Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

28
Jag Tuli DDP-Workshop Bucharest, Romania, May 08 Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA Decay Scheme Normalization

description

Decay Scheme Normalization. Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA. 1.Relative intensity is what is generally measured 2. Multipolarity and mixing ratio ( d ). 3. Internal Conversion Coefficients Theoretical Values: From BRICC. Experimental values: - PowerPoint PPT Presentation

Transcript of Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Page 1: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Jagdish K. TuliNNDC

Brookhaven National LaboratoryUpton, NY 11973, USA

Decay Scheme Normalization

Page 2: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

1.Relative intensity is what is generally

measured

2. Multipolarity and mixing ratio ().

3. Internal Conversion Coefficients

• Theoretical Values:

• From BRICC

Page 3: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

• Experimental values:

For very precise values ( 3% uncertainty).

E = 661 keV ; 137Cs (K=0.0902 + 0.0008, M4)

Nuclear penetration effects.

233Pa - decay to 233U.

E = 312 keV almost pure M1 from electron

sub-shell ratios.

However K(exp) = 0.64 + 0.02.

(K th(M1)=0.78, K

th(E2)=0.07)

Page 4: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

For mixed E0 transitions (e.g., M1+E0).

227Fr - 227Ra

E = 379.1 keV (M1+E0); (exp) = 2.4 + 0.8

th(M1) = 0.40; th(E2) = 0.08

675.8

296.6

379.5

½-

½-

<10 ps

227Ra

Page 5: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 6: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 7: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Decay Scheme NormalizationRel. Int. Norm. Factor Abs. Int.

I NR BR %IIt NT Br %It

I NB BR %II NB BR %II NB BR %I

BR: Factor for Converting Intensity Per 100 Decays Through This Decay Branch, to Intensity Per 100 Decays of the Parent Nucleus

NR: Factor for Converting Relative I to I Per 100 Decays Through

This Decay Branch.

NT: Factor for Converting Relative TI to TI Per 100 Decays Through This Decay Branch.

NB: Factor for Converting Relative and Intensities to Intensities Per 100 Decays of This Decay Branch.

 

Page 8: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 9: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Absolute intensities

“Intensities per 100 disintegrations of the parent nucleus”

• Measured (Photons from -, ++, and decay)

Simultaneous singles measurements

Coincidence measurements

Page 10: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 11: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Normalization Procedures

1. Absolute intensity of one gamma ray is known (%I)

Relative intensity I + I

Absolute intensity %I + I

Normalization factor N = %I / IUncertainty N =[ (I%I)2+(IIx N

Then %Il = N x Il

Il = [(N/N)2 + (IIx Il

I1 I2

%I

Page 12: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

2. From Decay Scheme

IRelative -ray intensity; : total conversion coefficient

N x I x (1 + ) = 100%

Normalization factor N = 100/ I x (1 + )

Absolute -ray intensity % I = N x I00(1 +

)

Uncertainty % I= 100 x /(1 + )2

100%

I

Page 13: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Total intensity from transition-intensity balance

200

150

100

95

0

-

TI(7) = TI(5) + TI(3)

If (7) is known, then

I7 = TI(7) / [1 +

(7)]

I6I5 I4

I2 I3

I1

I7

Page 14: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 15: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 16: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Equilibrium Decay Chain

T0 > T1, T2 are the radionuclide half-lives,

For t = 0 only radionuclide A0 exists,

% I3, I3, and I1 are known.

Then, at equilibrium

% I1 = (% I3/I3) × I1× (T0/(T0 – T1) × (T0/(T0 – T2)

Normalization factor N = %I1/ I1

A0

A1

A2

A3

I1

I3

T0

T1

T2

Page 17: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 18: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 19: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 20: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 21: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 22: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 23: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 24: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 25: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 26: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Normalization factor N = 100 / I1(1 + 1) + I3(1 + 3)

% I1 = N x I1 = 100 x I1 / I1(1 + 1) + I3(1 + 3)

% I3 = N x I3 = 100 x I3 / I1(1 + 1) + I3(1 + 3)

% I2 = N x I2 = 100 x I2 / I1(1 + 1) + I3(1 + 3)

Calculate uncertainties in %I1, % I2, and % I3. Use

3% fractional uncertainty in 1 and 3.

See Nucl. Instr. and Meth. A249, 461 (1986).

To save time use computer program GABS

- 100%

I3

I2

I1

Page 27: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

4. Annihilation radiation intensity is known

I(+) = Relative annihilation radiation intensity

Xi = Intensity imbalance at the ith level = (+ce) (out) – (+ce)

(in)

ri = i / +i theoretical ratio to ith level

Xi = i + +i = +

i (1 + ri), therefore +i = Xi / 1 + ri

2 [X0 / (1 + r0) + Σ Xi / (1 + ri)] = I(+) ……… (1)

[X0 + Σ Ii ( + ce) to gs ] N = 100 ………. (2)

Solve equation (1) for X0 (rel. gs feeding).

Solve equation (2) for N (normalization factor).

+ce) (in)

(+ce)(out)

(++)2

(++)1

(++)0

++

Page 28: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

5. X-ray intensity is known

IK = Relative Kx-ray intensity

Xi = Intensity imbalance at the ith level = (+ce) (out) – (+ce) (in)

ri = i / +i theoretical ratio to ith level

Xi = i + +i, so i = Xi ri / 1 + ri (atomic vacancies); K=K-fluorsc.yield

PKi = Fraction of the electron-capture decay from the K shell

IK= K [0×PK0 + Σ i× PKi]

IK = K [PK0× X0 r0 / (1 + r0) + Σ PKi× Xi ri / 1 + ri]…(1)

[X0 + Σ Ii( + ce) to gs] N = 100 …. (2)

Solve equation (1) for X0, equation (2) for N.

+ce) (in)

(+ce)(out)

(++)2

(++)1

(++)0

++