labo 9

39
 PETE 225-lab © Copyright, 2005, TAMU Lab#9 Well Control

Transcript of labo 9

Page 1: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 1/39

 

PETE 225-lab

© Copyright, 2005, TAMU

Lab#9Well Control

Page 2: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 2/39

 

PETE 225-lab

© Copyright, 2005, TAMU

Geology

Page 3: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 3/39

 

PETE 225-lab

© Copyright, 2005, TAMU

3

Sedimentation

Page 4: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 4/39

 

PETE 225-lab

© Copyright, 2005, TAMU

4

Pore Pressure

• Normal formation

pressure is equal to the

column of formation fluid.

• Abnormal pore pressure is

defined as a pore pressure

greater than normal

• Subnormal pore pressureis defined as pore pressure

less than normal.

 C  ol   umn of  

f   or m a  t  i   onf  l   ui   d 

Page 5: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 5/39

 

PETE 225-lab

© Copyright, 2005, TAMU

5

Normal Pore Pressure

MW Gradients Example area

Fresh water 8.3 ppg .433 psi/ft Rocky mountain

Brackish water 8.4 ppg .437 psi/ft

Salt water 8.5 ppg .442 psi/ft Most sedimentary basins

worldwide

Normal salt

water

8.7 ppg .452 psi/ft North sea

Salt water 8.9 ppg .465 psi/ft GOM

Salt water 9.2 ppg .478 psi/ft GOM

Page 6: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 6/39

 

PETE 225-lab

© Copyright, 2005, TAMU

6

Overburden Pressure

• Overburden pressure is

total pressure exerted

by the formation

weight (fluid + rock)

• Overburden pressure

usually is in the range

of 19 – 21 ppg.

 C ol   umn of  f   or m a t  i   on

Page 7: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 7/39PETE 225-lab

© Copyright, 2005, TAMU

7

Example 1

• Assume Normal porepressure to calculateformation /overburdenpressure at the bottomhole

• Ppore

= 8.5 ppg

• Poverburden = 1 psi/ft

Ppore = 0.052 × 8.5 × 5500

= .442 × 5500

= 2430 psi

Poverburden = 1 psi/ft × 5500

= 5500 psi

5500 ft

Solution

 

Page 8: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 8/39

PETE 225-lab

© Copyright, 2005, TAMU

8

Fracture Pressure

• High bottomhole pressure can

fracture the formation.

•The amount of pressure needed tofracture the formation is equal to the

sum of downhole stress pressure and

tensile strength of rock.

  

Page 9: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 9/39

PETE 225-lab

© Copyright, 2005, TAMU

9

Example 2

• If the fracture gradient at the

bottomhole is 0.8 psi/ft

estimate the required

bottomhole pressure to

fracture the formation.

Pfracture = 0.8 psi/ft × 5500

= 4400 psi

5500 ft

Solution

 

Page 10: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 10/39

PETE 225-lab

© Copyright, 2005, TAMU

Basics of Well Control

 

Page 11: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 11/39

PETE 225-lab

© Copyright, 2005, TAMU

11

Equivalent Mud Weight

• Pressure usually is expressed in equivalent

mud weight (ppg) or gradient.

ppg0.052ftpsiGradientPressure

TVD0.052

HPppg

TVDppg0.052HP

  

  

  

Page 12: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 12/39

PETE 225-lab

© Copyright, 2005, TAMU

12

Example 3

• What is the equivalent mud weight for a

reservoir at the depth of 12000 ft with

8000 psi pressure? What is the minimum

mud weight to drill into the reservoir?

• Minimum mud weight = 12.9 ppg

weightmudlentEquiva82.12

200010.052

8000

TVD0.052

HPppg

 ppg

Solution

  

Page 13: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 13/39

PETE 225-lab

© Copyright, 2005, TAMU

13

Pressure Calculation

• The general pressure calculation

equation considers pressure at the

surface.

• If surface pressure is 300 psi,

TVD = 9000 ft, mw = 12 ppg and

calculate the BHP.

TVDppg0.052PHP surface

Psurface 

psi5920HP9000210.052003HP

Solution

  

Page 14: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 14/39

PETE 225-lab

© Copyright, 2005, TAMU

14

Example 4

• Calculate the surface pressure

 –  Formation pressure = 13730 psi

 –  MW = 17.6

 –  Depth = 14500 ft

?

psi604P1450017.60.05213730 

TVDppg0.052HPP

TVDppg0.052PHP

surface

surface

surface

Solution

 

Page 15: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 15/39

PETE 225-lab

© Copyright, 2005, TAMU

15

U-Tube

• U-tube is a simple

schematic of the

well used for well

control purposes.• The simple concept

of u-tube is

consistent BHP from

drillstring and

annulus.

AnnulusDrill String

BHP

 

Page 16: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 16/39

PETE 225-lab

© Copyright, 2005, TAMU

16

Example 5

Calculate the mud weightin the left column to

balance the pressure at

the bottomhole.

BHP

350 psi

14 ppg

   6   0   0   0    f

   t

? ppg

 

Page 17: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 17/39

PETE 225-lab

© Copyright, 2005, TAMU

17

Example 5 - Solution

BHP

350 psi

14 ppg

   6   0   0   0    f

   t

? ppg

TVD0.052

PMWppg?

parametricRHSandLHSoutyou work If 

15.2fluiddrillingof MW

15.12ppg?

6000ppg?0.0524720

psi4720 

6000140.052350BHP

surfaceppg

 

Page 18: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 18/39

PETE 225-lab

© Copyright, 2005, TAMU

18

Frictional Pressure

• To circulate the mud in the well, energy is

needed to overcome frictional pressure in

the circulation system

 –  Drillstring –  Nozzles

 –  Annulus

• In most cases during well control operation,

annular pressure drop can be ignored.

 

Page 19: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 19/39

PETE 225-lab

© Copyright, 2005, TAMU

19

Pressure Drop Estimation

• Killing is done using a heavier mud.

• Heavier mud has higher pressure drop

• If the rheological properties of mud stays

the same, the pressure loss in the system

estimated using

original

Kill

originalkill MW

MWPP

Slow Pump Rate

 

Page 20: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 20/39

PETE 225-lab

© Copyright, 2005, TAMU

20

Goal of Well Control

• Safely circulate out the kick with the

kill weight mud.

• Keep the BHP equal to or slightly

higher than the formation pressure.

 

Page 21: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 21/39

PETE 225-lab

© Copyright, 2005, TAMU

21

Kill Weight Mud

• Kill weight mud calculation is the same

as the one in Example 5.

• From Example 5

TVD0.052

PMWMW surface

originalkill

 

Page 22: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 22/39

PETE 225-lab

© Copyright, 2005, TAMU

22

Keep The BHP Constant

• To keep the BHP constant we have to

consider the following factor

 – Gas expansion

 – Pressure drop in the system

 – Higher hydrostatic pressure due to the

heavier mud

 

Page 23: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 23/39

PETE 225-lab

© Copyright, 2005, TAMU

23

Initial Circulating Pressure

• Initial circulating pressure

is equal to the sum of 

standpipe pressure and

system pressure drop

Pstandpipe 

SPRstandpipeinitial PPP

 S  y s  t   e m

f  

r i   c  t  i   on a l  l   o s  s  pr  e  s  s  u

r  e 

 

Page 24: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 24/39

PETE 225-lab

© Copyright, 2005, TAMU

24

Final Circulating Pressure

• The pressure required to circulate

the mud at the SPR, when the kill

mud passes the nozzles is called the

final circulating pressure.

• This pressure is maintained while

circulating the kill mud up the

annulus.

Pstandpipe 

 S  y s  t   e m

f  r i   c  t  i   on a l  l   o s  s  pr  e  s  s  ur  e 

originalMW

MWSPRFCP kill

 

Page 25: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 25/39

PETE 225-lab

© Copyright, 2005, TAMU

25

ICP - FCP

• Initial circulating pressure is greater thanFCP.

• As the kill mud displaces the original mudin the drillpipe

 –  Hydrostatic pressure increases. –  Frictional pressure increases.

• The HP is greater than frictional pressureincrease.

• As the result of these two factorscirculating pressure drops.

 

Page 26: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 26/39

PETE 225-lab

© Copyright, 2005, TAMU

26

ICP – FCP (cont.)

• for operational purposes a linearbehavior between ICP and FCP vs.drillstring displacement stroke is

used.

 

Page 27: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 27/39

PETE 225-lab

© Copyright, 2005, TAMU

Drillpipe Pressure Schedule

ICP = 1100 psi

FCP = 830 psi

KWM to Bit KWM to Surface 

Cum Volume of Mud Pumped, strokes

D

P

P

p

si 

 

Page 28: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 28/39

PETE 225-lab

© Copyright, 2005, TAMU

28

Gas expansion

5000

5100

5100 5000

5100

2500

2500

BHP = 5100 psi BHP = 7600 psi BHP = 10100 psi

Psurface = 100 psi Psurface = 2600 psi Psurface = 5100 psi

 

Page 29: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 29/39

PETE 225-lab

© Copyright, 2005, TAMU

Casing Pressure

 

Page 30: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 30/39

PETE 225-lab

© Copyright, 2005, TAMU

Kill Sheet

• TVD=6000 ft

• Borehole = 9.875” 

• Casing: –  Length = 4000 ft

 – 11.75”, 42 #/ft K55  

• Drill pipe:

 –  Length = 6000 ft – 5”, 25.6 lb/ft 

Mud weight=12.5 ppg

• Pump factor = 0.09 bbl/stk 

• System pressure loss @ 30stks = 300 psi

• Shut-In Drillpipe pressure =350 psi

• Shut-In casing pressure = 500

psi

• Gain = 10 bbls

 

Page 31: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 31/39

PETE 225-lab

© Copyright, 2005, TAMU

Pre-recorded Information

31Kill sheet is courtesy of Well Control School

5 4.276 9500 19.5 10000

100009.875

8000 8000 42/k5511.75 11.084

0.1

14.0

0.0177

6 2500

.0049

 

Page 32: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 32/39

PETE 225-lab

© Copyright, 2005, TAMU

Kill Rates (Slow Pump Rate)

32

30 420 30 420

 

Page 33: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 33/39

PETE 225-lab

© Copyright, 2005, TAMU

Wait & Weight Worksheet

33

500 10000 14.0 15.0

Round up to the accuracy of 0.1 ppg

1 30 0.1 3.0 420

500 420 920

420 15.0 14.0 450

 

Page 34: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 34/39

PETE 225-lab

© Copyright, 2005, TAMU

Drill String Volume & Stroke Calculations

34

9500 0.01776

168.74 171.19 0.1 1712

Round up to a whole number

168.74 500 0.0049 2.45

2.45

 

Page 35: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 35/39

PETE 225-lab© Copyright, 2005, TAMU

Annular Volume & Stroke Calculations

35

11.0842 52 0.0951  8000 

9.8752

52

0.0704

 

1500 

105.6 

760.8  105.6  896.27 

760.8 

9.8752 62 .0597  500  29.88 

29.88 

 

Page 36: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 36/39

PETE 225-lab© Copyright, 2005, TAMU

Annular Volume & Stroke Calculations

36

105.6 

0.1 

1354.8 

896.27  8962.7 

8962.7 1712 10674.7 

0.1 29.88 

 

Page 37: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 37/39

PETE 225-lab© Copyright, 2005, TAMU

RECORDED KICK INFORMATION

37

1000010000

500

750

20

14.0

30

3.0

15.0

920

450

171.19

1712

896.27

8962.7

1354.8 

10674.7 

 

Pressure 

Page 38: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 38/39

PETE 225-lab© Copyright, 2005, TAMU

Pressure

Chart

38

920

4501712

45010674.7 

1712 171.2 920 450 47

873

826

779732

685

638

591

544497

171.2

342.4

513.6684.8

856

1027.2

1198.4

1369.61540.8

 

Page 39: labo 9

5/14/2018 labo 9 - slidepdf.com

http://slidepdf.com/reader/full/labo-9 39/39

PETE 225 l b

Well Information

• TVD=10000 ft• Borehole = 9.875” 

• Casing:

 –  Length = 8000 ft – 11.75”, 42 #/ft

• Drill pipe: – 5”, 19.5 lb/ft 

• Drill collar: –  Length = 500 ft

 –  6×2

• Mud weight=14.0 ppg• Pump factor = 0.1 bbl/stk 

• System pressure loss @ 30

stks= 420 psi

• Shut-In Drillpipe pressure =500 psi

• Shut-In casing pressure =750 psi

• Gain = 20 bbls