Kruner 1983 Aquacultural-Engineering

download Kruner 1983 Aquacultural-Engineering

of 19

Transcript of Kruner 1983 Aquacultural-Engineering

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    1/19

    A q u a c u l t u r a l E n g i n e e r i n g 2 (1983) 49-67

    E f f i c i e n c y o f N i t r i fi c a t i o n i n T r i c k l i n g F i l te r s u s i n gD i f f e r e n t S u b s t r a te s

    G. Kri iner and H. R osentha lBiologische Anstalt Helgoland, Zentrale Hamburg, Notkestrasse 31,

    2000 Hamburg 52, West Germany

    A B S T R A C TT h e e f f i c i e n c y o f a m m o n i u m a n d n it r it e o x i d a t io n w a s s t u d i e d in t w ot r i c k l in g f i l te r s f i l l e d w i t h d i f f e r e n t p l a s t ic m e d i a ( A , H y d r o p a k - F o l i a ,U h d e D o r t m u n d , 2 0 0 m z a c t i v e s u r fa c e a re a p e r m 3 v o l u m e ; B , B i o - N e tm a t e ri a l, N o r d d e u t s c h e S e e k a b e l w e r k e , 2 6 0 m 2 m - 3 ) . B o t h f i lt e r s w e r eo p e r a t e d s i m u l t a n e o u s l y u n d e r c o m p a r a b l e c o n d i t i o n s ( h y d r a u l ic l oa d : o fA = 4 0 . 2 m 3 m - 3 d a y - 1 ; o f B = 4 3 . 4 m 3 m - 3 d a y - 1 ) . A m m o n i u m r e m o v a le f f i c ie n c y d e p e n d e d o n p H v a lu e a n d o n i n i ti a l t o t a l a m m o n i u m c o n -c e n t r a ti o n ( ra n g e in v e s ti g a te d : p H = 5 . 6 - 7 . 0 ; t o t a l a m m o n i u m c o n c e n t ra -t i o n = 0 . 1 5 - 1 . 8 m g l it re - a; n i t r i t e c o n c e n t r a t i o n = 0 . 0 8 - 1 . 8 5 m g l it re -1 ).A m m o n i u m r e m o v a l e f f i c ie n c y w a s r e d u c e d t o a l m o s t z er o a t p H v a lu esb e l o w 5 . 6 . M e d i u m A w a s le ss e f f i c ie n t t h a n m e d i u m B a t h i g h e r p H l ev e ls( r e m o v a l e f f i c ie n c y w a s a b o v e 5 0 % a t al l t i m e s a t p H v a lu e s h i g h er t h a n6 . 2 , c o m p a r e d t o 6 . 8 i n m e d i u m A ) . W i t h i nc r ea s in g in i ti a l a m m o n i u mc o n c e n t r a t i o n t h e r e m o v a l e f f i c i e n c y d e c r e a s e d d r a s t ic a l ly in b o t h f i l te r s( a l w a y s b e l o w 6 0 % a t c o n c e n t r a t i o n s h i g h e r t h a n 1 . 0 m g l i t r e - 1). I n g e n e ra l ,n i t r i t e o x i d a t i o n e f f i c i e n c y f o l l o w e d a s im i l a r t r e n d in b o t h f il t e r s in d i c a t-i n g a b e t t e r p e r f o r m a n c e o f s u b s t r a te B . R e a s o n s f i) r th e s e d i f fe r e n c e s a r ed i s c u s s e d .

    INTRODUCTIONIn a 'quasi-closed' system for high density fish culture the continuousoxidation of ammonia (NHa) to nitrite (NO~) and nitrate (NO3) is as

    49A q u a c u l t u r a l E n g in e e r i ng 0 1 4 4 - 8 6 0 9 / 8 3 / 0 0 0 2 - 0 0 4 9 [ $ 0 3 . 0 0 - (g) Applied SciencePublishers Ltd, England, 1983. Printed in Great Britain

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    2/19

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    3/19

    E f f i c i e n c y o f n i t r i fi c a t i o n i n t r i ck l i n g f i l t e r s 5 1waste water treatment: (a) The packing material must be biologicallyinert and chemically and mechanica lly stable, not degrading with age;(b) the packing must p romot e the uniform spread of liquid to all partsof the available surface; (c) sufficient void space to always guaranteeoxygen supply and free passage of the treated medium is essential; itmust also have favorable pressure drop characteristics.

    In the past the usefulness of various packing materials were tested intrickling filters (e.g. boiler scale clinker, coke, furnace-slag, crumb ofbricks, granite, gneiss, sand and gravel). For more than 20 years plasticfillings have been used successfully. The basic materials for plasticmedia are polypropylene , polyethylene , polyvinylchloride, polystyreneand polyvinylidene fluorine. In general running and maintenance costsfor plastic media trickling filters are low and the reliability in service forBOD removal and nitrification is high, whereby the trickling filterremoves first of all the lightly degradable substances by biologicaldecomposition (Rosenthal e t a l . , 1979). Plastic media ma y be classifiedin terms of shape into: (a) vertical tube packing (b) vertical sheet pack-ing (c) random packing (Porter and Smith, 1979). All types of plasticmedia are much lighter than conventional materials, thus reducing theconstruction cost. A large surface area per unit volume of media isavailable to support the growth of bacterial biomass, resulting in ahigh specific surface area and large void space. During the past severalyears a great deal of research has been conducted on the trickling filterprocess for quasi-closed water systems for tfigh-density fish cultures(Mead, 1973: Anderson, 1974, Forster, 1974; Collins e t a l . , 1975:Pettigrew e t a l . , 1978; Rosenthal and Otte, 1978; Otte and Rosenthal,1979: Rosenthal e t a l . , 1979).This paper describes additional experiments which were undertakento st udy the n itrification eff iciency in two trickling filters over anextended time period. The aim of the study was to compare the effi-ciencies of two plastic media with different specific surfaces andadhesive capacities.

    MATERIAL AND METHODSThe trickling filter options described were integrated into a recircu latedfish culture system (Fig. 1).

    The fish unit consisted of 14 circular tanks (nine tanks at 1.0 mdiameter, 0.5 m water depth, water volume without central cylinder =

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    4/19

    5 2 G. Kriiner, H. Rosenthal

    / - - . , , , I . III

    k 1 . 5 0 m ),[O . 0 8 m

    3 !0 , 5 0 m~k

    o

    F i g . 1 . ( a ) G e n e r a l l a y o u t o f t h e e x p e r i m e n t a l b r a c k i s h w a t e r fi sh c u l t u r e re c ir c u -l a t i o n s y s t e m i n d i c a t i n g a r r a n g e m e n t s o f b y p a s s e s f o r a e r o b i c a n d a n a e r o b i c b i o -l o g ic a l f il te r s ( D , d e n i t r if i c a ti o n u n i t ; 0 2 , o x i d a t o r ; O 3 , o z o n a t i o n u n i t ; P , p u m p ;S , se t tl i ng t a nk ; SS , s l udge s e pa r a t o r ; 1 , d r a i nage f r o m s l udge a nd f oa m s e pa r a t i on( r e a l w a t e r l o s s e s be s i de s e va p or a t i on ) ) . ( b ) C r os s - s e c ti on o f t r ic k l i ng f i l t e rs e mp l oy-i ng d i f f e r e n t s ubs t r a t e s : ( 1 ) wa s t e wa t e r i n l e t ; ( 2 ) mo t o r ; ( 3 ) s p r i nk l e r ; ( 4 ) i n s u l a t e dwa l l ; ( 5 ) v e r t i c a ll y a r r a nge d t r ic k l i ng f i lt e r s ubs t r a t e s ( s e e F igs 2 a nd 3 ) ; ( 6 ) c o l l e c t -i ng f unn e l ; (7 ) ou t l e t o f t r e a t e d w a t e r a nd s u r p l us s l udge t o s e tt l ing t a nk .

    . ,s . o n ,~ ~ !

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    5/19

    Effic ien cy o f nitrification in trickling filters 530 . 3 6 m 3 ; f iv e t a n k s a t 1 - 5 m d i a m e t e r , 0 .4 m d e p t h , w a t e r v o l u m e w i t h o u tc e n t r a l c y l i n d e r = 0 . 6 7 m 3 ) . T o t a l f i s h t a n k v o l u m e a m o u n t e d t o6 . 6 m 3. T h e t a n k s w e r e c o n n e c t e d w i t h t h e s u m p b y e f f l u e n t t r o u g h s .E f f l u e n t t r o u g h s a n d s u m p w e r e a l s o s t o c k e d w i t h f i s h , i n c r e a s i n g t o t a lw a t e r v o l u m e o f t h e c u l t u r e u n i t t o 9 m 3. T h e w a t e r t r e a t m e n t u n i ti n c l u d e d t w o t r i c k l i n g f i l t e r s ( s e e T a b l e 1 ) , a s e t t l i n g t a n k ( 1 . 9 5 m 3v o l u m e ) , a d e n i t r i f i c a t i o n c o l u m n ( 1 - 1 0 m 3 v o l u m e ) , a n o x i d a t o r( 0 - 6 0 m 3 v o l u m e ) a n d a n o z o n a t i o n u n i t c o n s i s t i n g o f a n o z o n e g e n e r a -t o r ( p r o d u c t i o n c a p a c i t y 2 5 g O 3 - e q u i v a l e n t s h - l ) a n d a g a s - w a t e r r e a c -

    T A B L E 1D a t a C h a r a c t e r i s t i c s o f T r i c k l i n g F i l t e r s w i t h T w o D i f f e r e n t P a c k i n g M a te ri al s:P r o d u c e r s D a t a S p e c i f i c a t i o n : O p e r a t i o n a l D a t a D u r i n g O u r E x p e r i m e n t s . B R =

    S p a c e L o a dTrickling f i l ter A , Trickling f i l ter B,

    Hydropak Bio -NetProducers data specification

    S p e c i f i c s u r f a c e a r e a ( m 2 m - 3) 2 0 0H y d r a u l i c s u r f a c e a r e a l o a d ( m h - 1 ) > 1 -5B O D s - r e d u c t i o n ( % ) > 8 0

    B R = 2 k g m - 3 d a y 1B O D s - r e d u c t i o n ( % ) > 6 0B R = 4 k g m -3 d a y - I

    Operational data during our experimentsS u r f a c e a r e a ( m 2 ) 1 . 5 0D e p t h ( m ) 2 . 7 0T o t a l v o l u m e ( m 3 ) 4 . 7 7T o t a l s u r f a ce ( m 2 ) 9 5 4H y d r a u l i c l o a d ( m 3 m -3 d a y 1 ) 4 0 - 2H y d r a u l i c s u r f a c e c h a r g in g 4 - 5 0( m 3 m -2 h - l )B O D 5 s u r fa c e l o a d ( g m - 2 d a y 1 ) 0 . 4 0 - 1 . 2 0B O D s s p a c e l o a d ( k g m - 3 d a y 1 ) 0 . 0 8 - 0 . 2 4T o t a l a m m o n i u m s p ac e l o a d 8 - 2 0( g N H ~ m - 3 d a y - I )T o t a l a m m o n i u m a re a l o ad 4 2 - 1 0 5

    ( m g N H , ] m - 2 d a y -1 )

    2 6 0> 7 0> 6 0

    1 - 5 02 " 5 04 - 4 21 1 5 0

    4 3 - 44 - 5 0

    0 . 3 0 - 1 " 0 00 " 0 9 - 0 " 2 6

    9 - 2 33 5 - 8 7

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    6/19

    54 G. Kr i i n e r , H . Ro s e n t h a lt io n t o w e r w i t h f o a m s e p a r a t o r ( 0 . 3 m 3 v o l u m e ) . T o t a l w a t e r v o l u m e o ft h e t r e a t m e n t u n i t r e a c h e d 4 -1 5 m 3, i n c lu d i n g p i p in g a n d w a t e r f i lm int h e t r i c k l i n g f i l t e r s ( 0 - 8 5 m3). S i n c e t h e e f f l u e n t t r o u g h s a n d t h e s u m pw e r e u t i l iz e d f o r f i sh r e a r in g , 6 4 % o f t h e t o t a l v o l u m e o f t h e s y s t e m(14 m 3 ) w e r e a v a i l a b l e f o r f i s h c u l t u r e .

    F i s h t a n k s w e r e s t o c k e d w i t h T i la p i a ( m a i n l y S e r a t h o r o d o n m o s s a m -b i c a , S . a u r e a , s o m e S . n i l o t i c a a n d S . z i l l i ) a n d e e l A n g u i l l a a n g u i l l a .M a x i m u m f is h lo a d d u r i n g t h e e x p e r i m e n t a l p e r i o d r e a c h e d 8 1 0 k gc o r r e s p o n d i n g t o a s t o c k i n g d e n s i t y o f 5 8 k g m -3 ( t o t a l s y s t e m v o l u m e )o r 9 0 k g m -3 ( f i sh u n i t v o l u m e ) . T h e r e f o r e , f i s h - w a t e r r a t io s w e r e 1 k gp e r 1 71 ( t o t a l s y s t e m ) a n d 1 k g p e r I 1 l i t e r s ( f is h u n i t ) .

    A l l t a n k s o f t h e s y s t e m w e r e m a d e o f p o l y e s t e r -g l a s s f ib e r . A l lp l u m b i n g w a s m a d e o f P V C . T h e s y s t e m p r io r t o th e s ta r t - u p p h a s e w a sl e a c h e d f o r a p e r io d o f t w o w e e k s w i t h w a r m f r e s h w a t e r a c c o r d in g t ot h e p r o c e d u r e r e c o m m e n d e d b y C a r m i g n a n i a n d B e n n e t ( 1 9 7 6 ) .

    T h e w a t e r w a s p u m p e d t o t h e t r i c k l in g f i l te r s , t h e o x i d a t o r an dt h e o z o n a t i o n u n i t w e r e fe d b y a c e n t r i f u g a l p u m p , a n d w a t e r t o a llo t h e r u n i t s a n d t h e f is h t a n k s w a s fe d b y g r a v i ty . T h e d e n i t r i f i c a t i o nc o l u m n , th e o x i d a t i o n c o l u m n a n d t h e o z o n a t i o n u n i t w e r e o p e r a t e di n a b y - p a s s . W a t e r l o ss e s t h r o u g h e v a p o r a t i o n a n d l e a k a g e w e r er e p l a c e d b y t a p w a t e r , a v e ra g in g 0 -5 % p e r d a y o f th e t o t a l w a t e rv o l u m e . T h e t e m p e r a t u r e w a s m a i n t a i n e d a t 2 5 C -+ I C ( n = 1 9 0 ) a n dt h e s a l i n i t y w a s k e p t b e t w e e n 1 4 -1 6 /o o . T h e w a t e r f lo w r a t e t h r o u g ht h e t r i c k l i n g f i l t e r s w a s m a i n t a i n e d a t c o n s t a n t 8 m 3 h -1 ( se e T a b l e 1 ).T h e B O D s l o a d o f t h e s y s t e m v a r ie d b e t w e e n 0 -3 8 a n d 1 .1 5 k g d a y -1c o r r e s p o n d i n g t o a l e v e l b e t w e e n 2 a n d 6 m g l i t e r -1 i n th e i n f l o w o f t h et r i c k l i n g f i l te r s . T o t a l a m m o n i u m l o ad r a n g e d b e t w e e n 0 - 0 4 an d 0 -1 k gN H ~ d a y -1 d u r i n g t h e e n t i r e e x p e r i m e n t a l p e r i o d .

    S a m p l e s f o r f r e s h w a t e r c h e m i s t r y w e r e t a k e n d u r i n g a n in t e n s iv ee x p e r i m e n t a l p e r i o d s i m u l t a n e o u s l y a t t h e i n le t a n d o u t l e t o f t h et r i c k l i n g f i l t e r s a t in t e r v a l s o f 0 . 3 - 2 h o v e r s e v e r a l 2 4 - h p e r i o d s . W a t e rq u a l i t y p a r a m e t e r s d e t e r m i n e d w e r e : p H v a lu e , 0 2 c o n c e n t r a t i o n ,B O D s l o a d , t o t a l a m m o n i a ( N H 3 + N H ~ ) , n i t r i t e a n d n i t ra t e . ( D a t a f o rt o t a l a m m o n i a a r e e x p r e s s e d a s N H ~ t h r o u g h o u t t h e p a p e r . )

    L o n g - t e r m o b s e r v a t i o n s o n t r i c k l i n g f i l te r p e r f o r m a n c e ( o v e r s e v e ra lm o n t h s ) i n c l u d e d d a i l y m e a s u r e m e n t s o f t e m p e r a t u r e , s a li n i ty ,d i ss o lv e d o x y g e n . W a t e r s a m p l e s f o r d e t e r m i n a t i o n o f B O D 5 a n dn i t r o g e n c o m p o u n d s (N H 3 + N H ~ , N O 2 , N O 3 ) w e r e ta k e n t h r e e t o f o u r

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    7/19

    Eff ic ienc y o f n i tr i f ica t ion in t r ick ling f i l ters 55t i m e s a w e e k . A ll s a m p l e s w e r e t a k e n d u r i n g m o r n i n g h o u r s p r io r t o t h ef i r s t f e e d i n g .

    T r i c k l i n g f i l t e r A w a s e q u i p p e d w i t h a H y d r o p a k f o i l ( F r i e d r i c h U h d eG m b H , D o r t m u n d ) . T h e p l a s ti c p a c k a g e w a s m o u n t e d i n a v e r t i c a lp o s i t io n , f o r m i n g a la rg e n u m b e r o f c l o s e d t u b e s ( F i g . 2 ) .

    T h i s s t r u c t u r e w a s a c h i e v e d b y r o l l in g u p o n e s t r a ig h t p l a s t ic s h e e tt o w h i c h a s e c o n d , c o r r u g a t e d o n e i s a t t a c h e d . E a c h t u b e o f t h e p a c k a g eis 1 . 35 m l o n g w i t h a d i a m e t e r o f a b o u t 2 c m . T h i s t r ic k l i n g f i l t e r w a si n t e g r a t e d i n t o t h e c u l t u r e s y s t e m l o n g b e f o r e t h e e x p e r i m e n t sd e s c r i b e d i n t h i s p a p e r h a d b e e n s t a r t e d . T r i c k l in g f i l t e r B w a s f il le dw i t h a m a t e r i a l c a ll ed B i o -N e t ( N o r d d e u t s c h e S e e k a b e l w e r k e A G ,N o r d e n h a m ) . T h e m e d i u m c o n s i s t e d o f t u b e s w i t h a u n i q u e c y l i n d r i c a ln e t s t r u c t u r e ( se e F i g . 3 ) . T h e g e o m e t r i c a l s t r u c t u r e o f t h e t u b e s w a sn o t o n l y o f i m p o r t a n c e in re l a t i o n t o m a x i m u m a v a il ab l e s u r f a c e a r e af o r c o n t i n u o u s g r o w t h o f t h e b a c t e r i a f i lm , b u t i t a l s o i n f l u e n c e d t h eh y d r o d y n a m i c s o f t h e f i l t e r b e d , i n d u c i n g c o n t i n u o u s s p l i tt in g o f t h ew a s t e w a t e r d r o p l e t s a s t h e y f l o w e d o v e r t h e m e d i u m ' s s u rf a c e .

    T h e w a s t e w a t e r s u p p l y t o t r i c k l i n g f i l t e rs A a n d B w a s p r o v i d e d b yr o t a r y m o t o r - d r i v e n d i s t r i b u t o r s , o p e r a t i n g b o t h a t c o n s t a n t t u r n i n gs p e e d a n d c o m p a r a b l e w a t e r f l o w ra t e s .

    F i g . 2 . Typ e o f subs tr a te (Hy dro pa k) used in t ri ck li ng f i lt e r A ( t op v i ew ) . Fo rexplanat ions see t ex t .

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    8/19

    56 G . K r fi n e r, H . R o s e n t h a l

    F i g . 3 . Ty pe o f subs t ra t e (B io -Ne t ) u sed i n t r ick l ing t e r B ( s ide v i ew ) . Fo rexp l ana ti ons s ee t ex t .

    R E S U L T S

    T h e e f f ic i e n c i e s o f b o t h a m m o n i a a n d n i t r i t e o x i d a t i o n d u r i n g a s in g lew a t e r p a t h t h r o u g h t r ic k l i n g f i l t e r s A a n d B ( f l o w r a t e s 8 m 3 h -1c o n s t a n t ) a r e d e m o n s t r a t e d i n F i g . 4 , i n d i c a t i n g t h e l o n g - t e r m c h a n g e sd u r i n g a n o b s e r v a t i o n a l p e r i o d o f m o r e t h a n 2 5 w e e k s . T h e d a t a a r eb a s e d o n w a t e r s a m p l e s t a k e n d u r i n g t h e m o r n i n g h o u r s p r i o r t o t h ef i r s t f e e d i n g o f f is h ( u s u a l l y 0 8 . 0 0 h o u r s ) .

    D u r i n g t h e i n i t ia l c o n d i t i o n i n g p e r i o d o f t r i c k l i n g f i l t e r B , h e t e r o -t r o p h i c a n d a u t o t r o p h i c b a c t e r i a b e g a n t o a t t a c h to t h e s u b s t ra t es u r f a c e a n d f o r m e d m i c r o c o l o n i e s w i t h i n s e l f - s e c re t e d la y e r s o f s l i m e( b i o lo g i c a l f i lm ) , e x h i b i t i n g a g e l a t i n o u s m a t r i x w h i c h c o a t s t h e s u r f a c eo f t h e p l a s t ic m e d i a . I t w a s a th i n , t o u g h , g r e y t o b r o w n c o l o r e d s l i m et h a t w a s f a i r ly r e s i s ta n t t o d r y i n g a n d s l o u g h i n g . T h e t h i c k n e s s o f t h em a t r i x is l i m i t e d b y t h e h y d r a u l i c a n d n u t r i e n t l o a d a s w e l l a s t h ed i s so l v e d o x y g e n c o n t e n t o f t h e e n v i r o n m e n t .

    W h i le t r i c k l i n g f i l te r A h a d b e e n o p e r a t i n g a l r e a d y f o r m o r e t h a nt h r e e y e a r s , t h e s t a r t- u p p h a s e f o r t r i c k l i n g f i l t e r B w a s i n c l u d e d i n t h ee x p e r i m e n t a l p e r i o d . T h e r e f o r e , f l o w - r a t e s t h r o u g h f i l te r B s t a r te d w i t h4 m 3 h -a a n d i n c r e a s e d g r a d u a l l y t o 8 m 3 h -1 d u r i n g t h e f i r s t f o u r w e e k so f o p e r a t i o n .

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    9/19

    Eff ic iency o f n i tr i f ica t ion in t r ick l ing f i l ters 57

    - 4 0 -

    6 0 -

    - 8 0 -

    1 0 0 -

    - ~ 2 0

    d e g r a d a h o n e f f t c l e n c y {% )1 0 0 -

    _ N H ~8 0 - l r i c k h n g f d l e r A q~ ,~, i " ~

    0

    ' 2 0

    ...., : / ' JI x . \ o , t ~ " ~ / . , ~ / ' .~ \ / .. / \ ., r \ , \ /:/'-!/" V

    i'i'

    , , _ ~ - , ; . . . . b . . . . ; . . . . . . . . . . . . .1 ! 2 0 2 5e x p e r i m en t a l w e e k s

    Fig. 4. Efficiency o f am mon ium and nitrite oxidation during a single water passthrough the trickling filter, expressed as a percentage of the initial concentration.Trickling filter A, Hyd ropak-Folia; trickling filter B, Bio-Net m aterial. Fluctuationsof pH -values at the inlet o f the trickling filters. D ata are tak en from water samples

    collected in the morning prio r to the first feeding.

    pH"70-66~, 2c a 8

    5 4

    - - - 5 , 0

    T h e f ir s t s t ag e o f n i t r if i c a t i o n s t a r t ed t o s h o w a r e a s o n a b l e e f f i c i e n c ya b o u t 1 2 d a ys a f t er t h e b e g i n n i n g o f t h e e x p e r i m e n t ( 5 0 - 9 0 % N H ~o x i d a t i o n ) T h e s e c o n d s t ep o f n i t r if i c a t io n , t h e n it r it e o x i d a t i o n ,r e a c h e d a n a p p re c ia b l e o x i d a t i o n e f f i c i e n c y a f te r a d e l a y o f a b o u t f i vew e e k s . T h e g r a d u a l i n c r e a s e i n t h e f l o w r a t e h a d n o s i g n i f i c a n t i n f l u e n c eo n t h e p e rc e n t a g e a m m o n i u m o x i d i z e d p e r u n i t v o l u m e t r e a te d , b utt h e t o t a l a m o u n t o f a m m o n i u m o x i d i z e d p e r u n i t t i m e i n c re a se d dr a st i-c a l ly . A s a r e s u lt th e p H v a lu e i n t h e t o t a l s y s t e m d r o p p e d c o n s i d e r a b l yf r o m i n it ia l v a l u es o f a b o u t 6 . 3 d o w n t o v a l u es o f a b o u t 5 - 8 ( F i g . 4 ) .T h i s w a s m a i n l y d u e t o t h e t o ta l n i tr i f ic a t i o n c a p a c i t y o f b o t h t r ic k li n g

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    10/19

    58 G. Kriiner, H. Rosenthalfilters, consuming a substantial po rtion of the available alkalinity. Sincethe denitr ification unit was originally designed only to compensate forthe alkalinity loss caused by trickling filter A, operational strategies hadto be adjusted to maintain pH values within an acceptable range.Although the rate of nitrification experienced considerable variationin both filters, both steps were generally more efficient in filter B thanfilter A. This is specifically true during a period of relatively stableconditions (pH values between 6.3 and 6.9, weeks 22-28, Fig. 4).

    In both filters the oxidat ion ef ficiency for total ammonia was signifi-can tly higher than for nitri te with an average rate of 84-9 + 15-1% NH~against 63-0 + 25.8% NO~ per single pass th rough the trickling filter Bcompared to 65-0 + 19-2% NH~ and 28-7 + 19-8% NO~ in fil ter A(n = 55 for both filters).

    Lower pH values resulted in reduced rates of ammonia oxidation(Fig. 4) which in turn influenced the oxidation e fficiency for nitritebecause of lower substrate concentrations. Subsequently increasing pHvalues (>~6.0) enhance the ammonia oxidation rates by around 50%.Nitrite oxidation rates varied considerably more than those forammonia (coef ficient of variation: ammonia = 0.29 filter A, 0.18 filterB; nitrite = 0.69 filter A, 0-41 filter B).

    In Figs 5 and 6 the degradation efficiencies for ammonia and nitriteare plotted against the actual pH values of the medium to be treated.The effect of pH on the first step of nitrification had been clearlydemonstrated for both trickling filters. Changes in pH values did notoccur abruptly but took place slowly during the entire experimentalperiod. Maximum daily pH variation did not exceed 0.1 units.Ammonium degradation ceased at pH values at or near 5-5. At pHlevels higher than 6-4, trickling filter A (Hydropak ) was less effic ientthan trickling filter B (Bio-Net). Removal efficiency in the first stage ofnitrification at pH 6-2 and higher was always above 50% in medium Bwhile 50% removal eff iciency in trickling filter A was reached only atpH values of 6.8 and above. The second step of nitrification reachedabout 40% degradation ef fic iency at the same pH levels (6.2 and 6.8)in both filters.

    The rate of ammonium removal was proportional to the amount ofsurface provided by the materials used in the trickling filters and maybe reduced by the interfering action of other organisms (heterographs)within the filter. Experiments investigating the effect of various initial

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    11/19

    Ef f i c i e n c y o f n i t ri f ic a t i o n in t r i c k li n g f i l te r s 591 0 0 !

    8 0

    ~ r a d a t i o n e f f i c i e n c y ( % }

    6 0 i~,o 1

    i .] ~ t r , c k h n g f i l t e r A

    2 0 ! ~ "~1 [ H Y D R O P A K - F O L I A )

    0 , I , , , I 611 . . . . 6) I & , I t ,5. 5 6 5B 6.0 .2 6/ . 6 . ZO TLp H v o l u e s ( in l e t)

    100 c.o oo o o% QoO 0% o o o oo ~ o o o %

    o o o 8 0o o o oo & S g ~ & o o

    o o ~ o o o g ~ o O , oo o ~o o ~ o o o o o " o~o o o 60~ qg

    ' % & o

    4 0

    2 0

    e g r o d a t i o n e f f i c ie n c y ( % )N O }

    c o

    : ~ o t r i c k t i n g f i l t e r Ao ( H Y D R O P A K - F O L I /~

    5.6 5.8 60 6.2 ~tZ. 6.6 6.8 Z0 72p H v c l l u e s ( i n l e t ]

    F i g . 5 . D e g r a d a t i o n e f f i c i e n c y o f a m m o n i u m a n d n i t ri te in tr i ck l in g fi lt e r A( H y d r o p a k - F o l i a , 2 0 0 m 2 a c t i v e s u r f a c e a r e a p e r m 3 v o l u m e ) i n r e l a ti o n t o p H

    v a l u e s a t t h e i n l e t o f t h e t r i c k l i n g f i l t e r .

    t 0 0 d e { j r o d o t i o n e f f ic i e n c y ( %)o o ~ oo o

    N H ~ ooooo oo % o o

    % 0 oo80 o%o%% o

    oo oe o o

    o o oo6C oo o ooo o o

    o o

    4 o oo

    ooo

    2(ooo

    o

    54. 5.6 5.8 & 0 6.2 6." 6.6 6.8 7.0p H v a l u e s ( i n l e t )

    t r i c k l i n g f i l t e r B( BI O - N E T - M A T E R I A L )

    ! 0 0 d e g r o d a t * o n e f f i c, e n c y { %)N O }

    4 0

    2 0

    o ooo oco ooo o o

    oo O o o oeo o o o oo oo o oo 9,o oo o

    OOo o

    o o o oo% o o t r i c k [ i n g f , l t e r B

    o o ( B~ O - N E T - M A T E R I A L ]

    o5,4 5 .6 5 .8 60 62 64 66 6 .8 70p H v a l u e s ( i n l e t)

    F i g . 6 . D e g r a d a t i o n e f f i c i e n c y o f a m m o n i u m a n d n it r it e in t ri ck l in g f il te r B ( B i o -N e t material, 260 m 2 m - 3 ) i n r e l a t io n t o t h e pH values a t t h e i n l e t o f t h e t r i c k li n gfilter.

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    12/19

    60 G. K r u ne r , H . Rosen t h a ls u b s t r a t e l e v e ls r a n g in g f r o m 0 . 1 5 t o 1 - 8 m g l it er -~ N H ~ w e r e c o n d u c t e d .T h e f i n d i n g s f r o m t h i s e x p e r i m e n t i n d i c a t e d t h a t t h e i n i ti a l s u b s t r a t ec o n c e n t r a t i o n h a d a n e f f e c t o n t h e o x i d a t i o n r a t e .

    W i t h i n cr e a si n g in i ti a l a m m o n i u m c o n c e n t r a t i o n t h e re m o v a l e f f i-c i e n c y d e c r e a s e d d r a s t i c a ll y in b o t h f i lt e r s ( F i g . 7 ) . T h e o x i d a t i o n r at ew a s a l w a y s b e l o w 6 0 % a t c o n c e n t r a t i o n s h i g h er t h a n 1 - 0 m g t o t a la m m o n i a p e r l i t e r .

    I n o r d e r t o c o m p a r e t h e d e g r a d a t io n e f f i c i e n c i e s o f b o t h f i l te r sr e g r e s s io n s w e r e c a l c u l a t e d a n d t h e s l o p e o f t h e r e s u l t in g l in e s w e r ec o m p a r e d . A s i n d i c a t ed i n F i g. 8 f i lt e r B w a s a b o u t 2 0 % m o r e e f f i c i e n tt h a n f i l te r A . R e g r e s s i o n l i n e s e x h i b i t a l m o s t i d e n t i c a l s l o p e s . H o w e v e r ,s i n c e f i l t e r B p r o v i d e d a b o u t 2 3 % m o r e s u r f a c e a r ea p e r u n i t v o l u m et h a n f i lt e r A t h e d i f f e r e n c e s i n a m m o n i a r e m o v a l e f f i c i e n c y c an o n l y b ee v a l u a t e d w h e n d a t a ar e c o m p a r e d o n t h e b a s i s o f u n i t s u r f a c e a r e aa v a i la b l e . T h e s e d a t a a r e d e p i c t e d i n F ig . 9 , s h o w i n g a m u c h s m a l le rd i f f er e n c e i n a m m o n i a r e m o v a l e f f ic i e n c y i n b o t h m e d i a .

    d e g r o d a t i o n e f f i c i e n cy (%)100

    50

    i ~ o e o ~ . ~ - o 8

    ~ e e oo Q o ~ o o o o o e ~e e o e o; . ' . "

    , ~ . T # ' . . g . " . E ~ L T o ' & o g , ~ ~ l u l O O O ~ e o o% . . . ~ ~ o 8 " .

    04) 0O< 00 oo e . . .

    o o

    t r i c k l i n g f i l t e r Ao t r i c k l i n g f i l t e r B

    00 0 0

    00

    0

    0 o

    e

    0

    0O ~ e

    oo

    0 I I I t 0 I" I I I I I I I I I I I -40 1.0 1.5 1 9

    i n i t i o I N H ~ - c o n c e n t r o t i o nFig. 7.with different materials as a function of initial NH ~ concentrations in mg liter ~

    (pH values betw een 6.0 and 7.2; temperature = 24-26C; salinity = 14-16/oo).First step of nitrification (ammonium oxidation) in trickling filters filled

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    13/19

    Eff ic ien cy o f n i tr if ica t ion in t r ickl ing f i l ters 61

    F i g . 8 .

    d e g r a d a t i o n e f f ic ie n c y N H L ( % )100- o o ~ m

    o - oo o ~o o o

    o oo

    o o oo~ ~ o t r , c k h n g f , [ t e r B' " ~ . , ~ . ' . \ y=6, .as3-~93~ h xOOO e

    5 0 % ~ ~ ~ = 1 4 - 1 1 o " , Q \

    ~ o

    t r i c k l i n g f i l t e r Ay=43 .89 -181 I n xr = - 0 6 1 l , n = 5 0

    0 I . - - - 4 -01 0 .5 10~n i t i a l NH4* -concen t r a t i o n

    O f s l o p e s

    -41 00Com par ison o f t o t a l am m onia r em ova l e ff ic i ency be tw een tw o tr ick l ing

    f i lte rs in re la t ion to the in i tia l NH~ co nc en t ra t io n ( in l m g li te r -~) .

    In a d d i t io n , a w i d e r a n g e o f n i t r i t e c o n c e n t r a t i o n s ( 0 . 0 8 - 1 - 8 5 m gl i t e r - ~ ) o c c u r r e d in t h e s y s t e m d u r i n g t h e e x p e r i m e n t a l p e r i o d . N i t r i t ed e g r a d a t i o n e f f i c i e n c y o f b o t h t r i c k li n g f i l te r s w a s a ls o a f f e c t e d b yv a r i o u s i n it ia l N O ~ c o n c e n t r a t i o n s . R e s u l t s a r e d e p i c t e d i n F ig . 1 0 .W i t h in c r ea s in g s u b s t r a t e c o n c e n t r a t i o n u p to c o n c e n t r a t i o n s o f 0 -5 m gN O 2 l i t e r - I , t h e d e g r a d a t i o n e f f i c i e n c y i n c r e a s e d i n f i l t e r B m o r e t h a nin A , r e a c h in g b e t w e e n 7 0 a n d 9 0 % r e m o v a l e f f ic i e n c y f o r m o r e t h a nh a l f o f t h e o b s e r v a t i o n p o i n t s b e t w e e n 0 - 2 5 a n d 0 . 3 5 i n i t ia l NO 2 c o n -c e n t r a t i o n s ( s e e F i g . 1 0 ) . H i g h e r N O 2 l e v el s o c c u r r e d o n l y w h e n f i l te r Aw a s in o p e r a t i o n . N O 2 l ev e l s a b o v e 0 -5 m g l it e r -1 c a u s e d a sl ig h t d e c l i n ein t h e d e g r a d a t i o n e f f i c i e n c y . E f f i c i e n c y d a t a a b o v e 0 . 5 m g l i te r -1 a r ew a n t i n g f o r f il te r B .

    O x y g e n c o n c e n t r a t i o n s a t t h e o u t l e t o f th e t r ic k l in g f i l te r s w e r eg e n e r a l ly h i g h e r t h a n t h o s e c a l c u l a te d s t o i c h i o m e t r i c a l l y f o r c o m p l e t en i t r i f ic a t i o n ( 5 . 9 - 9 . 1 m g 0 2 l i te r - ~ ) , i n d i c a t i n g s u b s t a n t i a l o x y g e nu p t a k e b y t h r o u g h a ir v e n t i l a t i o n i n t h e t r ic k l i n g f il te r s ( c h i m n e ye f f e c t s ) .

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    14/19

    62 G . K r i i n e r , H . R o s e n t h a ldegradat ion e f f ic iency NHC (% 100-1m 2}

    o . ~ . ~ o ~ o

    ~ " ~ o t r ick l ing fdter Bo ~ r - 7 ~ ~ y : 5 . 4 - 1 7 I n x. . ~ ' , ~ \ r :-0 S o : s 2o o o o / ~ ~ o comp o r,son s l o p e s

    - & \4 - o 0 ' ~ o "3 -

    2 - t r ick l ing f i l t e r Ay = L 6 - 1 9 1 n xr - 0 6 n : 5 01 -0 01 F I I05 10 100mnutlo[ NH4- concen t ra t ion

    F i g . 9 . C o m p a r i s o n o f t o t a l a m m o n i a r e m o v a l e f f i c i e n c y p e r 1 0 0 m 2 b e t w e e n twot r i ck l i n g f il t er s i n r e la t i o n t o t h e i n i t ia l N H ~ c o n c e n t r a t i o n ( i n m g l i t e r - ' ).

    degradat ion e f f ic iency (%110 0o / /o ~ o

    o ~ / /o /

    , o5C o O O y o o o / : : # , o ~ o / o% J % / o ~ o o

    o o/ o

    0 0 o ~/ o$

    t r ick l ing f i l ter Ao t r ick l ing f i ( ter B

    , . . ' . .-----. ._____

    I I I I I I I i I I I i I I0 i i ~ i 0 . 15 1 . 0 1.3 1 . 6 t gi n i t i o [ N O 2 - c o n c e n f r o f i o n

    F i g . 1O . N i t r i t e o x i d a t i o n i n tr i c k l in g f il te r s u s i n g d i ff e r e n t m a t e r i a l s i n r e l a t io n t ot h e i n i ti a l N O ] c o n c e n t r a t i o n ( i n m g l it e r -I ) . C u r v e s a re f it t e d b y e y e .

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    15/19

    E f f i c i e n c y o f n i t r if i c a t io n i n tr i c k li n g f i lt e r s 63DISCUSSION

    The results of our experiments demonstrate different nitrificationefficiencies in trickling filters under various operational conditions.However, since plastic media were of different surface structures andsince biofilm surface area varied slightly (material A = 200 m:m -3;material B = 260 m 2 m-3), some of the differences in perf ormancecan be explained by these factors. Process variables such as depth ofthe filter medium and its structure, hydraulic load and air ventilationgreatly influence the nitrification rates, since they also have animportant bearing on heterotrophic populations (e.g. BOD and CODremoval capacity). This has been demonstrated extensively in thepertinent literature (Howland e t a l . , 1963; Balakrishnan e t a l . , 1969;Bruce, 1970; Duddles e t a l . , 1974; Stenquist e t a l . , 1974; Porter andSmith, 1979). Other factors that influence independent ly the rateof nitrification are the temperature of the liquid to be treated, organicwaste load (particulate matter plus soluble organics) and variousinhibitors. Concentra tions o f metabolites and their degradation productsalso affect the result of the treatment process. Therefore, the amplitudeof daily fluctuations in various water quality parameters are of majorimportance to system performance. Since our data are based on samplestaken during morning hours, these effects cannot be evaluated in thisstudy.

    Relatively low BOD concentrat ions (2-1-6-3 mg liter-1) wereobserved during the experimental period. From data reported in theliterature (Painter, 1970) it may therefore be concluded that these lowloads will not significantly inhibit nitrification so that variations infilter performance are mainly due to fluctuations of substrate con-cen tration (e.g. NH~ and NO~ levels in the trickling filter inlet).

    The design of the two media seems to exert some influence on theoverall effi ciency of the biological treatment . The differences in specificsurface area available for growth of bacteria and the differences in voidspace between surfaces are important variables, which largely influenceoxygen supply to the biofilm (ventilation), retention time of wastewater, thickness of the biofilm and continuous discharge of suspendedsolids (Audoin e t a l . , 1971; Monadjemi and Behn, 1971; Rincke andWolters, 1971; Saunders and Bazin, 1973; Wheatley, 1976; S/irner,1981).

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    16/19

    6 4 G . K r i i n e r , H . Ro s e n t h a lD u r i n g t h e i n i t ia l c o n d i t i o n i n g p e r i o d o f t h e t r i c k li n g f i l te r B ( F ig . 4 )

    t h e f i rs t s t a g e o f n i t r i f i c a t i o n s t a r t e d a f t e r 1 2 d a y s , t h e s e c o n d s t a g ea f t e r f i ve w e e k s . S r n a ( 1 9 7 5 ) f o u n d a p e r i o d o f 4 0 d a y s to g e n e r a t e as u b s t a n t ia l p o p u l a t i o n o f n i t r i fy i n g b a c t e r i a ( t e m p e r a t u r e = 2 0 - 2 4 C ;s a l i n i t y = 2 4 - 2 8 % o ) . I n f o r m e r s t u d i e s ( O t t e a n d R o s e n t h a l , 1 9 7 9 ) ,w h e n u s in g t r i c k l in g f i l te r s w i t h a re l a t i v e l y l o w c o l u m n h e i g h t ( 1 .3 5 m ) ,t h e s t a r t - u p p h a s e w a s a l s o c o n s i d e r a b l y l o n g e r . T h e r e f o r e i t i s c o n -c l u d e d t h a t t h e r a p i d i n c r e a se i n a m m o n i a r e m o v a l c a p a c i t y s e e m s t o b ed u e t o t h e h ig h e r t r i c k li n g f i lt e r c o l u m n ( 2 -5 m ) . A m o r e p r o n o u n c e do z o n a t i o n o f c a r b o n o x i d i z e r s a n d n i t r i f y i n g b a c t e r i a w i t h i n t h e c o l u m nc a n b e a s s u m e d a s o n e o f t h e r e a s o n s . I t i s g e n e r a l ly a c c e p t e d t h a t n i tr i-f i c a t i o n o c c u r s m a i n l y i n d e e p e r p a r t s o f t h e f i lt e r , s i n c e t h e n i t r if i e rsc a n n o t c o m p e t e w i t h t h e o r g a n o - h e t e r o t r o p h i c b a c t e r i a w h i c h t a k eo v e r in t h e t o p l a y e r . T h e n i t r i f i e rs a r e a l s o d e p e n d e n t o n t h e r e l e a s e o fn i t r o g e n c o m p o u n d s f r o m o r g a n ic m a t t e r . R e a c t i o n c o n s t a n t s fo r n i t r i-f i c a t i o n a r e g e n e r a l ly s m a l le r t h a n t h o s e f o r c a r b o n o x i d a t i o n .

    T h e h y d r a u l i c l o a d h a s a p r o f o u n d e f f e c t o n t h e d e g r e e o f n i t r i f i ca -t i o n o b t a i n a b l e i n t h e t r i c k l in g f i l t e r ( B a l a k r i s h n a n a n d E c k e n f e l d e r ,1 9 6 9 ) . F o r s t e r ( 1 9 7 4 ) f o u n d a t i n c r e a s i n g h y d r a u l i c lo a d s o f 1 0 . 2 5 -2 4 6 m 3 m -3 d a y -1 t h a t t h e t o t a l q u a n t i t y o f a m m o n i u m o x i d i z e d in -c r e a s ed b u t t h e p r o p o r t i o n o f N H ~ - N o x i d i z e d b y th e f i l t e r d i m i n i s h e da n d t h e r a te o f n i t r if i c a t io n w a s p r o p o r t i o n a l t o t h e c o n c e n t r a t i o n o fa m m o n i u m i n s o l u t i o n . I n c o n t r a s t , L i a o e t a l . ( 1 9 7 2 ) s h o w e d t h a th y d r a u l i c l o a d i n g h a d n o e f f e c t o n a m m o n i u m r e m o v a l r a te b y t h ef i l te r . H o w e v e r , t h e r a n g e o f v a r i o u s h y d r a u l i c l o a d s i n v e s t ig a t e d b yt h e s e a u t h o r s w a s m u c h l o w e r t h a n t h e o n e r e p o r t e d b y F o r s t e r (1 9 7 4 ) .I n o u r c a s e , t h e h y d r a u l i c l o a d f o r t r ic k l i n g f i l t e r B d o u b l e d d u r i n ge ig h t w e e k s f r o m 2 2 - 4 4 m 3 m -3 d a y -~ ( r e c a l c u l a te d o n t h e b a s is o fs u r f a c e a r e a : 5 3 - 1 0 6 m 3 m -2 d a y - l ) . T h e s e v a l u e s h a d a l so n o s ig n if i-c a n t i n f lu e n c e o n t h e p e r c e n t a g e a m m o n i u m o x i d a t i o n . N e v e r th e l e s s ,i t s e e m s d e s i r a b l e t o o p e r a t e b i o f i l t e r s in b y p a s s e s , in o r d e r to a l l o ws u f f ic i e n t m i x i n g w i t h o t h e r w a t e r m a s se s o f th e s y s t e m a t t im e s w h e nd a i ly p e a k l o a d s f o r a m m o n i a o c c u r . T h i s w i ll p e r m i t m i n i m i z a t i o n

    - o f d a i l y a m m o n i a f l u c t u a t i o n s a n d o p t i m i z a t i o n o f a m m o n i a r e m o v a l .A w i d e r an g e o f a m m o n i u m a n d n i t r i t e c o n c e n t r a t i o n s c a n b e

    e f f i c i e n t l y o x i d i z e d b y n i t r i f i e r s . L i a o e t a l . ( 1 9 7 2 ) e s t a b l i s h e d t h er e la t i o n s h ip b e t w e e n a m m o n i u m r e m o v a l a n d a m m o n i u m l o a d in g ra tef o r a t r i c k l i n g f i l t e r . L i a o ( 1 9 8 0 ) r e p o r t e d t h a t a m m o n i u m r e m o v a ld e c r e a s e s w h e n i n it ia l a m m o n i u m l o a d i n g e x c e e d s 1-1 g N H ~ - N d a y -1

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    17/19

    Eff ic ienc y o f ni tr i f icat ion in tr ickl ing J~'lters 65p e r s q u a r e m e t e r o f s p e c if i c m e d i a s u r f a c e a r e a . In o u r i n v e s t i g a t i o n st h e a m m o n i u m l e v el s a t t h e i n l e t r a n g e d f r o m 0 - 0 3 t o 0 - 4 g N H ] d a y -1m -2 ( F ig . 7 ) a n d w a s t h e r e f o r e f a r b e l o w t h e e x p e c t e d t h r e s h o l d v a lu ed e t e r m i n e d b y L i a o ( 1 9 8 0 ) .

    R E F E R E N C E SA n d e r s o n , D . ( 1 9 7 4 ) . A b i o l o g i c a l t ri c k l i n g f i lt e r s y s t e m f o r w a t e r r eu s e in t r o u t

    rear ing. M i nneso t a D epar t m en t o f Na t ura l Resources, I nve st iga t iona l Re por t3 2 2 .

    A u do i n , L . , B a ra be , J . P . , B r e b i o n , G . & H u r i e t , B . ( 19 7 1) . T he us e o f p l a s t i cm a t e r i a l a s a m e d i u m f o r t r i c k l i n g f i l t e r s t r e a t i n g d o m e s t i c s e w a g e . A d v a n c e sin Water Po l lu t ion Research , 1 , 1 1 - 1 6 / 1 - I I - 1 6 / 1 2 .

    B a l a k r i sh n a n , S . & E c k e n f e l d e r , W . W . ( 1 9 6 9 ) . N i t r o g e n r e l a ti o n s h i p s i n b i o l o g i ca lt r e a t m e n t p roc e s s. I I . N i t r i f i c a t i on i n t r ic k l i n g f il t e r s . W at . Res . , 3 , 1 6 7 - 7 4 .

    B a l a k r i s h n a n , S . , E c k e n f e l d e r , W . W . & B r o w n , C . ( 1 9 6 9 ) . O r g a n ic r e m o v a l b y as e l e c t e d t r i c k l i ng f i l t e r me d i a . Water and Wastes E n g . , 6 , 2 2 - 5 .

    B o o n , B . & L a n d e l o u t , H . (1 9 6 2 ) . K i n e t i c s o f n i tr i te o x i d a t i o n b y Ni t robac t e rwinogradsk i . Biochem. J . , 8 5 , 4 4 0 - 7 .B r u c e , A . M . ( 1 9 7 0 ) . S o m e f a c t o r s a f f e c t i n g t h e e f f i c i e n c y o f h ig h - ra te b i ol o gi ca lf i l t e r s . In ternat iona l Assoc ia t ion , Water Pol lu t ion Re search , 1, I I- 14 /1- I I - 14/8 .B u r r o w s , R . E . ( 1 9 6 4 ) . E f f e c t s o f a c c u m u l a t e d e x c r e t o r y p r o d u c t s o n h a t c h e r y -r e a r e d s a l m o n i d s . Bur . Spo r t Fi sh . WiM I . , Washington DC, Research Re po r t 66 .

    C a r m i g n a n i , G . M . & B e n n e t , J . P . ( 1 9 7 6 ) . L e a c h i n g o f p l a st ic s u s e d i n c l o s e d aq u a-c u l t u r e s y s t e m s . A q u a c u l t u r e , 7 , 8 9 - 9 1 .

    C h i p p e r f i e l d , P . N . J . ( 1 9 6 7 ) . P e r f o r m a n c e o f p l a s t i c f i l t e r m e d i a i n i n d u s t r i a l a n dd o m e s ti c w a s te t r e a t m e n t . J . W at erPo l l u t . Con t ro l Fed . , 3 9 , 1 8 6 0 - 7 4 .

    Co l l in s , M. T ., G r a t z e k , J . B . , Sh o t t s , E . B . , J r . , D a w a , D . L . , C a m pb e l l , L . & Se nn ,D . R . ( 1 9 7 5 ) . N i t r if i c i a ti o n i n a n a q u a t i c re c i r c u l a t io n s y s t e m . J. Fish. Res.Board Can. , 3 2 , 2 0 2 5 - 3 1 .

    D u d d l e s , G . A . , R i c h a r d s o n , S . E . & B a r t h , E . F . ( 1 9 7 4 ) . P l a s t i c m e d i u m t r i c k l i n gf i lt e r s f o r b i o l o g i c a l n i t r o g e n c o n t r o l . J . Water Pol lu t . C ontrol Fe d. , 4 6 , 9 3 7 - 4 6 .F o r s t e r , J. R . M . ( 1 9 7 4 ) . S t u d i e s o n n i t r i f i c a t i o n i n m a r i n e b io lo g ic a l f il ters . Aq ua -

    cu l t u re , 4 , 3 8 7 - 9 7 .H a u g , R . T . & M c C a r t y , P . I . (1 9 7 2 ) . N i t r i f ic a t i o n w i t h s u b m e r g e d fi l te r s . J. Water

    Po l l u t. Con t ro l Fed . , 44 , 2 0 8 6 - 1 0 2 .H o r a , S . L . & P i l l a y , T . V . R . ( 1 9 6 2 ) . H a n d b o o k o n f i s h c u l t u r e i n t h e l n d o - P a c i f i c

    r e g i o n . F AO Fi sh B i o l . Tech . Pap. 14 .t t o w l a n d , W . E ., P o h l a n d , F . G . & B l o o d g o o d , D . E . ( 1 9 6 3 ) . K i n e t i c s i n t ri c k l i n g

    f i l t e r s . Ad vanc es in Bio logical Waste Treatmen t , (ed. by W. W. Eeh enfeM er) ,p p . 2 3 3 - 4 8 .

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    18/19

    6 6 G. Kriiner, H. RosenthalK h o l d e b a r i n , B . & O e r tl i, J . J. ( 1 9 7 7 ) . T h e e f f e c t o f p H a n d a m m o n i u m o n t h e r a t e

    o f n i t r i fi c a t i o n o f s u r f ac e w a t e r . J . WaterPollut. Control Fed., 4 9 , 1 6 8 8 - 9 2 .L i a o , P . B . ( 1 9 8 0 ) . T r e a t m e n t u n i t s u s e d i n r e c i r c u l a t io n s y s t e m s f o r i n t e n s iv ea q u a c u l t u r e . EIFAC/80/Symp.: R/6, 1-28. ( S y m p o s i u m o n n e w d e v e lo p m e n t in

    t h e u t i l iz a t i o n o f h e a t e d e f f l u e n t s a n d o f r e c ir c u l a ti o n s y s t e m s fo r in t e n si v ea q u a c u l t u r e . )

    L i a o , P . B . & M a y o , R . D . ( 1 9 7 2 ) . S a l m o n i d h a t c h e r y w a t e r re -u s e s y s te m . Aqua-culture, 1 , 3 1 7 - 3 5 .

    L i a o , P , B . & M a y o , R . D . (1 9 7 4 ) . I n t e n s i f i e d f is h c u l t u r e c o m b i n i n g w a t e r re -c o n d i t i o n i n g w i th p o l l u ti o n a b a t e m e n t . Aquaculture, 3 , 6 1 - 8 5 .

    L i a o , P . B . M a y o , R . D . & W i ll ia m s , W . G . ( 1 9 7 2 ) . A s t u d y f o r d e v e l o p m e n t o f f i shh a t c h e r y w a t e r t re a t m e n t s y s te m s . R e p o r t p re p a r ed f o r U S D e p a r tm e n t o f A rm yCo r ps o f En g i ne e r s , W a U a W a l la D i s t r i c t , W a ll a W a l la , W a s h i ng t on .

    M e a d e , T . L . ( 1 9 7 3 ) . S a l m o n i d c u l t u r e i n c l o s e d s y s t e m s . Proc. Annu. Workshop,World Mariculture Soc., 4 , 1 1 5 - 2 2 .

    M e a d e , T . L . ( 1 9 7 4 ) . T h e t e c h n o l o g y o f c l o s ed s y s t e m c u l t u r e o f s a lm o n i d s . Anita.ScL/NOAA Sea Grant, Technical Report 30, U n i v e r s i t y o f R h o d e I s l a n d ,K i n g s t o n .

    M e a d e , T . L . ( 1 9 7 6 ) . C l o s e d s y s t e m s a l m o n i d c u l t u r e i n t h e U n i t e d States. MarineAdvisory Service NOAA Sea Grant, U n i v e r si ty o f R h o d e I sl a n d , K in g s t o n .

    M o n a d j e m i , P . & B e h n , V . C . ( 1 9 7 1 ) . O x y g e n u p t a k e a n d m e c h a n i s m o f s u b s tr a tep u r i f i c a t i o n i n a m o d e l t r i c k l i n g f i l t e r . Advances in Water Pollution Research, 1,I 1 - 1 2 / 1 - I I - 1 2 / 1 6 .

    O t t e , G . & R o s e n t h a l , H . ( 1 9 7 9 ) . M a n a g e m e n t o f a c l o se d b r a c k is h w a t e r s y s t e mf o r h i g h - d e n s i ty f i sh c u l t u r e b y b i o lo g i c al a n d c h e m i c a l w a t e r t r e a t m e n t . Aqua-culture, 1 8 , 1 6 9 - 8 1 ,

    P a i n t e r , H . A . ( 1 9 7 0 ) . A r e v i ew o f l i t e r a tu r e o n i n o r g a n i c n i t r o g e n m e t a b o l i s m i nm i c r o - o r g a n i s m s . Wat. Res., 4 , 3 9 3 - 4 5 0 .

    P e t t i g r e w , T . , H e n d e r s o n , E . B . , S a u n d e r s , R . L . & S o c h a s k y , J . B. ( 1 9 7 8 ) . Ar e v ie w o f w a t e r c o n d i t i o n i n g re -u se t e c h n o l o g y f o r f i sh c u l t u r e w i t h a s e le c te db i b l i o g r a p h y . Fisheries and Marine Service, Technical Report 801.

    Po r t e r , K . E . & Sm i t h , E . ( 19 79 ) . P l a s t ic - m e d i a b i o l og i c a l f i l t e r s . Water Pollut.Control, 7 8 , 3 7 1 - 8 1 .R i n c k e , G . & W o l t e rs , N . ( 1 9 7 1 ) . T e c h n o l o g y o f p l a s ti c m e d i u m t r ic k l i n g f i lt e rs .Advances in Water Pollution Research, 1, I I- 15/1 - I I - 15 /9 .R o s e n t h a l , H . & O t t e , G . ( 1 9 7 8 ) . R e a c t i o n s o f a b io l o g i c a l f i lt e r t o s a l i n i t y c h a n g e .ICES, C.M. 1978/F:8, pp. 1 - 7 .R o s e n t h a l , H . , O t t e , G . & K r f in e r , G . ( 1 9 7 9 ) . L o n g - te r m o p e r a t i o n o f a b r ac k i sh

    w a t e r re c y c l i n g s y s t e m : p r o g re s s r e p o r t 1 9 7 8 . ICES, CM. 1979/F.'12, p p . 1 - 1 6 .R o s e n t h a l , H . , A n d j u s , R . & K r ii n e r , G . ( 1 9 8 0 ) . D a i l y v a r i a t i o n s o f w a t e r q u a l i t y

    p a r a m e t e r s u n d e r i n t en s i v e c u l tu r e c o n d i t i o n s i n a r ec y c l in g s y s t e m . EIFAC/80/Symp. : E/59.

  • 7/28/2019 Kruner 1983 Aquacultural-Engineering

    19/19

    Efficiency of nitrification in trickling filters 6 7S a d l er , K . (1 9 8 1 ) . T h e t o x i c i t y o f a m m o n i a t o t h e E u r o p e a n e e l Anguilla anguilla

    L. Aquaculture, 2 6 , 1 7 3 - 8 1 .S ~ r n e r , E . ( 1 9 8 1 ) . R e m o v a l o f d i s s o lv e d a n d p a r t i c u l a t e o r g a n i c m a t t e r i n h i g h - ra t et r i c k l i n g f i l t e r s . Wat. Res., 1 5 , 6 7 1 - 8 .S a u n d e r s , P . T . & B a z i n , M . J . ( 1 9 7 3 ) . A t t a c h m e n t o f m i c r o o r g a n i s m s in a p a c k e d

    c o l u m n : m e t a b o l i c d i f f u s i o n t h r o u g h t h e m i c r o b i o l f il m a s a li m i t in g f a c t o r . 3..appl. Chem. Biotechnol., 2 3 , 8 4 7 - 5 3 .

    S h a r m a , B . & A h l e r t , R . C . ( 1 9 7 7 ) . N i t r i f i c a t i o n a n d n i t r o g e n r e m o v a l . Wat. Res.,1 1 , 8 9 7 - 9 2 5 .

    S r n a , R . F . ( 1 9 7 5 ) . A m o d u l a r n i t r i f ic a t i o n f i lt e r d es ig n b a s e d o n a s t u d y o f t h ek i n e t ic s o f n i t r i f i c a t io n o f m a r i n e b a c t e r i a . Proc. Annu. Meet. Worm MaricultureS o c . , p p . 4 6 3 - 7 8 .

    S r n a , R . F . & B a g g a le y , A . (1 9 7 5 ) . K i n e t i c re s p o n s e a n d p e r t u r b e d m a r i n e n i tr i fi c a -t i o n s y s t e m s . J. WaterPollut. Control Fed., 4 7 , 4 7 2 - 8 6 .S t e n q u i s t , R . J . , P a r k e r , D . S . & D o s h , T . J . ( 1 9 7 4 ) . C a r b o n o x i d a t i o n n i t r i f ic a t i o n

    i n s y n t h e t i c m e d i a t r i c k l i n g f i lt e r s . J . Water Pollut. Control Fed., 4 6 , 2 3 2 7 - 3 9 .W e s t i n , D . T . ( 1 9 7 4 ) . N i t r a t e a n d n i t r i t e t o x i c i t y t o s a l m o n i d f is h e s . Prog. Fish.

    Cult., 3 6 , 8 6 - 9 .W h e a t l e y , A . D . & W i l li a m s , I. L . ( 1 9 7 6 ) . P i l o t- s ca le i n v e s t i g a t i o n s i n t o t h e u s e o f

    r a n d o m - p a c k p l a st ic s f i l t e r m e d i a i n a c o m p l e t e t r e a t m e n t o f s ew a g e. J . WaterPollut. Control Fed., 4 6 , 4 6 8 - 8 6 .