Lecture-11 Retaining wall - Yavuz · PDF filePage 3 of 29 (ii) Counterfort Walls This type of...

29
Page 1 of 29 Lecture Retaining Wall Week12 Retaining walls which provide lateral support to earth fill embankment or any other form of material which they retain them in vertical position. These walls are also usually required to resist a combination of earth and hydrostatic loadings. The fundamental requirement is that the wall is capable of holding the retained material in place without undue movement arising from deflection, overturning or sliding. Types of Retaining Wall Concrete retaining walls may be considered in terms of three basic categories: (1) Gravity (2) Counterfort and (3) Cantilever Within these groups many common variations exist, for example cantilever walls may have additional supporting ties into the retained material. The structural action of each type is fundamentally different, but the techniques used in analysis, design and detailing are those normally used for concrete structures. (i) Gravity Walls These are usually constructed of mass concrete, with reinforcement included in the faces to restrict thermal and shrinkage cracking. As illustrated in Figure 1, reliance is placed on selfweight to satisfy stability requirements both in respect of overturning and sliding. It is generally taken as a requirement that under working conditions the resultant of the selfweight and overturning forces must lie within the middle third at the interface of the base and soil. This ensures that uplift is avoided at this interface. Friction effects which resist sliding are thus maintained across the entire base. Bending, shear, and deflections of such walls are usually insignificant in view of the large effective depth of

Transcript of Lecture-11 Retaining wall - Yavuz · PDF filePage 3 of 29 (ii) Counterfort Walls This type of...

Page 1: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                Page 1 of 29 

Lecture     Retaining Wall        Week‐12   Retaining walls which  provide  lateral  support  to  earth  fill  embankment  or  any  other 

form of material which they retain them in vertical position. 

These walls are also usually  required  to  resist a combination of earth and hydrostatic 

loadings.  The  fundamental  requirement  is  that  the  wall  is  capable  of  holding  the 

retained  material  in  place  without  undue  movement  arising  from  deflection,  over‐

turning or sliding. 

  Types of Retaining Wall  Concrete retaining walls may be considered in terms of three basic categories: 

(1) Gravity 

(2) Counterfort and  

(3) Cantilever 

Within  these groups many common variations exist,  for example cantilever walls may 

have additional supporting ties into the retained material. 

The structural action of each type is fundamentally different, but the techniques used in 

analysis, design and detailing are those normally used for concrete structures. 

 (i) Gravity Walls  These  are  usually  constructed  of mass  concrete, with  reinforcement  included  in  the 

faces  to  restrict  thermal  and  shrinkage  cracking. As  illustrated  in  Figure  1,  reliance  is 

placed on self‐weight to satisfy stability requirements both in respect of overturning and 

sliding. 

It  is generally taken as a requirement that under working conditions the resultant of 

the self‐weight and overturning forces must lie within the middle third at the interface 

of the base and soil. This ensures that uplift is avoided at this interface. Friction effects 

which  resist  sliding  are  thus maintained  across  the  entire  base.  Bending,  shear,  and 

deflections of such walls are usually insignificant in view of the large effective depth of 

Page 2: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                Page 2 of 29 

the  section. Distribution  steel  to  control  thermal  cracking  is necessary, however,  and 

great care must be taken to reduce hydration temperatures by mix design, construction 

procedure and curing techniques. 

               

Figure 1: Gravity wall  (iii) Cantilever Walls 

These are designed as vertical cantilevers spanning from a  large rigid base which often 

relies  on  the  weight  of  backfill  on  the  base  to  provide  stability.  Two  forms  of  this 

construction are illustrated in Figure 2. In both cases, stability calculations follow similar 

procedures to those for gravity walls to ensure‐ that the • resultant force lies within the 

middle third of the base• and that overturning and sliding requirements are met. 

            

Figure 2: Cantilever wall 

Page 3: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                Page 3 of 29 

 (ii) Counterfort Walls  This type of construction will probably be used where the overall height of wall  is too 

large to be constructed economically either in mass concrete or as a cantilever. 

The basis of design of counterfort walls  is  that  the earth pressures act on a  thin wall 

which spans horizontally between  the massive counterforts  (Figure 3). These must be 

sufficiently large to provide the necessary dead load for stability requirements, possibly 

with  the aid of  the weight of backfill on an enlarged base. The  counterforts must be 

designed with  reinforcement  to  act  as  cantilevers  to  resist  the  considerable  bending 

moments that are concentrated at these points. 

The  spacing of  counterforts will be  governed by  the  above  factors,  coupled with  the 

need  to  maintain  a  satisfactory  span‐depth  ratio  on  the  wall  slab,  which  must  be 

designed for bending as a continuous slab. The advantage of this form of construction is 

that the volume of concrete  involved  is considerably reduced, thereby removing many 

of  the  problems  of  large  pours,  and  reducing  the  quantities  of  excavation.  Balanced 

against this must be considered the generally increased shuttering complication and the 

probable need for increased reinforcement. 

    

Figure 3: Counterfort Walls

Page 4: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                Page 4 of 29 

Analysis and Design 

The design of retaining walls may be split into three fundamental stages:  

(1) Stability analysis ‐ ultimate limit state,  

(2) Bearing pressure analysis ‐ serviceability limit state, and  

(3) Member design and detailing ‐ ultimate and serviceability Limit states. 

 

(i) Stability Analysis 

Under the action of the loads corresponding to the ultimate limit state, a retaining wall 

must be stable in terms of resistance to overturning and sliding. This is demonstrated by 

the simple case of a gravity wall as shown in Figure 4. 

The  critical  conditions  for  stability  are when  a maximum horizontal  force  acts with  a 

minimum  vertical  load.  To  guard  against  a  stability  failure,  it  is  usual  to  apply 

conservative  factors of safety to the  force and  loads. The values given  in table 2.2 are 

appropriate to strength calculations but a value of yf = 1.6 or higher should be used for 

stability calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 5: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                Page 5 of 29 

If this force is predominantly hydrostatic and well defined, a factor of 1.4 may be used. 

A partial factor of safety of γf = 1.0 is usually applied to the dead load Gk. 

For resistance to overturning, moments would normally be taken about the toe of the 

base, point A on Figure 4, thus the requirement is that 

1.0 Gk x ≥ γf Hk y              (Eqn‐1) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Forces and pressures on a gravity wall  

Resistance to sliding is provided by friction between the underside of the base and the 

ground,  and  thus  is  also  related  to  total  self‐weight  Gk.  Resistance  provided  by  the 

passive earth pressure on the front face of the base may make some contribution, but 

since  this  material  is  often  backfilled  against  the  face,  this  resistance  cannot  be 

guaranteed and is usually ignored. Thus, if the coefficient of friction between base and 

soil is µ, the total friction force will be given by µ. Gk for the length of wall of weight Gk; 

and the requirement is that 

1.0 µ.Gk ≥ yf Hk               (Eqn‐2) 

Where Hk is the horizontal force on this length of wall 

 

If this criterion  is not met, a heel beam may be used, and the force due to the passive 

earth pressure over  the  face area of  the heel may be  included  in  resisting  the  sliding 

Page 6: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                Page 6 of 29 

force. The partial load factor γf on the heel beam force should be taken as 1.0 to give the 

worst condition. To ensure the proper action of a heel beam, the front face must be cast 

directly  against  sound,  undisturbed  material,  and  it  is  important  that  this  is  not 

overlooked during construction. 

In considering cantilever walls, a considerable amount of backfill is often placed on top 

of the base, and this  is taken  into account  in the stability analysis. The forces acting  in 

this case are shown  in Figure 5.  In addition to Gk and Hk there  is an additional vertical 

load Vk due to the material above the base acting a distance q from the toe. The worst 

condition for stability will be when this is at a minimum; therefore, a partial load factor 

γf = 1.0 is appropriate. The stability requirements then become 

 

1.0 Gk x + 1.0 Vk q ≥ γf Hk y     for overturning      (Eqn‐3) 

µ (1.0 Gk + 1.0 Vk) ≥ γf Hk    for sliding        (Eqn‐4) 

 

When a heel beam  is provided  the additional passive  resistance of  the earth must be 

included in equation 4. 

 

Stability  analysis,  as  described  here, will  normally  suffice. However,  if  there  is  doubt 

about  the  foundation material  in  the  region  of  the wall  or  the  reliability  of  loading 

values,  it  may  be  necessary  to  perform  a  full  slip‐circle  analysis,  using  techniques 

common to soil mechanics, or to use increased factors of safety. 

 

 

 

 

 

 

 

 

Page 7: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                Page 7 of 29 

Figure 5: Forces on a cantilever wall (ii) Bearing Pressure Analysis 

As with foundations, the bearing pressures underneath retaining walls are assessed on 

the  basis  of  the  serviceability  limit  state when  determining  the  size  of  base  that  is 

required.  The  analysis will be  similar  to  the  combined effects of  an eccentric  vertical 

load, coupled with an overturning moment. 

Considering a unit  length of the cantilever wall  (figure 5) the resultant moment about 

the centroidal axis of the base is 

)2

()2

( 321 qD

VxD

GyHM kfkfkf         (Eqn‐ 5) 

And the vertical load is  

kfkf VGN 32                 (Eqn‐ 6) 

Where in the case of serviceability limit state the partial factor of safety are  

Page 8: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                Page 8 of 29 

 γf1 = γf2 = γf3 = 1.0  The  distribution  of  bearing  pressure  will  be  as  shown  in  the  figure,  provided  the effective eccentricity lies within the “middle third” of the base, that is   

6

D

N

M  

 The maximum bearing pressure is then given by  

21

D

I

M

D

Np  

Where I = D3 / 12. Therefore,   

21

6

D

M

D

Np                  (Eqn‐ 7) 

and  

22

6

D

M

D

Np                 (Eqn‐ 8) 

 

 Earth pressure on retaining walls  (a) Active soil pressure Active soil pressures are given for the two extreme cases of a Cohesionless soil such as sand  and  a  cohesive  soil  such  as  clay  (Fig.  12.2). General  formulae  are  available  for intermediate cases. The formulae given apply to drained soils and reference should be made  to  textbooks on soil mechanics  for pressure where  the water  table rises behind the wall. The soil pressures given are those due to a level backfill. If there is a surcharge of w kN/m2 on the soil behind the wall, this  is equivalent to an additional soil depth of    z  = w/γ where  γ  is  the  density  in  kilonewtons  per  cubic meter.  The  textbooks  give solutions for cases where there is sloping backfill.  

(i) Cohesionless soil, c = 0 (Fig. 12.2(a))   The pressure at any depth z is given by     

Where γ is the soil density and Φ is the angle of internal friction.   The force on the wall of height H1 is 

Page 9: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                Page 9 of 29 

                           

Fig. 12.2(a)   

(ii) Cohesive soil, ϕ = 0 (Fig. 12.2(b))   The pressure at any depth z is given theoretically by  P = γz − 2c where c  is the cohesion at zero normal pressure. This expression gives negative values near the top of the wall. In practice, a value for the active earth pressure of not less than 

is used.   (c) Vertical pressure under the base The vertical pressure under the base is calculated for service loads. For a cantilever wall a 1 m length of wall with base width b is considered. Then Area A = b m2 

Page 10: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 10 of 29 

Modulus Z = b2/6 m3  If ΣM is the sum of the moments of all vertical forces ΣW about the centre of the base and of the active pressure on the wall then ΣM = ΣW(x−b/2) − P1H1/3  The  passive  pressure  in  front  of  the  base  has  been  neglected  again.  The maximum pressure is     This should not exceed the safe bearing pressure on the soil.                          

  

Fig. 12.2(b)    

Page 11: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 11 of 29 

 (d) Resistance to sliding (Fig. 12.2)  The resistance of the wall to sliding is as follows. (i) Cohesionless soil   The friction R between the base and the soil is ‐ μΣW  

where μ is the coefficient of friction between the base and the soil (μ= tanΦ ).   The passive earth pressure against the front of the wall from a depth H2 of soil is      (ii) Cohesive soils   The  adhesion  R  between  the  base  and  the  soil  is  βb  where  β  is  the  adhesion  in kilonewtons per square meter. The passive earth pressure is    A nib can be added, as shown in Fig. 12.2, to increase the resistance to sliding through passive earth pressure.  For the wall to be safe against sliding 1.4P1 < P2+R where P1 is the horizontal active earth pressure on the wall.  (b) Wall stability Referring to Fig. 12.2 the vertical loads are made up of the weight of the wall and base and the weight of backfill on the base. Front fill on the outer base has been neglected. Surcharge would need to be included if present. If the centre of gravity of these loads is x from the toe of the wall, the stabilizing moment is ΣWx with a beneficial partial safety factory γf=1.0.  The overturning moment due to the active earth pressure is 1.4P1H1/3 with an adverse partial safety factor γf=1.4.   The stabilizing moment from passive earth pressure has been neglected.  For the wall to satisfy the requirement of stability ΣWx ≥ 1.4 P1H1 / 3 

Page 12: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 12 of 29 

Design procedure 

The steps in the design of a cantilever retaining wall are as follows. 

1. Assume  a  breadth  for  the  base.  This  is  usually  about  0.75  of  the wall  height.  The preliminary thicknesses for the wall and base sections are chosen from experience. A nib is often required to increase resistance to sliding.  2. Calculate the horizontal earth pressure on the wall. Then considering all forces check stability  against  overturning  and  the  vertical  pressure  under  the  base  of  the  wall. Calculate  the  resistance  to  sliding  and  check  that  this  is  satisfactory. A  partial  safety factor of 1.4 is applied to the horizontal loads for the overturning and sliding check. The maximum vertical pressure  is calculated using service  loads and should not exceed the safe bearing pressure.  3. Reinforced concrete design for the wall is made for ultimate loads. The partial safety factors for the wall and earth pressure are each 1.4. Surcharge if present may be classed as either dead or imposed load depending on its nature.   Referring to Fig. 12.3 the design consists of the following. (a)  For  the wall,  calculate  shear  forces  and moments  caused  by  the  horizontal  earth pressure.  Design  the  vertical moment  steel  for  the  inner  face  and  check  the  shear stresses. Minimum secondary steel  is provided  in the horizontal direction for the  inner face and both vertically and horizontally for the outer face.  (b) The net moment due  to earth pressure on  the  top and bottom  faces of  the  inner footing causes tension in the top and reinforcement is designed for this position.  (c) The moment due to earth pressure causes tension  in the bottom  face of the outer footing.  The moment reinforcement is shown in Fig. 12.3. 

Page 13: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 13 of 29 

Fig. 12.3                       

Page 14: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 14 of 29 

Example 1: Specification Design a cantilever retaining wall to support a bank of earth 3.5 m high. The top surface is horizontal behind the wall but  it  is subjected to a dead  load surcharge of 15 kN/m2. The soil behind the wall is a well‐drained sand with the following properties: 

Density γ=1800 kg/m3=17.6 kN/m3 angle of internal friction Φ=30°  The material under the wall has a safe bearing pressure of 100 kN/m2. The coefficient of friction between  the base and  the soil  is 0.5. Design  the wall using grade 30 concrete and grade 460 reinforcement.  Answer:  (a) Wall stability The proposed arrangement of the wall is shown in Fig. 12.4. The wall and base thickness are  assumed  to  be  200 mm.  A  nib  has  been  added  under  the wall  to  assist  in  the prevention of  sliding. Consider  1 m  length of wall.  The  surcharge  is  equivalent  to  an additional height of 15/17.6=0.85 m. The total equivalent height of soil is  3.5+0.25+0.85=4.6 m  The horizontal pressure at depth y from the top of the surcharge is 17.6y (1−0.5)/ (1+0.5) = 5.87y  kN/m2  The horizontal pressure at the base is 5.87×4.6=27 kN/m2  The weight of wall, base and earth and the moments for stability calculations are given in Table 12.1.  (i) Maximum soil pressure  The base properties are Area, A=2.85 m2 Modulus,  Z = 2.852/6 = 1.35 m3 The maximum soil pressure at A calculated for service load is    The maximum soil pressure is satisfactory.    

Page 15: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 15 of 29 

(ii) Stability against overturning   The stabilizing moment about the toe A of the wall for a partial safety factor γf = 1.0 is  59.34 + (181.08 × 1.425) = 317.4 kN m  The overturning moment for a partial safety factor γf = 1.4 is 1.4 × 86.67 = 121.34 kN m  The stability of the wall is adequate.  (iii) Resistance to sliding   The forces resisting sliding are the friction under the base and the passive resistance for a depth of earth of 850 mm to the top of the base:    For the wall to be safe against sliding 128.69 > 1.4×59.98 = 83.97 kN  The resistance to sliding is satisfactory.  (iv) Overall comment   The wall section is satisfactory. The maximum soil pressure under the base controls the design.  (b) Structural design The structural design is made for ultimate loads. The partial safety factor for each pressure and surcharge is γf=1.4.              

Page 16: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 16 of 29 

                                            

Page 17: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 17 of 29 

 (i) Wall reinforcement   The pressure at the base of the wall is 1.4×5.89×4.35 = 35.7 kN/m2  The pressure at the top of the wall is 1.4×4.99=6.99 kN/m2 Shear     = (6.99×3.5) + (0.5×3.5×28.76) 

= 24.47 + 50.33 = 74.8 kN Moment  = (24.47×0.5×3.5) + (50.33×3.5/3) 

= 101.51 kN m  The cover is 40 mm; assume 20 mm diameter bars. Then          Provide 16 mm diameter bars at 140 mm centers to give a steel area of 1435 mm2/m.  Determine the depth y1 from the top where the 16 mm diameter bars can be reduced to a diameter of 12 mm.       The depth y1 is given by the equation 64=6.99(y1

2)/2 + 1.4×5.87(y1) 3/6 

or y1

3+2.55y12−46.73=0 

 Solve to give y1=2.92 m.  Referring to the anchorage requirements in BS8110: Part 1, clause 3.12.9.1, bars are to extend an anchorage length beyond the theoretical change point. The anchorage length from Table 3.29 of the code for grade 30 concrete is (section 5.2.1)  37×16 = 595 mm 

Page 18: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 18 of 29 

 Stop bars off at 2920−592 = 2328 mm, say 2000 mm from the top of the wall.  The shear stress at the base of the wall is   The design shear stress in concrete is     The shear stress is satisfactory.  The deflection need not be checked.  For control of cracking the bar spacing must not exceed 3 times the effective depth, i.e. 600 or 750 mm. The spacing at the bars in the wall is 140 mm. This is less than the 160 mm clear spacing given in Table 3.30 of the code for crack control.  For distribution steel provide the minimum area of 0.13% from Table 3.27 of the code: A = 0.13×1000×250/100 = 325 mm2/m  Provide 10 mm diameter bars at 240 mm centers horizontally on the inner face.  For crack control on  the outer  face provide 10 mm diameter bars at 240 mm centers each way.  (iii) Inner footing   Referring to Fig. 12.4 the shear and moment at the face of the wall are as follows:              Provide 12 mm diameter bars at 120 mm centers to give 942 mm2/m. 

Page 19: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 19 of 29 

This is satisfactory. For the distribution steel, provide 10 mm bars at 240 mm centers.  (iv) Outer Footing   Referring to Fig. 12.4 the shear and moment at the face of the wall are as follows:  Shear    =1.4(72.41×0.8+11.36×0.8/2−17.1×0.8/2.85) 

=1.4(57.93+4.54−4.8) =80.74 kN 

Moment   = 1.4[(57.93−4.8)0.4+4.54×2×0.8/3]      =33.13 kN m 

 Note that the sum of the moments at the bottom of the wall and at the face of the wall for the inner and outer footing is approximately zero.  Reinforcement from the wall will be anchored in the outer footing and will provide the moment steel here. The anchorage length required is 592 mm and this will be provided by the bend and a straight length of bar along the outer footing. The radius of the bend is determined to limit the bearing stress to a safe value. The permissible bearing stress inside the bend is    where ab is the bar spacing, 140 mm. The internal radius of the bend is  Make the radius of the bend 150 mm:    This is satisfactory. See the wall design below. The distribution steel is 10 mm diameter bars at 240 mm centers.  (v) Nib   Referring to Fig. 12.4 the shear and moment in the nib are as follows: Shear    = 1.4(13.2×0.6+31.68×0.6/2) 

= 24.39 kN Moment  = 1.4(7.9×0.3+9.5×0.4) 

=  8.65 kN m The minimum reinforcement is 0.13% or 325 mm2/m.   

Page 20: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 20 of 29 

For crack control the maximum spacing is to be limited to 160 mm as specified in Table 3.30 of the code.  Provide 10 mm diameter bars at 140 mm centers to  lap onto the main wall steel. The distribution steel is 10 mm diameter bars at 240 mm centers.  (v) Sketch of the wall reinforcement   

A sketch of the wall with the reinforcement designed above is shown in Fig. 12.5. ☣                           

      

Fig. 12.5    

Page 21: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 21 of 29 

   Example‐2 Design  a  T‐shaped  cantilever  retaining  wall  for  retaining  5m  high  earth  above  the ground level. Specifications Unit weight of soil is γs15 kN/m

3 Angle of repose of soil is Φ = 30° Coefficient of friction at base μ = 0.5 Allowable bearing pressure of soil is qa = 150 kN/m

2  Grade of concrete = 35 MPa. Grade of steel = 460 MPa.  Answer:  i)  Selection of retaining wall:  Selection of retaining wall is proportioned as follows:  

Depth of foundation 

2

1

1

Sin

Sinq

s

a  

 

      = 2

301

301

15

150

Sin

Sin 

      = 1.11m  Consider that the base of foundation  is  located at a depth of 1.2m below which soil  is not subjected to seasonal volume changes caused by alternate wetting and drying.  Therefore, Total height of wall ha, = 5+1.2 = 6.2m  The  selection  of  optimum  dimensions  of  the  retaining  wall  involves  successive approximation. Reasonable dimensions are assumed based on approximate design and then various conditions of stability are checked. Necessary adjustments in cross‐sections are made to arrive at acceptable cross‐sectional dimensions and then the design and detailing for reinforcement are made,  Base width of foundation based on safety against overturning  

5.0

)31)(1(955.0

aa

khB  

Where

Page 22: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 22 of 29 

Sin

Sinka 1

1

3

1

301

301

Sin

Sin

as

a

h

q

2.21 =

2.6152.2

1501

= 0.266

Therefore

5.0

)266.031)(266.01(3

1

2.6955.0

B = 2.96m

Base width of foundation based on the consideration of safety against sliding,

B= )1(

707.0

aakh

= 3)266.01(5.0

12.6707.0

=3.98m

It will be economical to adopt base width of foundation on the consideration of safety against overturning and provide shear key for safety against sliding. Therefore, consider based width B = 3.25m width of toe slab α × B = 0.266 x 3.25 = 0.8645m Consider width of toe slab = 0.9m Width of the heel slab = 3.25 – 0.9 = 2.35m Consider thickness of the base slab = 0.07ha to 0.1ha = 0.07 × 6200 to 0.1 × 6200 = 434 to 620mm. A lower value of thickness of slab should be adopted when the height of retaining wall is large. Therefore, consider thickness of base slab equal to 450mm of the junction with the vertical wall it is reduced to 200mm of the free edges of toe and heel slabs. Consider gross d = 450mm of the base of wall which is reduced linearly to 200mm of the top ii)  Stability Analysis:  The checking for stability against overturning and sliding and foundation stability analysis is made as follows:

a) Stability against overturning and sliding:

Page 23: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 23 of 29 

The stability against overturning and sliding are checked by neglecting earth on toe slab because the height of earth on toe slab is small which may not exist for some time during construction and may be eroded. This results in critical condition of stability. Factor of safety against overturning,

PA

WAa MgMomentOverturnin

MomentStabilityMF

,

,

Where, WAM = moment of vertical load about -A

PAM = moment of earth pressure about -A = Pa×ha/3 Where, Pa = 0.5.ka ×γs ×ha

2 = 0.5 × 0.334 × 6.22 = 96.1 kN. Therefore, Fa = 508.652 / 198.1 = 2.568 > 2 (hence it is safe) Factor of safety against sliding,

as PessureHorizontal

WcesisHorizontalF

,Pr

,tanRe

Where, W = total vertical load as computed in table-1 Fs = 0.5 × 257.564 / 96.1 = 1.34 < 1.55 (not safe) Hence it is unsafe (not safe) against sliding. It is considered to provide shear key to ensure that depth of shear key is 450mm below foundation slab as shown in fig. For the passive earth pressure the soil on the top of foundation slab is neglected because it may not exist for some times during construction and may be eroded.

pas PP

WF

Where, Pp = Passive earth pressure

= 0.5.kp ×γs ×hp2

Sin

Sink p 1

1

301

301

Sin

Sin

= 35.01

5.01

hp = (0.45+0.45) = 0.9m

Pp= 0.5×3 ×15 ×0.92 = 9.5 kN

Page 24: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 24 of 29 

Therefore, 5.91.96

56.2575.0

sF = 1.65 > 1.55 (hence it is safe)

Table-1: Vertical load & Moment calculation

Loads (W‐kN)  Distance from ‐A  Moment about‐A 

W1=0.20×5.75×25=28.75 kN  X1=0.9+0.1 = 1.0m  MA1= 28.75×1.0= 28.75kN‐m 

W2 = 0.25×0.5×5.75×25=17.969kN 

X2=0.9+0.2+0.25/3 = 1.183m 

MA2= 17.969×1.183= 21.257kN‐m 

W3 = 0.5×(0.2+0.45) ×0.9×25=7.313kN 

X3=3

9.0

45.02.0

45.022.0

 

= 0.5077m 

MA3= 7.313×0.507= 3.712kN‐m 

W4 = 0.45×0.45×25=5.063kN  X4=0.99+0.225 = 1.125m MA4= 5.063×1.125= 5.696kN‐m 

W5 = 0.5× (0.2+0.45) ×1.85×25=155.844kN 

X5=0.9+0.45+ 

3

95.1

45.02.0

2.0245.0

2.2m 

MA5= 15.844×2.2= 34.856kN‐m 

W6 = 0.25×0.5×5.75×15=10.781kN 

X6=0.9+0.45‐0.25/3 = 1.266m 

MA6= 10.781×1.266= 13.656kN‐m 

W7 = 0.5× (5.75+6.0) ×1.95×15=171.844kN 

X7=0.9+0.45+ 

3

95.1

0.675.5

0.6275.5

2.33m 

MA7= 171.844×2.33= 400.723 kN‐m 

W = 257.564 kN    MWA = 508.652 kN‐m  b) Foundation stability Analysis The foundation base should be under compression & the max upward soil press should be within it is permissible value. The soil pressure is determined as follows:

qmax., qmin. = )6

1(B

e

B

W =>

I

My

A

P =>

Z

M

A

W => )

1

61(

1

B

e

B

W

Where, e = 0.5B-(MWA-MPA)W = 0.5×3.25‐(508.65‐198.1)/257.56     = 0.42m < b/6 (3.25/6 = 0.54m) For unit length of retaining wall 

qmax., qmin. = )25.3

42.061(

25.3

56.257 = 140.6 kN/m2 or 17.9 kN/m2 < 150 kN/m2

Page 25: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 25 of 29 

Structural Design Vertical Wall Max ultimate moment, Mup = 1.5 (Pa1× ha1/3)  Where, Pa1 = 0.5 × ka×γs× ha1

2  ha1 = 5+1.2‐0.45 = 5.75m  Pa1 = 0.5 × 0.333×15× (5.75)

2 = 82.65 kN/m2  Therefore, Mup = 1.5 (82.65× 5.75/3) = 237.64 kN‐m/m   Assume 20mm diameter bar used and cover 40mm. the effective depth of the base of the wall d = 450 – 40 – 10 = 400mm

2bdf

Mk

cu

= 049.0400100030

10636.2372

6

z = 0.94d = 376.6mm

zf

MA

ys 87.0 =

6.37646087.0

10636.237 6

=1576.72 mm2

Provide bar T20@200mm c/c with As (provided) == 1884mm2 Check The max. spacing, 3d = 3×400 = 1200mm or 450mm whichever is less.  Hence, 200mm is ok. Consider that the theoretical point of curtailment is at a depth y from top where the area of steel required may be determined by As ∞ Moment of depth y- from top Mu.y Effective thickness of vertical slab of a depth y from top, dy Therefore, Asu /As = y3d / ha

3.dy Where, dy = effective depth of wall of a height y from top

Page 26: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 26 of 29 

yh

dddd

a

tty

1

Here, dt = effective depth (thickness) of the top of the wall = 200 – 40 – 20/2 = 150mm

yd y

5750

150400150 = 150+0.0434y

y

y

0434.01505750

400

2

13

3

y3 – 10313.43 y × 103 – 35645.5 × 106 = 0 y = 4325 mm Distance of actual point of curtailment from the bottom of vertical wall = (5750 – 4325) + development length of bar [Development length of bar, ] Here fbu = 0.5 ×30 = 2.74 MPa

fbu× π×Φ×l = 0.87×fy× π×Φ2/4

74.24

1646087.0

l = 638mm

Therefore, 1425 + 638 = 2063 mm Consider that the alternate bars are curtailed at height of 2200mm from the bottom of the vertical wall and remaining bar are extend up to the top. For secondary reinforcement, vertical wall is divided in to two zone of equal height Secondary reinforcement of 0.12 percent of gross section area is provided in each zone based on their average thickness As = 0.0012×0.5×(450+(450+200)/2) ×1000 = 465mm2/m = 232.5 mm2/m on each face in horizontal direction Provide 8mm Φ @ 200mm c/c (As = 251mm2/m on each face in the horizontal direction up to the height 5720/2 = 2875mm Secondary reinforcement in the upper zone of the vertical wall As = 0.0012 ×0.5 (200+(450+200)/2×1000 = 315 mm2/m

Page 27: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 27 of 29 

= 157.5 mm2/m on each face in the horizontal direction Provide 8mm Φ @ 300mm c/c (As = 168mm2/m on each face in the horizontal direction in the upper zone of the vertical wall Foundation Slab Downward pressure on heel slab = (W5 + W7) / 1.95 = (171.844+15.844)/1.95 = 96.25kN/m2 Downward pressure on toe slab = W3/0.9 = 7.313 / 0.9 = 8.126 kN/m2 Upward and downward pressure on the foundation slab Net pressure on the foundation slab Max. Ultimate bending moment on heel slab

= 1.5(4.73×1.952 / 2 + 0.5×(78.347- 4.73) ×1.95×2×1.95 / 3) = 153.45 kN-m Assume 12mm bar in the slab with cover 40mm effective depth

8.125 kN/m2 96.25 kN/m2

108.509kN/m2 17.93kN/m2

132.47kN/m2

78.347kN/m2

100.38kN/m2

4.73kN/m2

Page 28: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 28 of 29 

d = 450 – 40 - 6 = 404mm

2bd

M=

2

6

4041950

10153

= 0.48

bd

As100= 0.13

As = 1090 mm2/m Provide 12mm Φ @ 100mm c/c Check The max. spacing 3d = 3×404 = 1212mm or 450mm whichever is less As = 1130mm2/m Max ultimate bending moment in toe slab Mu = 1.5 (100.38×0.92/2 + 0.5×(132.47 – 100.38) ×0.9×2×93) = 73.98 kN‐m Effective depth of the toe slab d = D – 40 – 6 = 404mm Ast = 540mm2/m Provide 12mm Φ @ 200mm c/c Check The max. spacing 3d = 3×404 = 1212mm or 450mm whichever is less As = 565mm2/m in heel & toe slab Secondary reinforcement for toe & heel slab Take 0.12% of gross sectional area As = 0.12 × 1000 × 450 / 100 = 540mm2/m Provide 12mm Φ @ 200mm c/c

Page 29: Lecture-11 Retaining wall - Yavuz  · PDF filePage 3 of 29 (ii) Counterfort Walls This type of construction will probably be used where the overall height of wall is too

                                                                                                                                                                                 Page 29 of 29 

Shear key Max ultimate moment in shear key

mkNM u

1.445.02

3

9.0

2

9.01535.1 2

The moment in shear key is much less than the moment at the base of the vertical wall Therefore, extension of the reinforcement from the vertical wall into shear wkey shall be adequate Mu × shear force in shear key  Vu = 1.5 × 3 × 0.9

2/2 = 27 kN

Shear stress = 067.04041000

100027

N/mm2

< vc = 0.71 MPa Hence, safe