Lecture 2: Scaled CMOS

14
1 Nanoelectronics: Scaled CMOS Lecture 2: Scaled CMOS Contents: Benchmarking: R Chau et al IEEE Nanotech 4, 2005, p 153 ”Benchmarking Nanotechnology for ... Advanced CMOS Design: B Doyle et al IEEE Electron Dev . Lett. 24, 2003, p. 263 ”High-performance Fully-Depleted Tri-gate ... Extremely scaled MOSFETs: B Doris et al IEEE IEDM Tech Digest. 2002, p. 267 ”Extreme Scaling with Ultra-Thin ...” High-k dielectrics on Si: P Lee et al Appl. Phys. Lett.. 82, 2003, p 2419 ”Study of interfacial ....

Transcript of Lecture 2: Scaled CMOS

Page 1: Lecture 2: Scaled CMOS

1 Nanoelectronics: Scaled CMOS

Lecture 2: Scaled CMOS

Contents:

Benchmarking: R Chau et al IEEE Nanotech 4, 2005, p 153 ”Benchmarking Nanotechnology for ...

Advanced CMOS Design: B Doyle et al IEEE Electron Dev. Lett. 24, 2003, p. 263 ”High-performance Fully-Depleted Tri-gate ...

Extremely scaled MOSFETs:

B Doris et al IEEE IEDM Tech Digest. 2002, p. 267 ”Extreme Scaling with Ultra-Thin ...”

High-k dielectrics on Si: P Lee et al Appl. Phys. Lett.. 82, 2003, p 2419 ”Study of interfacial ....”

Page 2: Lecture 2: Scaled CMOS

2 Nanoelectronics: Scaled CMOS

Four key metrics for logics:

Speed

Intrinsic speed (CV/I)

Switching energy

Energy-delay product (CV/I*CV2)

Scalability

Subthreshold slope vs Lg

Off-state leakage

CV/I vs Ion/Ioff

Transistor evolution:

Page 3: Lecture 2: Scaled CMOS

3 Nanoelectronics: Scaled CMOS

|VDS|=VCC

Vg 2/3 above Vt gives Ion

Vg 1/3 below Vt gives Ioff

Calculate/measure the capacitance

Cylindrical devices:

Method for benchmarking

111 QMCOXCTOTALC

)/2ln(/02 RhrOXC

Normalization by width 2R

Typical nanotube characteristics: Definition of data points:

Page 4: Lecture 2: Scaled CMOS

4

Nanoelectronics: Scaled CMOS

Gate Delay

PMOS:

NMOS:

III/V NMOS have better performance!

Page 5: Lecture 2: Scaled CMOS

5 Nanoelectronics: Scaled CMOS

Energy-delay product

PMOS:

NMOS:

III/V NMOS have better performance!

Page 6: Lecture 2: Scaled CMOS

6 Nanoelectronics: Scaled CMOS

Scalability and leakage

Page 7: Lecture 2: Scaled CMOS

7 Nanoelectronics: Scaled CMOS

Planar single gate

Double-gate

(fin width one third

of gate length)

Tri-gate

(body thickness

about gate length)

Si body of Tri-gate transistor

Advanced Device Architectures:

Page 8: Lecture 2: Scaled CMOS

8 Nanoelectronics: Scaled CMOS

Performance of 60 nm gate length

Ion=1.14 mA/mm

Ioff=70 nA/mm

SS=68 mV/dec

Ion=0.52 mA/mm

Ioff=24 nA/mm

SS=69.5 mV/dec

Comparable to well-optimized

planar devices!

15 Å oxide thickness

DIBL=41 mV/V DIBL=48 mV/V

DIBL=Vg@Vd=1.3V-Vg@Vd=0.05V/(1.3-0.05)

Vg taken at Id=0.1 mA/mm

Page 9: Lecture 2: Scaled CMOS

9 Nanoelectronics: Scaled CMOS

Planar devices on Si SOI substrates

Reduces parasitics and leakage

Wafer thinning to 6±2 nm Si films!!!

But mobility degrades as the film is thinned down

Page 10: Lecture 2: Scaled CMOS

10 Nanoelectronics: Scaled CMOS

Performance of ultra-thin Si channel MOSFETS

Page 11: Lecture 2: Scaled CMOS

11 Nanoelectronics: Scaled CMOS

Performance of 26 nm CMOS circuit

Page 12: Lecture 2: Scaled CMOS

12 Nanoelectronics: Scaled CMOS

6 nm pFET: It works!

Page 13: Lecture 2: Scaled CMOS

13 Nanoelectronics: Scaled CMOS

Strong process dependence Deposition techniques

PLD

ALD

Sputtering

Physical effects

Amorphous/crystalline

Amount of oxygen, stochiometry

Annealing

Interface reactions

Page 14: Lecture 2: Scaled CMOS

14 Nanoelectronics: Scaled CMOS

Effects of Interface reactions

CV-technique

MOS capacitor

Effects of traps in the film and at

the interfaces

Frequency response gives time scale

Minority carrier in inversion

Used to determined the charge

Split CV

𝜇𝑒𝑓𝑓 =𝐿

𝑊

𝑔𝑑 𝑉𝑔

𝑞𝑁𝑠 𝑉𝑔

𝑞𝑁𝑠 𝑉𝑔 = 𝐶 𝑉𝑔 𝑑𝑉𝑔

𝑉𝑔

−∞