InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes...

35
InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes [email protected] 805-893-3244, 805-893-5705 fax 2003 European GaAs IC Conference, Munich, October M. Rodwell, D. Scott, M. Urteaga, M. Dahlström, Z. Griffith, Y. Wei, N. Parthasarathy, Y-M Kim, University of California, Santa Barbara M. Urteaga, R. Pierson , P. Rowell, B. Brar Rockwell Scientific Company

Transcript of InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes...

Page 1: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes

[email protected] 805-893-3244, 805-893-5705 fax

2003 European GaAs IC Conference, Munich, October

M. Rodwell, D. Scott, M. Urteaga, M. Dahlström, Z. Griffith, Y. Wei, N. Parthasarathy, Y-M Kim,

University of California, Santa Barbara

M. Urteaga, R. Pierson , P. Rowell, B. BrarRockwell Scientific Company

Page 2: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

Applications of InP HBTs

Optical Fiber Transceivers

40 Gb/s:InP and SiGe HBT both feasible ICs now available; market has vanished

80 & 160 Gb/s may come in timewithin feasibility for scaled InP HBT

mmWave Transmission

65-80 GHz, 120-160 GHz, 220-300 GHz LinksLow atmospheric attenuation (weather permitting).High antenna gains (short wavelengths).

10 Gb/s transmission over 500 meters with 20 cm antennas needs 4 mW transmitter power

Mixed-Signal ICs for Military Radar/Comms

direct digital frequency synthesis, ADCs, DACshigh resolution at very high bandwidths sought

Page 3: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

Motivation for InP HBTs

Parameter InP/InGaAs Si/SiGe benefit (simplified) collector electron velocity 3E7 cm/s 1E7 cm/s lower c , higher Jbase electron diffusivity 40 cm2/s ~2-4 cm2/s lower b

base sheet resistivity 500 Ohm 5000 Ohm lower Rbb

comparable breakdown fields

Consequences, if comparable scaling & parasitic reduction: ~3:1 higher bandwidth at a given scaling generation~3:1 higher breakdown at a given bandwidth

Problem for InP: SiGe has much better scaling & parasitic reduction

Technology comparison today:Production SiGe and InP have comparable speedSiGe has much higher integration scales

Our Present Efforts Development of low-parasitic, highly-scaled, high-yield fabrication processes

Page 4: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

Scaling

key device parameter required change

collector depletion layer thickness decrease 2:1

base thickness decrease 0.707:1

emitter junction width decrease 4:1

collector junction width decrease 4:1

emitter resistance per unit emitter area decrease 4:1

current density increase 4:1

base contact resistivity (if contacts lie above collector junction)

decrease 4:1

base contact resistivity (if contacts do not lie above collector junction)

unchanged

Required transistor design changes required to double transistor bandwidth

…easily derived from geometry / resistivity / velocity relationships

WE

WBC

WEB

x

L E

base

emitter

base

collector

WC

(C ’s, ’s, C/I ’s all reduced 2:1)

Page 5: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

Optical Transmitters / Receivers are Mixed-Signal ICs

TIA: small-signal

aa

routebuffer

SwitchWideband Optical Transceiver

clockPLL

AD

DMUX

O/E, E/O interfaces

MUX

AD

AD

IQ

I

Q

DMUX

DMUX

mm-wave interfaces

I

Q

DA

DA

IQ

electronicor optical

Wideband mm-Wave Transceiver

Electronics for GigaHertz Communication

poweramplifier

MUX

addressdetect

PLL

Switches:network protocols,digital control, fast ICs,optical, electronic switches

Rf

Rc

Q1

Q2

I1

I2

Rf

Rc

Q1

Q2

I1

I2

  LIA: often limiting MUX/CMU & DMUX/CDR:mostly digital

Small-signal cutoff frequencies (f, fmax) are ~ predictive of analog speed

Limiting and digital speed much more strongly determined by I/C ratios

Page 6: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

Design HBTs for low gate delay, not for high f & fmax !

clock clock clock clock

inin

out

out

cexLOGIC

LOGIC

Ccb

becbi

becbC

LOGIC

IRq

kTV

V

IR

CCR

CCI

V

4

leastat bemust swing logic The

resistance base the through

charge stored

collector base Supplying

resistance base the through

charging ecapacitanc on Depleti

swing logic the through

charging ecapacitanc on Depleti

:by ermined Delay DetGate

bb

depletion,bb

depletion,

JVR

v

T

A

A

V

V

I

VC

T)V(VvεJ

CI

CCIV

f

ex

electron

C

CE

LOGIC

C

LOGICcb

cceceelectronKirk

cbC

becbCLOGIC

cb

highat low for low very bemust

22

/2

objective. design key HBTa is / High

total.of 80%-55% is

withcorrelated not well Delay

delay; totalof 25%-10y typicall)(

logic

emitter

collector

min,

2depletion full,operating ,max,

depl,

Page 7: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

Scaling Laws, Collector Current Density, Ccb charging time

Collector Field Collapse (Kirk Effect)

Collector Depletion Layer Collapse

)2/)(/( 2 cdsatcb TqNvJV

)2/)(( 2min, cTqNV dcb

0 mA/m2

10 mA/m2

0 mA/m2

10 mA/m2

GaAsSb base InGaAs base

Collector capacitance charging time is reduced by thinning the collector while increasing current

sat

C

CECE

LOGICCLOGICcCLOGICcb v

T

A

A

VV

VIVTAIVC

2/

emitter

collector

min,collector

2min,max /)2(2 ccbcbsat TVVvJ

Page 8: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

Technology Roadmaps for 40 / 80 / 160 Gb/s

Loss of yield at small dimensions

Scaling Challenges:

progressively harder to obtain; alternative is to decouple base & collector dimensions

progressively harder to obtain

heating, thermal resistance

decreasing breakdown

emitt

erba

seco

llect

or

key figures of merit for logic speed

Page 9: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

Deep Submicron Bipolar Transistors for 140-220 GHz Amplification

0

10

20

30

40

10 100 1000

Tra

nsi

sto

r G

ain

s, d

B

Frequency, GHz

U

U

MSG/MAG

H21

unbounded U

-4

-2

0

2

4

6

8

140 150 160 170 180 190 200 210 220

S21

, dB

Frequency, GHz

1-transistor amplifier: 6.3dB @ 175 GHz

-30

-20

-10

0

10

140 150 160 170 180 190 200 210 220

gai

n, d

B

Frequency (GHz)

3-transistor amplifier: 8 dB @ 195 GHz

raw 0.3 m transistor: high power gain @ 200 GHz

Page 10: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

InP-collector DHBTs: Self-Aligned Mesa Structure M Dahlström (UCSB/ONR); Fang,Lubyshev, Fastenau,. Liu (IQE)

200 nm InP collector, 30 nm InGaAs base8(1019) /cm3 base doping

1 m base contacts, 0.5 m x 7.5 m emitter junction0.7 m emitter contact

Vce=1.7 V J=3.7E5 A/cm2

0

5

10

15

20

25

30

1010 1011 1012

Ga

ins

(dB

)

Frequency (Hz)

ft=282 GHz

fmax

>400 GHz

U

H21

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3

I C (

mA

)

VCE

(V)

emitter junction area: 0.44 m x 7.4 mIB step = 50 uA

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8

Vbr,ceo=7 V

Collector / Emitter Ratio: 2.0 um / 0.5 um, 1.2 um / 0.5 um

0.7 um base contact width 0.5 um base contact width

Page 11: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

InP DHBTs: 150 nm collector, 30 nm base

0

5

10

15

20

25

30

1010 1011 1012

Ga

ins

(dB

)

Frequency (Hz)

ft= 370 GHz

fmax

=375 GHzU

H21

MAG/MSG

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5

J e (mA

/m

2 )

Vce

(V)

Ajbe

=0.6 x 7 m2 Ib step=0.4 mA

0

2

4

6

8

10

0 2 4 6 8 10

Ccb

/Ae (

fF/u

m2 )

Je=I

c /A

e, current density (mA/um2)

0.0 V

-0.2 V

Vcb

= -0.3 V

+0.3 V

+0.5 V

Thickness (Å) Material Doping cm-3 Description 400 In0.53Ga0.47 As 3E19 : Si Emitter Cap 800 InP 3E19 : Si Emitter 100 InP 8E17 : Si Emitter 300 InP 3E17 : Si Emitter

300 InGaAs 8E19-5E19:C Base 200 In0.53Ga0.47 As 3E16:Si Setback 240 InGaAlAs 3E16 : Si Base-Collector Grade 30 InP 3.0E18 : Si Delta doping 1000 InP 3E16 : Si Collector 250 InP 1.5E19:Si Sub Collector 125 In0.53Ga0.47 As 2E19 : Si Sub Collector 3000 InP 2E19 : Si Sub Collector Substrate SI : InP

Ccb/Ic 0.26 ps/V

3 nm InGaAs base: 8*1019/cm3→5*1019/cm3 15 nm InP collector 0.6 x 7 m emitter 0.5 m base contacts

base: 603 /squarebase contacts: 20 -m2

emitter contacts: 15 -m2

Dahlström, Griffith(UCSB/ONR); Fang,Lubyshev, Fastenau, Liu (IQE)

Page 12: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

Mesa DHBT with 0.6 m emitter width, 0.5 m base contact widthZ. Griffith, M Dahlström

Page 13: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

75 GHz, 80 mW Power Amplifier

2.6 pS17

0.31 pS17

0.15 pS42

2.3 pS42

0.38 pS50

0.38 pS50 0.58 pS

37

0.58 pS37

CSiN=92fF

CSiN=92fF

CSiN=44fF

CSiN=44fF

CSiN=15fF

CSiN=15fF

0.4 0.9 mm die, AE = 16 x (1m x 16 m) = 256 m2

transferred-substrate process

Bias: Ic=130 mA, Vce=4.5 V

0

5

10

15

20

0

2

4

6

8

10

-5 0 5 10 15

Po

ut (

dBm

) Gain

(dB)

PA

E (%

)

Pin (dBm)

Gain

PAE

Pout

Y. Wei

250-500 mW is feasible; UCSB designs are constrained by yield difficulties with large # of fingers

Page 14: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

87 GHz HBT static frequency divider

InAlAs /InGaAs/InP MESA DHBT

400 Å base, 2000 Å collector,

9 V BVCEO

200 GHz ft, 180 GHz fmax

2.5 x 105 A/cm2 operation

PK Sundararajan

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

22 22.02 22.04 22.06 22.08 22.1 22.12 22.14

87 GHz input, 43.5 GHz output

Vo

ut (

Vol

ts)

time (nsec)

We are now designing for 150 GHz...

Page 15: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

8 GHz ADC

Technology0.7 um InP MESA DHBT 400 Å base, 2000 Å collector, 9 V BVCEO, 200 GHz ft, 180 GHz fmax2.5 x 105 A/cm2 operation

UCSB/ONR PK Sundararajan

975 kHz FFT bin size8 GHz clock rate65.5 MHz signal64:1 oversampling ratio

Designsimple 2nd-order gm-C topologycomparator is 87 GHz MSS latchintegration by capacitive loads 3-stage comparator, RTZ gated DAC

Results133 dB (1 Hz) SNR at 74 MHzequivalent to ~8.8 bits at 200 MS/s

Page 16: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

DINP

DINN

DOUTP

DOUTN

Vcc

Vcc

Vxpp

Vxpn

cell-1 cell-n cell-10

TISDA

TAS TAS

OC-768 Modulator Driver

30 dB gain, 40 GHz bandwidth, >10 dB S11 & S22

8 ps rise/fall (20-80%) , ~0.9 ps RMS jitter 3 Vpp single ended output, 6 V differential

Design Issues: Gain flatnessDistributed line losses, current handling & loaded Z0

Complexity of transmission-line layoutAssociated low-frequency droopEmitter follower negative resistance → peakingEfficacy of bypass capacitancesCommon-mode traveling-wave instability

K. Krishnamurti et al

Page 17: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

InP HBT limits to yield: non-planar process

Emitter contact

Etch to base

Liftoff base metal

Failure modes

Yield quickly degrades as emitters arescaled to submicron dimensions

base contact

emittercontact

base contact

S.I. substrate

base

sub collector

S.I. substrate

base

sub collector

S.I. substrate

base

sub collector

emitter

S.I. substrate

base

sub collector

Emitter planarization, interconnects

base contact

liftoff failure:emitter-baseshort-circuit

S.I. substrate

base

sub collector

base contact

excessiveemitter undercut

S.I. substrate

base

sub collector

S.I. substrate

base

sub collector

planarization failure: interconnect breaks

Page 18: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

Parasitic Reduction

SiO2 SiO2

P base

N+ subcollector

N-

thick extrinsic base : low resistancethin intrinsic base: low transit time

wide emitter contact: low resistancenarrow emitter junction: scaling (low Rbb/Ae)

wide base contacts: low resistancenarrow collector junction: low capacitance

At a given scaling generation, intelligent choice of device geometry reduces extrinsic parasitics

Much more fully developed in Si…

Page 19: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

High current density 10 mA/m2

T-shaped polysilicon emitter 0.25 m junction wide contact low resistance, high yield

Thin intrinsic base: low b

Thick extrinsic base: low Rbb

Low Ccb collector junction collector pedestal CVD/CMP SiO2 planarization regrown poly extrinsic base

High-yield, planar processing high levels of integration LSI and VLSI capabilities

SiGe clock rates up to 65 GHzMuch more complex ICs than feasible in InP HBTInP HBT must reach higher integration scales or will cease to compete

Very strong features of SiGe-bipolar transistors

Page 20: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

ManufacturableDeep SubmicronInP HBTs

Objective: speed extrinsic parasitic reductiondeep submicron scaling

Objective: yieldplanar processeliminate liftoffeliminate undercut etches

Target Applications: High speed (100-200 GHz clock)

digital & mixed signal. 160 Gb/s optical fiber transmission

Polycrystalline-Emitter (SiGe-like) HBT

Planar HBT: Dielectric Sidewall Process

N- collector

N+ subcollector

S.I. substrate

intrinsic base

extrinsic basebase contact

Si3

N4

regrown emitter *emitter contact

collector contact

N+ collectorpedestalimplant

implant ortrench isolation

N- collector

N+ subcollector

S.I. substrate

emitter-base separationby dielectric sidewall

sputter & dry-etchedW emitter contact,dry-etched emitter

Page 21: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

Urteaga & Rodwell UCSB; Urteaga, Pierson, Rowell & Brar RSCNguyen & Nguyen, GCS

Submicron Sidewall-Spacer (S3) Process

N- collector

N+ subcollector

S.I. substrate

1) Epitaxial Growth 2) Sputter & etch tallPd/W emitter contact,dry etch emitter,form emitter sidewalls

Si3

N4

baseemitter

N- collector

N+ subcollector

S.I. substrate

baseemitter

3) trench isolationsputter base Ohmic metal

N- collector

N+ subcollector

S.I. substrate

4) Polymer planarize & etch back,etch base contact metal

N- collector

N+ subcollector

S.I. substrate

5) Strip polymer, etch basemetal and base

N- collector

N+ subcollector

S.I. substrate

6) Recess etch and depositcollector contact

N- collector

N+ subcollector

S.I. substrate

collectorcontact

isolationtrenchemitter

junction

basecontact

mesa

Page 22: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

S3 InP Emitter: Focused-Ion-Beam Images Urteaga, Rodwell , Pierson, Rowell , Brar, Nguyen, Nguyen: UCSB, RSC, GCS

em

itte

r

ba

se

ba

se

co

lle

cto

r

co

lle

cto

r

sidewall

sidewall

W basecontact

emittermetal

emitter

base

Page 23: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

S3 HBT: DC Performance

S3 HBT with base pad trench

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 0.2 0.4 0.6 0.8 1

Vbe (V)

I (A

)

nb= 1.6, nc = 1.0

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0.00 0.50 1.00 1.50 2.00 2.50

Vce (V)

Ic (

mA

)

~50

Emitter Area = 0.7 x 6 um2

Low-leakage submicron device: Si3N4 passivation effective base-emitter ledge

Large base ideality factor:due to base-emitter grade design not dielectric passivation

Urteaga, Rodwell , Pierson, Rowell , Brar, Nguyen, Nguyen: UCSB, RSC, GCS

Page 24: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

S3 HBT: RF Performance

Emitter Junction

Dimensions

JE

mA/m2

Ft

GHz

Fmax

GHz

Ccb/IE

ps/V

0.4 x 3 m2 6.0 239 142 0.82

0.4 x 6 m2 6.8 257 146 0.66

0.6 x 3 m2 6.7 244 127 0.50

0.6 x 6 m2 6.9 266 133 0.40

Measurements taken at VCB = 0.4 V

Base contact: 0.5 μm on each side of emitterfmax limited by high base contact resistance (now being addressed)

High current operation and low Ccb

Urteaga, Rodwell , Pierson, Rowell , Brar, Nguyen, Nguyen: UCSB, RSC, GCS

Page 25: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

Polycrystalline-extrinsic-emitter regrowth InP HBT

Objectives:

Eliminate emitter undercut etch

Eliminate base-emitter metal liftoff

Flared emitter → low resistance

Thick, ~2E20-doped extrinsic base → low resistance → tolerant of contact metal migration

Thin, ~3E19-doped intrinsic base → low transit time → high current gain (less Auger recombination)

Polycrystalline InAs -has low resistivity (2.5:1 higher than 1019 /cm3 lattice-matched InGaAs)

-can play same role in InP as the polysilicon emitter in Si/SiGe

N- collector

N+ subcollector

S.I. substrate

intrinsic base

extrinsic basebase contact

Si3

N4

regrown emitter *emitter contact

collector contact

N+ collectorpedestalimplant

*monocrystalline wheregrown on semiconductor,polycrystalline wheregrown on silicon nitride

D. Scott, Y. Wei

Page 26: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

Poly-extrinsic -emitter regrowthInP HBT

Dennis Scott, Yun Wei: UCSB

N- collector

N+ subcollector

S.I. substrate

1) Epitaxial Growth 2) Deposit Ti/W base Ohmics.Encapsulate with Si3N4Etch base-collector junction

base

N- collector

N+ subcollector

S.I. substrate

base

basecontactSi

3N

4

3) Passivate with Si3N4Etch emitter window through baseForm emitter SiN sidewalls

N- collector

N+ subcollector

S.I. substrate

basecontact

Si3N

4

4) Regrow polycrystalline emitter.Deposit emitter metal.Etch through emitter

N- collector

N+ subcollector

S.I. substrate

base contact

Si3N

4

regrownInAlAs/InAsemitter*

*monocrystalline wheregrown on semiconductor,polycrystalline wheregrown on silicon nitride

emitter contact

5) Recess etch and depositcollector contacts

N- collector

N+ subcollector

S.I. substrate

base contact

Si3N

4

regrownInAlAs/InAs emitter*

emitter contact

collector contact

collectorcontact

top view

emitterjunction

extrinsicemitterandcontact

basecontact

D. Scott, Y. Wei

Page 27: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

Polycrystalline-extrinsic-emitter regrowth HBT: 0.5 x 8 um device

Base plug

emitter

collectorpolyimide

D. Scott, Y. Wei

Page 28: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

0.3 um Intrinsic emitter

Extrinsic emitter

Base contact

Extrinsic Base

Collector contact

device without self-aligned refractory base contacts

Polycrystalline-extrinsic-emitter regrowth HBT: 0.3 x 8 um device

D. Scott, Y. Wei

Page 29: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

0

2

4

6

8

10

0 1 2 3 4 5 6 7

J E (

mA

/um2)

VCE

(V)

AE=0.7 um x 8 um

IB_step

=200uA, =15

AE=0.3 um x 4 um

IB_step

=100uA, =20

Polycrystalline-extrinsic-emitter regrowth HBTs

Issues being addressed:leaky base-emitter junctions surface damaged by processbase resistance very high hydrogen passivation of carbon dopingmoderately high emitter resistance

without self-alignedrefractory base contacts

with self-alignedrefractory base contacts

0

5

10

15

20

25

30

0

1

2

3

4

5

6

1 10 100 1000

Gai

n (

dB)

K

Frequency (GHz)

MSG/MAG

U

h21

K

fmax

=140 GHz fT=162 GHz

D. Scott, Y. Wei

Page 30: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

Ccb reduction by Collector Pedestal Implant

N+

N+

N- P+

W W

1000Ǻ

2000Ǻ(Cbc)ex(Cbc)ex

The extrinsic base-collector capacitance can be reduced by a factor of three.

Pedestal Ccb reduction can be incorporated into mesa, sidewall, and emitter regrowth processes

2000Ǻ

N+

P--

Si Ion Implantation

N+

2000ǺN+

1) Expitaxial growth, pattern with SiN mask, and

Ion implanted with Si 2) N doped pedestal formed

3) Collector and base regrowth 4) Process for emitter regrowth

1000Ǻ

2000Ǻ

N+

N-P+

P+

N+

Yingda Dong

Page 31: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

InP Mesa DHBT with Collector Pedestal Implant Yingda Dong

0.0 0.2 0.4 0.6 0.8 1.0

1E-7

1E-6

1E-5

1E-4

1E-3 AjBE

= 0.5 x 6 µm2

VCB

= 0.3 V

IB, n

B=1.55

IC, n

C=1.28

I (A

)

VBE

(V)0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

2

4

6

8

10

12

14

16

500 mA/µm2

AjBE

= 0.5 x 6 µm2

IB step = 100 µA

I C (

mA

)

VCE

(V)

400 kA/cm2

Present Status:

No increase in junction leakage ...good DC characteristics

Full Ccb reduction not being obtained interfacial charge at regrowth interface ...now being reduced

Page 32: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

Indium Phosphide HBTs

Millimeter-Wave Power: InP a leading contender unsurpassed combination of bandwidth and breakdown power amplifiers at 75-110 GHz, 140-220 GHz, & beyond

Mixed-Signal and Fiber ICs: InP struggling to compete with SiGe application demands transistor counts near/beyond yield limits large emitter junctions→ high current → power near acceptable limits speed advantage from materials being squandered by inadequate scaling

Critically needed for InP HBT mixed-signal ICs highly scaled process: 0.2 m emitters, 0.4 m collectors highly planar and high-yield fabrication processes small emitter junctions (0.2 m x 0.5 m) for acceptable power

Present efforts in InP research community low-parasitic, highly-scaled, high-yield fabrication processes → 3:1 higher bandwidth at a given scaling generation → 3:1 higher breakdown at a given bandwidth Substantial risk of failure, substantial benefit if successful.

Page 33: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

in case of questions

Page 34: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

What HBT parameters determine logic speed ?

exCex

bbcbc

cbdiffcbje

RIqkTVR

RIV

CCC

/4 as effect,indirect strong very has

from 15% ,)( from 15% ,/ from 49%

:imes transit tand sresistanceby DelaysSorting

) (e.g. charging 24%only , charging 42% , charging 16%

:escapacitancby DelaysSorting

logic

logic

Caveats: assumes a specific UCSB InP HBT in development for 250 GHz target clock rate (0.3 um emitter width, 0.6 um wide collector of 150 nm thickness, 300 Å base thickness, 5E5 A/cm^2)

Page 35: InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax 2003.

Why isn't base+collector transit time so important ?

1:10~ is which ,/

of ratioby reduced

ecapacitancdiffusion signal-Large

)(

)(Q

:Operation Signal-LargeUnder

swing. voltage/over only ...active

/

)(

)(

)(Q

:ecapacitancDiffusion

base

base

qkT

V

VV

I

I

qkT

VqkT

I

VdV

dI

I

LOGIC

LOGICLOGIC

dccb

Ccb

beCcb

bebe

Ccb

Ccb

Depletion capacitances present over full voltage swing, no large-signal reduction

Vin

Vout

Vin(t)

t

t

Vout(t)

diffusion+ depletioncapacitance

only depletioncapacitance