Soft

Page 5: Lecture Scour on Offshore Wind Turbines

Scour Erosion – Research Method

5

Establish effect of scour on dynamic characteristics of

monopile supported turbines

EXPERIMENTAL

Flexible Pile L/D~20 Stiff Pile L/D~5

NUMERICAL

Develop Winkler model using site specific soil data

NUMERICAL

Investigate scour effect on full-scale

turbine

Page 6: Lecture Scour on Offshore Wind Turbines

Scour Erosion - Experimental

6

Blessington Sand

Initial Level

22

60

65

00

Scour Level -1

Scour Level -2

Scour Level -3

Scour Level -4

Scour Level -5

Scour Level -6

Scour Level -7

Scour Level -8

Scour Level -9

Scour Level -10

Scour Level -11

Scour Level -12

Base Level

500

Pile

500

500

10

00

A A

Section A-A

R170

R157Accelerometer 4

Accelerometer 3

Accelerometer 2

Accelerometer 1

87

60

Blessington Sand

Initial Level

22

60

65

00

Scour Level -1

Scour Level -2

Scour Level -3

Scour Level -4

Scour Level -5

Scour Level -6

Scour Level -7

Scour Level -8

Scour Level -9

Scour Level -10

Scour Level -11

Scour Level -12

Base Level

500

Pile

500

500

10

00

A A

Section A-A

R170

R157Accelerometer 4

Accelerometer 3

Accelerometer 2

Accelerometer 1

87

60

Page 7: Lecture Scour on Offshore Wind Turbines

Scour Erosion - Experimental

7

0 0.5 1 1.5 2-100

-50

0

50

100

Time (s)

Acc

eler

atio

n (

m s

-2)

10 20 30 40 50 600

50

100

150

200

250

300

Frequency (Hz)

Mag

nit

ude

Scour Level -6 Scour Level -6

Scour Level -4

(a) (b)

0 0.5 1 1.5 2-100

-50

0

50

100

Time (s)

Acc

eler

atio

n (

m s

-2)

10 20 30 40 50 600

50

100

150

200

250

300

Frequency (Hz)

Mag

nit

ude

Scour Level -6 Scour Level -6

Scour Level -4

(a) (b)

Impact with hammer

Calculate Frequency

using Fourier Analysis

Change in Natural Frequency

between two scour depths

Blessington Sand

Initial Level

22

60

65

00

Scour Level -1

Scour Level -2

Scour Level -3

Scour Level -4

Scour Level -5

Scour Level -6

Scour Level -7

Scour Level -8

Scour Level -9

Scour Level -10

Scour Level -11

Scour Level -12

Base Level

500

Pile

500

500

10

00

A A

Section A-A

R170

R157Accelerometer 4

Accelerometer 3

Accelerometer 2

Accelerometer 1

87

60

Blessington Sand

Initial Level

22

60

65

00

Scour Level -1

Scour Level -2

Scour Level -3

Scour Level -4

Scour Level -5

Scour Level -6

Scour Level -7

Scour Level -8

Scour Level -9

Scour Level -10

Scour Level -11

Scour Level -12

Base Level

500

Pile

500

500

10

00

A A

Section A-A

R170

R157Accelerometer 4

Accelerometer 3

Accelerometer 2

Accelerometer 1

87

60

Page 8: Lecture Scour on Offshore Wind Turbines

Scour Erosion - Experimental

8

0 5 10 15 20 25 30 35 40-7

-6

-5

-4

-3

-2

-1

0

Frequency (Hz)

Sco

ur

dep

th (

m)

Experimental frequency

Fixed cantilever frequency

Blessington Sand

Initial Level

22

60

65

00

Scour Level -1

Scour Level -2

Scour Level -3

Scour Level -4

Scour Level -5

Scour Level -6

Scour Level -7

Scour Level -8

Scour Level -9

Scour Level -10

Scour Level -11

Scour Level -12

Base Level

500

Pile

500

500

10

00

A A

Section A-A

R170

R157Accelerometer 4

Accelerometer 3

Accelerometer 2

Accelerometer 1

87

60

Blessington Sand

Initial Level

22

60

65

00

Scour Level -1

Scour Level -2

Scour Level -3

Scour Level -4

Scour Level -5

Scour Level -6

Scour Level -7

Scour Level -8

Scour Level -9

Scour Level -10

Scour Level -11

Scour Level -12

Base Level

500

Pile

500

500

10

00

A A

Section A-A

R170

R157Accelerometer 4

Accelerometer 3

Accelerometer 2

Accelerometer 1

87

60

Page 9: Lecture Scour on Offshore Wind Turbines

Scour Erosion - Experimental

9

0.8

m2.2

m

Blessington

sand

Scour depth -8

Scour depth -7

Scour depth -6

Scour depth -5

Scour depth -4

Scour depth -3

Scour depth -2

Scour depth -1

Initial Level 0.2

m

Monopile

3 m

R 0.17 m

R 0.156 m

1.8

m

0.3

0.3

0.0

75 m

Accelerometer

Reference accelerometer

0.3

Scour depth -9

A A

Section A-A

0.8

m2.2

m

Blessington

sand

Scour depth -8

Scour depth -7

Scour depth -6

Scour depth -5

Scour depth -4

Scour depth -3

Scour depth -2

Scour depth -1

Initial Level 0.2

m

Monopile

3 m

R 0.17 m

R 0.156 m

1.8

m

0.3

0.3

0.0

75 m

Accelerometer

Reference accelerometer

0.3

Scour depth -9

A A

Section A-A

0 10 20 30 40 50 60-6

-5

-4

-3

-2

-1

0

Frequency (Hz)

S/D

pil

e

+/- freq,expt

Experimental results

Page 10: Lecture Scour on Offshore Wind Turbines

Scour Erosion – Numerical Model

10

0.8

m2.2

m

Blessington

sand20 S

pri

ng-B

eam

Ele

men

ts

7 Beam Elements

R 0

.17 m

R 0.156 m

Section A-A

A A kS,1

kS,2

kS,N

tF

tF

tF

tx

tx

tx

K

tx

tx

tx

C

tx

tx

tx

M

N

2

1

N

2

1

G

N

2

1

G

N

2

1

G

0 20 40 60 80 100 120

-2

-1.5

-1

-0.5

0

Shear modulus (G0) (MPa)

Depth

(m

)

G0 from shear wave

G0 from CPT q

c

Small-strain soil stiffness from site used to derive soil spring stiffness

0 , 11

11,,

isis kkis,K

Euler-Bernoulli Beam Elements

Winkler Spring Elements

Page 11: Lecture Scour on Offshore Wind Turbines

Scour Erosion – Numerical Model

11

0 0.5 1 1.5 2-2

0

2

Acc

eler

atio

n (

g)

15 20 25 30 35 400

0.01

0.02

0 0.5 1 1.5 2-2

0

2

15 20 25 30 35 400

0.01

0.02

FR

F (

g N

-1)

15 20 25 30 35 400

0.01

0.02

0 0.5 1 1.5 2-2

0

2

15 20 25 30 35 400

0.01

0.02

0 0.5 1 1.5 2-2

0

2

Time (s)

15 20 25 30 35 400

0.01

0.02

Frequency (Hz)

0 0.5 1 1.5 2-2

0

2

EXPT

BIOT

EXPT

VESIC

EXPT

M&B

EXPT

K&G

EXPT

SELVADURAI

EXPT

BIOT

EXPT

VESIC

EXPT

M&B

EXPT

K&G

EXPT

SELVADURAI

(a) (b)

24.9 Hz

23.93 Hz

26.12 Hz

27.83 Hz

24.66 Hz

20.26 Hz

20.26 Hz

20.26 Hz

20.26 Hz

20.26 Hz

108.0

2

4

0

2

0

)1()1(

95.0

EIv

DE

vD

Ek

ss

s

12/14

0

2

0

)1(

65.0

EI

DE

vD

Ek

s

s

)1( 2

0

s

svD

Ek

)1(

2 0

s

svD

Ek

)1(

65.02

0

s

sv

E

Dk

Subgrade Reaction Models

[1]

[2]

[3]

[5]

[4]

Page 12: Lecture Scour on Offshore Wind Turbines

Scour Erosion – Numerical Model

12

Two methods used to derive site-specific soil data

0 10 20 30 40 50

-8

-7

-6

-5

-4

-3

-2

-1

0

Cone tip resistance qc (MPa)

Dep

th (

m)

150 200 250 300

-8

-7

-6

-5

-4

-3

-2

-1

0

Shear wave velocity (m s-1)

Dep

th (

m)

Shear wave

velocityMax qc

(a) (b)

Min qc

Average qc

[1] Correlation to Cone Penetration Test data

[2] Correlation to Shear Wave Velocity data

2

0 svG

cqG 60

Page 13: Lecture Scour on Offshore Wind Turbines

Scour Erosion – Numerical Model

13

0 5 10 15 20 25 30 35 40-7

-6

-5

-4

-3

-2

-1

0

Frequency (Hz)

Sco

ur

dep

th (

m)

Experimental frequency

Numerical (shear wave) frequency

Numerical (CPT) frequency

Numerical (API) frequency

Fixed cantilever frequency

Pile with L/D ~ 20

0 10 20 30 40 50 60 70 80-6

-5

-4

-3

-2

-1

0

Frequency (Hz)

S/D

pil

e

+/- freq,expt

Experimental results

Shear wave numerical model

CPT numerical model

Pile with L/D ~ 5

12/14

0

2

0

)1(

EI

DE

vD

Ek

s

s

Page 14: Lecture Scour on Offshore Wind Turbines

Scour Erosion – Turbine Model

14

Ks,1

Ks,Ns

MTop, J

MTransition

Am, Im

A1t, I1t

ANt, INt

Section A-A

R2.91 m

R3 m

A A

Mud line

Mean sea level

Monopile

Tower

Nacelle & blades

30 m

30 m

15 m

75 m

70 m

Taper

ed

Nsp

ring

s =

60

Np

ile

= 1

50

Nto

wer

= 1

40

0 50 100 150 200-30

-25

-20

-15

-10

-5

0

G0 profile (MPa)

Dep

th (

m)

0 10 20 30 40-30

-25

-20

-15

-10

-5

0

Cone tip resistance qc (MPa)

Dep

th (

m)

Loose qc

Medium dense qc

Very dense qc

Loose G0

Medium dense G0

Very dense G0

(b)(a)

Representative qc profiles

created

Loose sand

Med dense sand

Dense sand

Page 15: Lecture Scour on Offshore Wind Turbines

Scour Erosion – Turbine Model

15

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31

-1.5

-1

-0.5

0

Frequency (Hz)

S /

Dp

ile

Loose sand freq

Med dense sand freq

Very dense sand freq

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

-1.5

-1

-0.5

0

F = F/FNo scour

S /

Dp

ile

Loose sand F

Med dense sand F

Very dense sand F

1P frequency

Design scour depth (1.3Dpile

) = 7.8 m

Design scour depth (1.3Dpile

) = 7.8 m

Page 16: Lecture Scour on Offshore Wind Turbines

Summary

16

- Scour has a significant effect on the natural frequency of a pilot-scaled monopile

- Offshore wind turbines are dynamically sensitive therefore scour may represent a significant risk to stability

- Scour can be combatted at design stage by allowing for an increased effective monopile length however the accurate specification of operational soil stiffness is imperative to the safe operation

- There is still uncertainty surrounding cyclic loading effects on operational stiffness

- As well as dynamic stability, scour has a significant effect on lateral ultimate capacity, not covered in this discussion

Page 17: Lecture Scour on Offshore Wind Turbines

Acknowledgements

- Prof. Kenneth Gavin, Subsurface Engineering, TU Delft

- The Geotechnical Research Group at University College Dublin

Thank you for your attention!

17