Lecture 12 - University of Colorado...

18
Power Electronics Lab 1 Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping the internal resonance Measuring loop gain with LTspice Phase margin, PI and PID compensators Feedback circuit design

Transcript of Lecture 12 - University of Colorado...

Page 1: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping

Power Electronics Lab 1

Lecture 12ECEN 4517/5517

Experiment 4 Part 2

Today’s discussion topics:

Damping the internal resonanceMeasuring loop gain with LTspicePhase margin, PI and PID compensatorsFeedback circuit design

Page 2: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping

Power Electronics Lab 2

Damping the Internal Resonance

+–

L1+–

V1F(t)

I1F(t)

K1(t)

Xg(t)

De : 1 L2

C2 R

+–

V2F(t)

I2F(t)

K2(t)+

X2(t)

De : 1

C1

+

X1(t)Cd

Rd

Small-signal ac model, cascaded boost converters in CCM:

Page 3: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping

Power Electronics Lab 10

Step 4: Damp Internal Resonances

Example of a damped control-to-

output transfer function

Page 4: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping

Fundamentals of Power Electronics Chapter 9: Controller design64

9.6.1. Voltage injection

• Ac injection source vz is connected between blocks 1 and 2• Dc bias is determined by biasing circuits of the system itself• Injection source does modify loading of block 2 on block 1

+–

H(s)

+–

Z2(s)

Block 1 Block 2

0

Tv(s)

Z1(s) Zs(s)

– +

+

vx(s)

vref (s)G1(s)ve(s)

ve(s) G2(s)vx(s) = v(s)

vy(s)

+

vzi(s)

Page 5: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping

Power Electronics Lab 14

Plotting Loop Gain in LTspice

+–

H(s)

+– Z2(s)

Block 1 Block 2

0

Tv(s)

Z1(s) Zs(s)

– +

+

vx(s)

vref (s)G1(s)ve(s)

ve(s) G2(s)vx(s) = v(s)

vy(s)

+

vzi(s)

Measuring loop gain by voltage injection

Connecting a 1 V ac source between compensator output and PWM control input• Loop gain is

T(s) = -vy /vx

Page 6: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping

Power Electronics Lab 15

Convergence Problems

• In closed-loop simulations, LTspice often encounters convergence problems and cannot find quiescent operating point

• A solution: provide initial conditions for a few key capacitor voltages and/or inductor currents• Append “IC=value” to element value• Set initial conditions on output capacitor voltage and compensator integrator

capacitor voltage to their correct steady-state values• Setting initial conditions on the above may be sufficient to get the closed-

loop simulation to run

Page 7: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping

Fundamentals of Power Electronics Chapter 9: Controller design25

9.4.1. The phase margin test

A test on T(s), to determine whether 1/(1+T(s)) contains RHP poles.

The crossover frequency fc is defined as the frequency where

|| T(j2πfc) || = 1 ⇒ 0dB

The phase margin ϕm is determined from the phase of T(s) at fc , asfollows:

ϕm = 180˚ + ∠T(j2πfc)

If there is exactly one crossover frequency, and if T(s) contains noRHP poles, then

the quantities T(s)/(1+T(s)) and 1/(1+T(s)) contain no RHP poleswhenever the phase margin ϕm is positive.

Page 8: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping

Fundamentals of Power Electronics Chapter 9: Controller design38

9.5.1. Lead (PD) compensator

Gc(s) = Gc0

1 + sωz

1 + sωp

Improves phasemargin

f

|| Gc ||

∠ Gc

Gc0

fp

fz /10

fp/10 10fz

fϕmax

= fz fp

+ 45˚/decade

– 45˚/decade

fz

Gc0

fp

fz

Page 9: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping

Fundamentals of Power Electronics Chapter 9: Controller design39

Lead compensator: maximum phase lead

fϕmax = fz fp

∠ Gc( fϕmax) = tan-1

fp

fz–

fzfp

2

fp

fz=

1 + sin θ

1 – sin θ

1 10 100 1000

Maximumphase lead

15˚

30˚

45˚

60˚

75˚

90˚

fp / fz

Page 10: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping

Fundamentals of Power Electronics Chapter 9: Controller design40

Lead compensator design

To optimally obtain a compensator phase lead of θ at frequency fc, thepole and zero frequencies should be chosen as follows:

fz = fc1 – sin θ

1 + sin θ

fp = fc1 + sin θ

1 – sin θ

If it is desired that the magnitudeof the compensator gain at fc beunity, then Gc0 should be chosenas

Gc0 =fzfp

f

|| Gc ||

∠ Gc

Gc0

fp

fz /10

fp/10 10fz

fϕmax

= fz fp

+ 45˚/decade

– 45˚/decade

fz

Gc0

fp

fz

Page 11: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping

Fundamentals of Power Electronics Chapter 9: Controller design41

Example: lead compensation

f

|| T ||

–90˚

–180˚

–270˚

∠ T

|| T || ∠ T

T0

f0

fzfc

ϕm

T0 Gc0 Original gain

Compensated gain

Original phase asymptotes

Compensated phase asymptotes

0 dB

–20 dB

–40 dB

20 dB

40 dB

60 dB

fp

Page 12: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping

Fundamentals of Power Electronics Chapter 9: Controller design42

9.5.2. Lag (PI) compensation

Gc(s) = Gc∞ 1 +ωLs

Improves low-frequency loop gainand regulation

f

|| Gc ||

∠ Gc

Gc∞

fL/10

+ 45˚/decade

fL

– 90˚

10fL

– 20 dB /decade

Page 13: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping

Fundamentals of Power Electronics Chapter 9: Controller design43

Example: lag compensation

original(uncompensated)loop gain is

Tu(s) =Tu0

1 + sω0

compensator:Gc(s) = Gc∞ 1 +

ωLs

Design strategy:choose

Gc∞ to obtain desiredcrossover frequencyωL sufficiently low tomaintain adequatephase margin

0 dB

–20 dB

–40 dB

20 dB

40 dB

f

90˚

–90˚

–180˚

Gc∞Tu0fL

f0

Tu0

∠ Tu

|| Tu ||f0

|| T ||

fc

∠ T

10fL

10f0 ϕm

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz

Page 14: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping

Fundamentals of Power Electronics Chapter 9: Controller design45

9.5.3. Combined (PID) compensator

Gc(s) = Gcm

1 +ωLs 1 + s

ωz

1 + sωp1

1 + sωp2

0 dB

–20 dB

–40 dB

20 dB

40 dB

f

|| Gc ||

∠ Gc

|| Gc || ∠ Gc

Gcmfz

– 90˚

fp1

90˚

–90˚

–180˚

fz /10

fp1/10

10 fz

fL

fc

fL /10

10 fL

90˚/decade

45˚/decade

– 90˚/decade

fp2

fp2 /10

10 fp1

Page 15: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping

Power Electronics Lab 11

Step 5: Design and Implement Compensator and Feedback Circuits

Voltage divider and op-amp compensator circuitsRegulate output at 200 VAchieve adequate phase marginPlot loop gain

Page 16: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping

Power Electronics Lab 12

Use Op Amp from LTspice Library

A reasonable choice: LT1498• Rail-to-rail input and

output (common mode range extends to power supply limits)

• Gain-bandwidth product: 10 MHz

• Slew rate: 6V/µs

Power this op amp from PWM: Vcc = vref = 5.1 VVoltages at all pins must not exceed op amp power supply voltage

PI compensator example

Page 17: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping

Power Electronics Lab 13

Feedback Loop Design

All students must design and implement an analog feedback loop that:• Regulates dc output voltage to 200 V ± 5 V• Has crossover frequency no greater than 20% of switching frequency.

Don’t change your switching frequency.• Has phase margin of at least 50˚

ECEN 4517 students:• No limit on minimum crossover frequency• Any compensator approach (PI, PID, etc.) is acceptable

ECEN 5517 students:• Crossover frequency must be greater than 1 kHz• PID compensator required

Page 18: Lecture 12 - University of Colorado Boulderecee.colorado.edu/~ecen4517/exp/exp4online/Lecture12.pdf · Lecture 12 ECEN 4517/5517 Experiment 4 Part 2 Today’s discussion topics: Damping