Industrial Control Electronics:

63
Lab Manual Solutions Industrial Control Electronics: Devices, Systems, and Applications 3rd edition Terry L.M. Bartelt Australia • Canada • Mexico • Singapore • Spain • United Kingdom • United States

Transcript of Industrial Control Electronics:

Page 1: Industrial Control Electronics:

Lab Manual SolutionsIndustrial Control Electronics:Devices, Systems, and Applications3rd edition

Terry L.M. Bartelt

Australia • Canada • Mexico • Singapore • Spain • United Kingdom • United States

Page 2: Industrial Control Electronics:

Operational AmplifiersExperiment Questions1. analog

2. linear

3. greater

4. 6, –

5. -5V

Figure 1-4b

Experiment1

1

Figure 1-2 b

VIN VOUT VIN VOUT

+0.2V +0.3V–0.4V –0.15V

0V –2.0V+0.32V +0.4V

-1V+2V0V

-1.6V

-0.75V+0.38V

+5V-1V

Figure 1-3 b&c

Input Voltage Output VoltageV V V Measured Calculated

+1V +1V +1V+1V –1V –1V+2V –1V –1V–3V –1V +3V+1V +2V –1V

-3V+1V0V

+1V-2V

-3V+1V0V

+1V-2V

1 2 3

INPUTS

V1 V2

VOUT(V)

+4 +1+2 +3+1 0+4 +40 +1+3 +2

-5V+5V

+5V-5V

-5V0V

Page 3: Industrial Control Electronics:

Schmitt TriggerPPrroocceedduurree QQuueessttiioonn AAnnsswweerr

1. No. Because the 7476 J-K flip-flop is negative edge triggered, and reacts only topositive-to-negative–going signals that change abruptly. The rectified sine wavedoes not change fast enough.

SStteepp 55

Table 2-1SStteepp 77

Table 2-2

Experiment Questions1. - Convert electronic signals to square waves.

- Perform NAND gate and Inverter logic functions.

2. D.

3. edge

4. Low, High

5. hysteresis

6. Because when sine waves are counted, they must be converted to square wavesbefore being applied to a flip-flop.

2

Experiment2

Point 1Vth = _____VDC

V + = _____VDC

1.7

.9

th

Waveform At Point 1 At Point 2 Is the Flip-Flop Toggling (Yes, No)

Circuit (a)

Circuit (b)

NO

YES

Page 4: Industrial Control Electronics:

Magnitude ComparatorPPrroocceedduurree QQuueessttiioonn AAnnsswweerr

1. If the high order bits are equal, then the output state is determined by comparingthe low order bits.

SStteepp 22AA

Table 3-2SStteepp 33BB

Table 3-4

Experiment Questions1. 1111

2. Yes. By connecting a Low to the MSB of inputs A and B, and applying the threebinary bits to the remaining inputs.

3. IA > B = 0IA = B = 0IA < B = 1

4. 4

5. When A is greater than B, or B is greater than A, the circuit would operate nor-mally. When A is equal to B, however, output A<B would incorrectly go High—instead of output A=B.

3

Experiment3

Input B Input A OutputsB3 B2 B1 B0 A3 A2 A1 A0 A<B A=B A>B0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1

1 0 0 1 1 0 0 0

0 0 1 1 0 1 0 0

0 0 0 1 1 0 0 1

0 0

0 0

0 0

0 0

00

1

1

1

1

1

Input B Input A Expansion Inputs OutputsB3 B2 B1 B0 A3 A2 A1 A0 IA<B IA=B IA>B A<B A=B A>B0 0 0 0 1 1 1 1 1 0 0

0 0 0 1 0 0 0 1 0 0 1

0 1 1 0 0 1 1 0 0 1 0

1 1 1 0 1 1 0 1 0 0 1

0 1 0 1 1 1 1 0 0 1 0

0

0

00

00

00

0

0

1

1

1

1

1

Page 5: Industrial Control Electronics:

4

SCR Phase Control CircuitSStteepp 33 169 volts, yes

SStteepp 44 15 volts, yes

Experiment Questions1. D.

2. B.

3. 169–15 = 154

4. A.

5. B.

6. B.

Experiment4

TP1

No Powerto Load

Input

Half Powerto Load

Full Powerto Load

TP2

TP3

TP4

TP5

AcrossLightbulb

Figure 4-1

Page 6: Industrial Control Electronics:

5

PhotoresistorSStteepp 11 Dark Resistance = 40KΩ

SStteepp 33 Ambient light voltage = –8VDark Voltage = +7V

DDeessiiggnn QQuueessttiioonn

Switch the position of R1 with that of the photoresistor.

Experiment Questions1. A.

2. B.

3. B.

4. B.

5. A.

Experiment5

Page 7: Industrial Control Electronics:

OptocouplerSStteepp 11 1 Meg ohm

SStteepp 22 150 ohms

SStteepp 44

SStteepp 55 B

SStteepp 66 25KHz

SStteepp 77 IC = 3.5mAIf = 16mACTR 22%

Experiment Questions1. True

2. A.

3. A.

4. 25%

5. C.

6

Experiment6

LEDOn/OffCondition Ov

Optoisolator(Transistor)Output Ov

Page 8: Industrial Control Electronics:

Digital-to-Analog ConverterPPrroocceedduurree QQuueessttiioonn AAnnsswweerrss

1. A.

2. A.

3. 16 (24)

4. 1

5. Eight different voltage levels. When an open is at the LSB input, a binary 1 isalways applied to the LSB digital input lead of the D/A converter. This causes theD/A converter to produce the following counts:

Desired Count Count with Pin 12 Open

0 1

1 1

2 3

3 3

4 5

5 5

6 7

7 7

8 9

9 9

10 11

11 11

12 13

13 13

14 15

15 15

7

Experiment7

Page 9: Industrial Control Electronics:

6. 32The number of outputs is determined by multiplying 2 by the power of the num-ber of inputs applied to the digital input of the D/A converter (25).

Experiment Questions1. 256

2. 1

3. - Change VREF applied to pin 14.- Change the resistor value connected to pin 14.- Change the RF resistor connected to pin 4.

8 Experiment 7 Digital-to-Analog Converter

Page 10: Industrial Control Electronics:

Analog-to-Digital ConverterPPrroocceedduurree QQuueessttiioonn AAnnsswweerr

1. They should be equal.

SStteepp 44

Table 8-1

Experiment Questions1. 8

2. 0.39

3. Low

4. 00110010

9

Experiment8

A/D Converter Test ResultsInput Output

ResolutionTotal

MeasuredAnalog Voltage

Resolution ValuesDB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

2.56V 1.28V 0.64V 0.32V 0.16V 0.08V 0.04V 0.02V0V

0.4V

1.0V

1.6V

2.3V

3.5V

4.6V

5.12V

0

0

0

0

0

1

1

1

0

0

1

1

0

1

1

0

0

1

1

0

0

1

1

1

0

1

1

1

1

0

1

0

0

0

0

0

0

0

1

1

0

0

0

0

1

1

1

1

0

1

1

0

0

1

1

1

0

0

1

0

0

0

1

1

0V

0.4V

1.0V

1.6V

2.3V

3.5V

4.6V

5.12V

Page 11: Industrial Control Electronics:

10

555 Clock Timer (AstableMultivibrator)

SStteepp 11

Table 9-1

Experiment Questions1. astable

2. Values of external components

3. Nothing. Just apply power and it runs by itself.

4. They provide pulses that are necessary to time and control the proper sequenc-ing of all events throughout a computing system.

5. 450Hz

6. 900K ohms

Experiment9

RA (Ω) RB (Ω) C1(µf)

f = 1.44

(RA + 2RB) Ccalculated (Hz)

Fout(Frequency Out)

Measured (Hz) Chart Values (Hz)

47k 10k 1

22k 10k 1

22k 10k 0.1

22k 2.2k 0.1

10k 10k 0.01

21

34.3

343

545

4800

15

23

278

435

4445

25

30

260

475

4000

Page 12: Industrial Control Electronics:

11

555 Clock Pulse (Monostable One-Shot Multivibrator)

SStteepp 33

Table 10-1

Experiment Questions1. Low, High

2. It automatically does it by itself.

3. - By a mechanical push button- By another circuit

4. - Enter numbers into digital circuits- Empty numbers out of digital circuits- Producing time delay signals- Pulse stretchers- Bounceless switches- Reshaping ragged pulses

5. T = 1.1 x 100K x 1ufd= 110 milliseconds

6. 900 ohms

Experiment10

RA (Ω) C1 (µf) T = 1.1 RAC1 calculated T measured Chart Value1M 10

470k 10

100k 50

10k 100

470k 50

11 sec

5.17 sec

5.5 sec

1.1 sec

25.9 sec

11 sec

5.3 sec

5.7 sec

1.5 sec

27.3 sec

11 sec

5 sec

5 sec

1.5 sec

25 sec

Page 13: Industrial Control Electronics:

Integrator Operational AmplifierSStteepp 44

Note: Voltages are all negative

Table 11-1

Experiment Questions1. yes

2. A.

3. faster

4. saturation

5. directly, directly

12

Experiment11

Input Output after5 seconds

Output after10 seconds

Output after15 seconds

Output after20 seconds

1 VDC

2 VDC

3 VDC

5.7V

9.4V

9.5V

7.1V

11.9V

12.4V

8V

12.5V

12.6V

8.9V

12.6V

12.6V

Page 14: Industrial Control Electronics:

Differentiator Operational AmplifierSStteepp 88

Table 12-1

Experiment Questions1. directly

2. A.

3. C.

4. C.

5. 1.75K

13

Experiment12

Input is a .4VPP Saw Tooth300Hz 750Hz 1kHz 1.25kHz 1.5kHz 1.75kHz 2kHz

PPKSquareWaveOutputs

5V P-P 12V P-P 16V P-P 20V P-P 25V P-P 27V P-P 27V P-P

Page 15: Industrial Control Electronics:

Pressure Readings with aManometer

SStteepp 33BB Primary Level = 0Secondary Level = 0

SStteepp 66BB Primary Level = –4Secondary Level = +4

SStteepp 77BB Total Change = 8 inches

SStteepp 88BB 8 inches changed x .491 = 3.92814.7 + 4 (PSIG) = 18.7 psia

SStteepp 55CC 8.8 difference in inches

SStteepp 66CC 8.8 x .491 = 4.3 psid

Experiment Questions1. B.

2. B.

3. B.

4. 10.3 – 14.7 = –4.4

5. 3.3 psig + 14.7 = 18 psia

6. Zero

14

Experiment13

Page 16: Industrial Control Electronics:

Solid State Pressure TransducerSStteepp 44AA .071

SStteepp 77AA

PPSSII VVOOUUTT

0 .070

3 1.78

5 3

8 4.83

10 6

SStteepp 77BB

Experiment Questions1. D.

2. A., B.

3. A., C.

4. A., B.

5. A.

6. B.

7. A., A.

15

Experiment14

High Pressure Low Pressure Differential Pressure VOUT

A. 2 2 0 0

B. 4 2 2 .72

C. 5 2 3 1.5

D. 6 2 4 2.0

E. 8 2 6 3.36

F. 10 2 8 4.66

G. 12 2 10 6

Page 17: Industrial Control Electronics:

16

Conversion of Standard SignalsSStteepp 33AA

CCaallccuullaatteedd CCuurrrreenntt MMeeaassuurreedd CCuurrrreenntt

6 psi 8mA 8mA

9 psi 12mA 12mA

12 psi 16mA 16mA

SStteepp 33BB

CCaallccuullaatteedd PPrreessssuurree MMeeaassuurreedd PPrreessssuurree

8mA 6 psi 6 psi

12mA 9 psi 9 psi

16mA 12 psi 12 psi

SStteepp 22CC

AApppplliieedd PPrreessssuurree PP//II OOuuttppuutt CCuurrrreenntt II//PP OOuuttppuutt PPrreessssuurree

3 psi 4mA 3 psi

6 psi 8mA 6 psi

9 psi 12mA 9 psi

12 psi 16mA 12 psi

15 psi 20mA 15 psi

Experiment Questions1. C.

2. D.

3. C., B.

4. E., D.

5. B.

6. B.

Experiment15

Page 18: Industrial Control Electronics:

17

Resistance Temperature Detector(RTD)

SStteepp 33

Table 16-1

Experiment Questions1. B.

2. A.

3. –80

Experiment16

RTD Hot ColdActual Temperature (Thermometer Reading)

Ohmmeter Reading

Temperature from the Manufacturer’s Table

Temperature Settling Time

100˚C

136.6Ω100˚C

0˚C

100.2Ω

0˚C1 Min 50 Sec

Page 19: Industrial Control Electronics:

RTD Transmitter CalibrationSStteepp 1100AA Cold Bath Measurement 0.4°C

SStteepp 1111AA Hot Bath Measurement 99.8°C

SStteepp 2211BB

SStteepp 44CC Cold Bath Temperature 0°CTransmitter Output Current 4.08mA

SStteepp 55CC Hot Bath Temperature 100°CTransmitter Output Current 14mA

Experiment Questions1. A.

2. A.

3. C., E.

4. C.

5. True

18

Experiment17

CALIBRATION CHART% of

Transmitter Input ValuesSPAN

Temperature Applied

Transmitter Output Values

IdealCurrent

As FoundBefore

Calibration

As ReadAfter

CalibrationAmount of Error % Error

25 37.5° C

4mA

8.07 1

40.5

50 75° C

8mA 9.33 15.6

75 112.5°C

12mA 12.9 12.08 .82

100 150° C 20mA 20.1 20.0 .10 .05

0 0° C

16mA

5.72 4.07

16.5 16.0

1.65

.26

.50

6.7

3.1

Page 20: Industrial Control Electronics:

ThermistorSStteepp 11 9,600 ohms

B.B.

SStteepp 77 BBeeffoorreeInverting Input = Ideally 4.2 voltsNon-inverting Input = Ideally 4.1 voltsOutput = Ideally – 2 volts

AAfftteerrInverting Input = Ideally 4.0 voltsNon-inverting Input = Ideally 4.1 voltsOutput = Ideally +2 volts

SStteepp 88 NoNo

Experiment Questions1. B.

2. C., B.

3. B., A.

4. holding

5. B.

19

Experiment18

Page 21: Industrial Control Electronics:

Thermocouple SensorSStteepp 44AA

Table 19-1SStteepp 88AA QQuueessttiioonn No

SStteepp 22BB

Table 19-3SStteepp 77BB QQuueessttiioonn Yes

SStteepp 22CC

Table 19-4SStteepp 77CC QQuueessttiioonnss same, longer

20

Experiment19

Thermocouple Hot ColdActual Temperature(Thermometer Reading)mV Reading(Voltmeter Reading)Temperature fromthe Manufacturer TableTemperatureSettling Time

100˚C

.004mV

80˚C

0.2˚C

0.0mV

0˚C

3 Seconds

Thermocouple Hot ColdActual Temperature

Temperature fromthe Manufacturer TableTemperatureSettling Time

100˚C

5.1mV

100˚C

0.2˚C

0mV

0

25 Seconds

Thermocouple mVReading (VoltmeterReading)

Thermocouple Hot ColdActual Temperature

Temperature fromthe Manufacturer TableTemperatureSettling Time

100˚C

5.2mV

99˚C

0˚C

0

0

2 Min 50 Sec

Thermocouple mVReading (VoltmeterReading)

Page 22: Industrial Control Electronics:

Experiment Questions1. subtract from

2. more

3. longer

4. 104

5. 5.1mV; no, but close enough

Experiment 19 Thermocouple Sensor 21

Page 23: Industrial Control Electronics:

Thermocouple TransmitterCalibration

SStteepp 99AA

Cold Bath Measurement 0.1°C

SStteepp 1100AA

Hot Bath Measurement 100°C

SStteepp 2200BB

Table 20-1SStteepp 44cc

Cold Bath Measurement 0°C

Transmitter Output Current 4.09mA

SStteepp 55cc

Hot Bath Temperature 100°C

Transmitter Output Current 14.7mA

Experiment Questions1. A., E.

2. C.

3. C.

4. D.

5. True

22

Experiment20

% of Span

(TransmitterInput Values)

Temperature Applied

Transmitter Output Values

Ideal CurrentAs Found

Before CalibrationAs Read

After Calibration0 0˚C 4mA

25 37.5˚C 8mA

50 75˚C 12mA

75 112˚C 16mA

100 150˚C 20mA

0mA

7.24mA

11.1mA

15.2mA

18.8mA

0mA

8mA

12mA

16mA

20mA

Page 24: Industrial Control Electronics:

Differential Pressure FlowMeasurements

SStteepp 22BB

Table 21-1

Experiment Questions1. A., B.

2. Zero

3. Heating, ventilating, air conditioning

4. C.

5. A., B., A.

6. C., E.

23

Experiment21

Pressures (inches of H2O)Calibrator

Output (mA)

DifferentialPressure

(Inches H2O)Flow rate

(GPM)

PressureConversion

(PSI)L-Port H-Port0 0

5.5 13.75

11 27.5

16.5 41.25

22 55

4

6.64

9.28

11.92

14.56

0

8.25

16.5

24.75

33

0

1018.2

2036.1

3054.65

4072.86

0

0.297

0.594

0.891

1.188

Page 25: Industrial Control Electronics:

24

Purge Level Measurement MethodSStteepp 22BB

Table 22-1

Experiment Questions1. A.

2. 4mA, 0 psi, 0 inches

3. 20mA, 1.8psi, 50 inches

4. .7 psi x 27.71 = 19.4 inches

5. 78 inches x 0.036 = 2.8 psi

Experiment22

Water Levelin Inches

Display ModuleReading

P/I ConverterOutput

Static PressureHead

CalculatedWater Level

0

25

50

0

25

50

4 mA

12 mA

20 mA

0 psi

0.9 psi

1.8 psi

0 inches

25 inches

50 inches

Page 26: Industrial Control Electronics:

Differential Pressure LevelMeasurements

SStteepp 55

Table 23-1

Experiment Questions1. atmosphere, L

2. D.

3. B., A.

4. 3, 15

5. 25 x .036 = 0.9 psig

6. 1.35 psig x 27.71 = 37.5 inches

7. The pressure produced by the transmitter output is supplied from this source.

25

Experiment23

Water LevelInches/%of Span

HeadPressure Ideal

As FoundBefore Calibration

As Read AfterCalibration

%Error Error

LevelMeasurement

0/0

12.5/25

25/50

37.5/75

50/100

0

0.42

0.84

1.26

1.68

3

6

9

12

15

3.7

7.7

11.5

15.4

19.2

3

6

9

12

15

5.83

14.16

20.83

28.3

35.0

0

0

0

0

0

0

12.5

25

37.5

50

Page 27: Industrial Control Electronics:

pH Measurement and ControlSStteepp 22AA pink, acidic

SStteepp 33AA blue, alkaline

SStteepp 11BB A.

SStteepp 22BB B.

SStteepp 33BB C.

SStteepp 44BB B.

SStteepp 55BB A.

SStteepp 22CC 10.1, B.

SStteepp 33CC

RReeaaggeenntt ppHH RReeaaddiinngg

BBeeffoorree ddrrooppss 10.1

AAfftteerr 1100 ddrrooppss 9.68

AAfftteerr 2200 ddrrooppss 6.27

AAfftteerr 3300 ddrrooppss 3.13

AAfftteerr 4400 ddrrooppss 2.65

AAfftteerr 5500 ddrrooppss 2.57

The solution becomes neutralized as an acid solution is added.

SStteepp 66CC 3.32, A.

SStteepp 77CC

RReeaaggeenntt ppHH RReeaaddiinngg

BBeeffoorree ddrrooppss 3.32

AAfftteerr 1100 ddrrooppss 3.34

AAfftteerr 2200 ddrrooppss 3.60

AAfftteerr 3300 ddrrooppss 3.68

AAfftteerr 4400 ddrrooppss 3.86

AAfftteerr 5500 ddrrooppss 3.96

The solution becomes neutralized as an alkaline solution is added.

26

Experiment24

Page 28: Industrial Control Electronics:

SStteepp 22DD 4.61

SStteepp 33DD

RReeaaggeenntt ppHH RReeaaddiinngg

BBeeffoorree ddrrooppss 4.59

AAfftteerr 1100 ddrrooppss 4.61

AAfftteerr 2200 ddrrooppss 4.62

AAfftteerr 3300 ddrrooppss 4.64

AAfftteerr 4400 ddrrooppss 4.66

AAfftteerr 5500 ddrrooppss 4.68

Experiment Questions1. B.

2. 7

3. C.

4. A.

5. C.

6. B.

Experiment 24 pH Measurement and Control 27

Page 29: Industrial Control Electronics:

Conductivity MeasurementsSStteepp 11AA

Table 25-1SStteepp 22AA

Most Impurities: Softened

Fewest Impurities: Distilled

Table 25-2

Table 25-3

Experiment Questions1. A.

2. B.

3. B.4. C.5. False

28

Experiment25

Water Supply Sources ConductivityLab Tap Water

Distilled Water

Hard Water

Softened Water

.4mS

.2mS

1.6mS

4.3mS

Container pH ReadingsBrine Solution A

Brine Solution B

Brine Solution C

6.35

6.40

6.45

Container Conductivity ReadingsBrine Solution A

Brine Solution B

Brine Solution C

18.8

24

40

Page 30: Industrial Control Electronics:

Humidity MeasurementsSStteepp 33AA

WWeett BBuullbb RReeaaddiinngg DDrryy BBuullbb RReeaaddiinngg

RReeaaddiinngg OOnnee 57

RReeaaddiinngg TTwwoo 56 71

RReeaaddiinngg TThhrreeee 55

SStteepp 44AA

RReellaattiivvee HHuummiiddiittyy 38%

SStteepp 22BB

DDeeww PPooiinntt MMeeaassuurreemmeennttss

RReeaaddiinngg OOnnee 12

RReeaaddiinngg TTwwoo 13

RReeaaddiinngg TThhrreeee 12

RReeaaddiinngg FFoouurr 11

SStteepp 33BB

AAvveerraaggee TTeemmppeerraattuurree 12

SStteepp 44BB

GGrraammss ppeerr ccuubbiicc mmeetteerr 18.143

SStteepp 55BB

GGrraammss ppeerr ccuubbiicc mmeetteerr 10.574

SStteepp 66BB

RRHH PPeerrcceennttaaggee 58.3

Experiment Questions1. A.

2. B.

3. A.

4. B.

5. B.

6. C.29

Experiment26

Page 31: Industrial Control Electronics:

Inductive Proximity SensorSStteepp 33AA

Table 27-1

SStteepp 66AA C

SStteepp 88AA Yes

SStteepp 99AA 4mm

SStteepp 1100AA 2mm, A

SStteepp 22BB 100 Hz

SStteepp 33BB 200 Hz

SStteepp 44BB 420 Hz

Experiment Questions1. A.

2. B.

3. B.

4. A.

5. A.

6. Switching frequency

30

Experiment27

Type of Target Sensing Distance Ferrous/Non-Ferrous

Plastic

Brass 2mm No

Glass

Mild Steel 4mm Yes

Aluminum 1mm

Won't Sense

Won't Sense

No

No

No

Page 32: Industrial Control Electronics:

Capacitive Proximity SensorSStteepp 33AA

Table 28-1SStteepp 88AA 15mm

SStteepp 99AA Yes

SStteepp 1100AA 11mm

SStteepp 1111AA A.

SStteepp 11CC Yes

SStteepp 33CC No

Experiment Questions1. B.

2. C.

3. B., A.

4. A., B.

5. B., A.

6. B.

31

Experiment28

Material Distance (mm)Glass

Plastic

Water

11

10

15

Page 33: Industrial Control Electronics:

Hall Effect SensorSStteepp 1100 3

SStteepp 1111 with

Experiment Questions1. D.

2. • Strength of the magnet• The position a magnet is placed with respect to the sensor• By using a concentrator

3. • 2 terminals connect to a power supply• 2 terminals are the output leads

4. C.

5. A. Increases

6. A., B.

32

Experiment29

Page 34: Industrial Control Electronics:

Ultrasonic SensorSStteepp 22AA 10, 13, 7

PPaarrtt BB

3 inches40 inches4 inches

30 inchesyes

SStteepp 11BB 4 blinks

SStteepp 22BB 5 blinks

SStteepp 33BB 10 volts0 volts5 volts

SStteepp 44BB 0 volts10 voltsis

SStteepp 55BB 10 inches = 0 volts12 inches = 2 volts14 inches = 4 volts16 inches = 6 volts18 inches = 8 volts20 inches = 10 volts

Experiment Questions1. 15 minutes

2. 12 blinks

3. 30 inches

4. 152-1016

5. 10 volts

33

Experiment30

Page 35: Industrial Control Electronics:

Opposed Sensing Optical MethodSStteepp 66AA

Off

SStteepp 99AA

Off

SStteepp 1111AA

On

SStteepp 77BB

2 Sheets of paper

SStteepp 88BB

No, 4 sheets of paper

SStteepp 1111BB

¼ inch

Experiment Questions1. D.

2. True

3. C.

4. B.

5. C.

6. True

34

Experiment31

Page 36: Industrial Control Electronics:

Retro-reflective Optical SensingSStteepp 77AA

10°

SStteepp 88AA

35°

SStteepp 33BB

No

SStteepp 44BB

largest

SStteepp 66BB

15, 17, Plastic reflector

SStteepp 22CC

Yes

SStteepp 33CC

No

SStteepp 44CC

Yes

SStteepp 55CC

Yes

SStteepp 66CC

No

SStteepp 77CC

No

SStteepp 88CC

Yes

SStteepp 99CC

Yes

35

Experiment32

Page 37: Industrial Control Electronics:

SStteepp 1133CC

No

SStteepp 1144CC

Blocked, Blocked

Experiment Questions1. 30°

2. B.

3. A.

4. A.

5. C.

6. A., C., D.

7. A.

36 Experiment 32 Retro-reflective Optical Sensing

Page 38: Industrial Control Electronics:

Diffuse Optical Sensing MethodSStteepp 77AA Gray 16

Black 15Red 17White 18

SStteepp 99AA 13”

SStteepp 1100AA Black 12Red 14White 15

SStteepp 1122AA Gray 13Black 11Red 14White 15

SStteepp 1133AA 10”

SStteepp 1144AA 4”

SStteepp1155AA 2”8”Yes

SStteepp 22BB 18”

SStteepp 33BB 15”

SStteepp 44CC no

SStteepp 33DD Yes

SStteepp 44DD No

SStteepp 77EE 13mm

SStteepp 99EE 8mmdecrease

Experiment Questions1. A. 5. A., B.

2. B. 6. B.

3. B. 7. C.

4. 3 8. B.

37

Experiment33

Page 39: Industrial Control Electronics:

Timing Functions of SensorsSStteepp 66AA

1.5 seconds

SStteepp 88AA

3 seconds

SStteepp 1111AA

12 seconds

SStteepp 1133 AA

22 seconds

SStteepp 33BB

A.

SStteepp 44BB

B.

SStteepp 22CC

No, 0 seconds

SStteepp 33CC

12 seconds

SStteepp 55CC

12 second, No

Experiment Questions1. A.

2. B.

3. C.

4. DNMLDNMFully CW

5. C.

38

Experiment34

Page 40: Industrial Control Electronics:

Sensor Output WiringSStteepp 11AA No, OffSStteepp 22AA 1.44mASStteepp 33AA Yes, OnSStteepp 44AA 10.4mASStteepp 11BB OffSStteepp 22BB NoSStteepp 33BB On, Yes, 18.5SStteepp 44BB into, sinkingSStteepp 55BB NoSStteepp 66BB NoSStteepp 77BB On, Yes, 15.7mA SStteepp 88BB out of, sourcingSStteepp 22CC .04 volts. NoSStteepp 33CC 22.86 volts, 1.13 voltsSStteepp 44CC NoSStteepp 55CC YesSStteepp 66CC 21.94 volts, 2.06 volts, 14 sensorsSStteepp 88CC Off, 0mASStteepp 99CC On, 16.72mASStteepp 1100CC 79mA, A

Experiment Questions1. Brown D.

Blue A.White B.Black C.

2. A.

3. B.

4. B.

5. 7

6. B.

39

Experiment35

Page 41: Industrial Control Electronics:

Ladder Logic Design ExerciseANSWERS1.

2.

3.

40

Experiment36

Page 42: Industrial Control Electronics:

4.

5.

6.

Experiment 36 Ladder Logic Design Exercise 41

Page 43: Industrial Control Electronics:

7.

8.

42 Experiment 36 Ladder Logic Design Exercise

Page 44: Industrial Control Electronics:

9.

10.

Experiment 36 Ladder Logic Design Exercise 43

Page 45: Industrial Control Electronics:

Programmable Controller Design Exercise

1.

44

Experiment37

11011 - N.O. Start PB11012 - N.O. Stop

( ) 01115 - Output Coil ] [ 01114 - Latching Contact ( ) 01114 - Output Coil and Solenoid

]/[ 01115 - NC Stop Contact

LADDER DIAGRAM DUMPSTART 01115 11011 01114 ]/[ ] [ ( ) 001114 ] [ 11012 01115 ] [ ( ) END 0137

Page 46: Industrial Control Electronics:

2.

3.

Experiment 37 Programmable Controller Design Exercise 45

LADDER DIAGRAM DUMP

START 11011 11012 01112 ] [ ] [ ( ) 01112 ] [ END 0135

11011 - Maintained input represented by a toggle switch11012 - N.O. PB representing a momentary input

] [ 01112 - Latching Contact ( ) 01112 - Output Coil representing output

LADDER DIAGRAM DUMP

START 11012 11014 11013 01100 ] [ ] [ ] [ ( ) 11011 11016 ] [ ] [ END 0137

11012 - LSI11013 - PSI

11016 - T211011 - PBI11014 - TI

01101 - Indicator Lamp representing output

Page 47: Industrial Control Electronics:

4.

5.

46 Experiment 37 Programmable Controller Design Exercise

LADDER DIAGRAM DUMP

START 11012 11011 02000 ]/[ ] [ ( ) 02000 ] [ 11011 02001 ] [ ( )

02000 02001 01114 ] [ ]/[ ( )

01114 01100 ] [ ( )

END 0142

11012 - NC Stop PB (Wired N.O. Switch)11011 - Start PB

( ) 02000 - Internal Output Coil] [ 02000 - Latching Contact( ) 02001 - Internal Output Coil( ) 01114 - Output Coil and Relay to represent output] [ 01114 - Contact energized by Output Coil( ) 01100 - Output Light (used in addition to Relay to

represent output)

LADDER DIAGRAM DUMP

START 11017 035 ]/[ (TON) 1.0 PR 010 AC 010

03515 11017 01100 ]/[ ] [ ( )

END 0133

11017 - Toggle Switch representing maintained input035 - Timer On (Output turns to a "|" state 10 sec.

03515]/[ - N.C. Contact controlled by output of timer01100 - Indicator Light representing output

after an input is supplied)

Page 48: Industrial Control Electronics:

6.

Experiment 37 Programmable Controller Design Exercise 47

LADDER DIAGRAM DUMP

START 11012 02001 ] [ ( ) 02001 035 ] [ (TOF) 1.0 PR 010 AC 010

02001 03515 01100 ]/[ ] [ ( )

END 0135

11012 - On/Off Toggle input switch( ) 02001 - Internal Output] [ 02001 - Contact035 (TOF) - Timer Off (Output goes to a "|" state as

soon as a "|" state input is applied. Theoutput will remain "HIGH" for 10 secondsafter input is removed)

01100 - Indicator Lamp representing output

Page 49: Industrial Control Electronics:

7.

48 Experiment 37 Programmable Controller Design Exercise

LADDER DIAGRAM DUMP

START 11011 11012 02000 ] [ ]/[ ( ) 02000 ] [ 02000 035 ] [ (TON) 1.0 PR 010 AC 000

03515 02000 01100 ]/[ ] [ ( )

END 0140

11011 - Momentary N.O. Input P.B.11012 - N.C. Stop P.B. (Wired N.O.)

( ) 02000 - Internal Output Coil] [ 02000 - Latching Contact

035 - Timer On (Output turns to a "|" state 10seconds after a "HIGH" input is applied)

03515 - N.C. Contact energized from output of Timer01100 - Indicator Lamp representing output

Page 50: Industrial Control Electronics:

8.

Experiment 37 Programmable Controller Design Exercise 49

LADDER DIAGRAM DUMP

START 03615 035 ]/[ (TON) 1.0 PR 001 AC 001 03515 036 ] [ (TON) 1.0 PR 002 AC 001

03515 01100 ]/[ ( )

END 0134

035 and 036 - Timer On (Output turns to a "|" state 10seconds after a "HIGH" input is applied)

03515 and 03516 - Contacts controlled by the outputsof each timer

01100 - Indicator lamp representing output

Page 51: Industrial Control Electronics:

9.

50 Experiment 37 Programmable Controller Design Exercise

LADDER DIAGRAM DUMP

START 11013 11011 02002 03515 02000 ] [ ] [ ]/[ ]/[ ( )

11012 ] [

02000 02003 02001 ] [ ]/[ ( )

02001 ] [

02001 02000 035 ] [ ]/[ (TOF) 1.0 PR 010 AC 010

02001 02000 03515 02002 ] [ ]/[ ]/[ ( )

03515 02000 02003 ] [ ]/[ ( ) 02000 01100 ] [ ( )

03515 01101 ] [ ( )

END 0158

11011 - LSI

11013 - Pressure Switch

11012 - PBI

02000 - Internal Output

02001 - Internal Output

02002 - Internal Output

02003 - Internal Output

035 - Timer Off (Output goes to a

"|" state as soon as a "|"

state input is applied. The

output will remain HIGH for

10 seconds after the input

is removed)

03515 - N.O. and N.C. Contacts thatare energized by the outputof the timer

01100 - Indicator Lamp representing SV101101 - Indicator Lamp representing SV2

Page 52: Industrial Control Electronics:

10.

Experiment 37 Programmable Controller Design Exercise 51

LADDER DIAGRAM DUMP

START 11002 11001 01101 02000 11010 01100 ]/[ ] [ ]/[ ] [ ] [ ( ) 01100 ] [ 02000 ( ) 11011 11012 01100 02000 11010 01101 ]/[ ] [ ]/[ ] [ ] [ ( ) 01101 ] [

END 0149

11002 - N.C. P.B. Stop Switch to stop Forward Motor (Wired N.O.) 11011 - N.C. P.B. Stop Switch to stop Reverse Motor (Wired N.O.)11001 - N.O. Forward Start P.B.11012 - N.O. Reverse Start P.B.

( ) 01100 - Indicator Lamp representing Forward Motor] [ 01100 - Latch Contact( ) 01101 - Indicator Lamp representing Reverse Motor] [ 01101 - Latch Contact

02000 - Internal Output which denergizes entire circuitif low voltage occurs

Page 53: Industrial Control Electronics:

11.

52 Experiment 37 Programmable Controller Design Exercise

LADDER DIAGRAM DUMP

START 11011 02000 01100 ] [ ] [ ( ) 01100 01101 ] [ ]/[ 11012 02000 ]/[ ( )

11011 02000 01101 ] [ ] [ ( )

01101 01100 ] [ ]/[

END 0146

11001 - N.O. Forward P.B.11011 - N.O. Reverse P.B.11012 - N.C. Stop P.B. (Wired N.O.)

( ) 01100 - Indicator Lamp and Coil representing Forward direction( ) 01101 - Indicator Lamp and Coil representing Reverse direction

02000 - Internal Output which deenergizes entire circuit ifLOW voltage occurs

Page 54: Industrial Control Electronics:

12.

Experiment 37 Programmable Controller Design Exercise 53

LADDER DIAGRAM DUMP

START 11000 11001 02000 ]/[ ] [ ( ) 02000 ] [ 11011 02000 01101 ] [ ] [ ( )

02001 01102 ] [ ]/[

11012 02000 01102 ] [ ] [ ( )

02002 01101 ] [ ]/[

01101 01102 02001 ] [ ]/[ ( )

02001 ] [

01102 01101 02002 ] [ ]/[ ( )

02002 ] [

END 0165

11000 - N.C. System Power Stop P.B. (Wired N.O.)11001 - N.O. System Power Start P.B.02000 - Internal Output representing main power for planer table11011 - LSI to indicate end of travel to right11012 - LS2 to indicate end of travel to left01101 - Indicator Lamp that represents right directional travel01102 - Indicator Lamp that represents left directional travel

The two bottom rungs ensure that the table will resume the samedirection of travel when power is restored after power hasbeen interrupted

Page 55: Industrial Control Electronics:

Incremental EncoderSStteepp 33 64, 360°/256 counts = 1.4° per count

SStteepp 44 Yes

SStteepp 55 NoThe number of pulses produced during one revolution does not equal themaximum count in the counters.

SStteepp 66 NoThe number of pulses produced during one revolution does not equal themaximum count in the counters.

SStteepp 77 No

SStteepp 88 128, Yes

Experiment Questions1. B.

2. A.

3. B.

4. B.

5. B.

54

Experiment38

Page 56: Industrial Control Electronics:

Absolute EncoderSStteepp 44

Table 39-1

Experiment Questions1. True

2. A.

3. 26 = 360/64 = 55..662255

4. B.5. B.

55

Experiment39

Column AGray Code

L1–L4

Column BBinary Code

(F1–F4)

Column CDial Range

(In Degrees)L1 L2 L3 L4 F11 F12 F13 F14

0 0 0 0 0 0 0 0

1 0 0 0

1 1 1 1

0 0 0 1

0 0 1 1

0 0 1 0

0 1 1 0

0 1 1 1

0 1 0 1

1 1 0 0

1 1 0 1

1 1 1 1

1 1 1 0

1 0 1 0

1 0 1 1

1 0 0 1

0 1 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

0 1 1 1

0˚ to 22½˚

23˚ to 45½˚

46˚ to 68½˚

69˚ to 89½˚

90˚ to 111½˚

112˚ to 132½˚

133˚ to 154½˚

155˚ to 181½˚

182˚ to 202½˚

203˚ to 225½˚

226˚ to 245½˚

246˚ to 269½˚

270˚ to 292½˚

293˚ to 314½˚

315˚ to 337˚

337½˚ to 360˚

Page 57: Industrial Control Electronics:

DC Variable Speed DrivesSStteepp 22BB 992RPM

Table 40-1SStteepp 44CC C. Armature current stays constant

B. Motor speed decreases

SStteepp 33DD B.

SStteepp 44DD The motor takes a long time to speed up or to slow down.

Experiment Questions1. B.

2. B., A.

3. A.

4. A.

5. C.

6. C.

7. C.

56

Experiment40

Generator Load Motor Motor Speed BeforeIR Comp Adjustment

Motor Speed AfterIR Comp Adjustment

0.0A

0.2A

0.4A

0.6A

0.8A

1.0A

1000 RPM

992

973

942

912

879

1040 RPM

1032

1024

1017

1011

1007

Page 58: Industrial Control Electronics:

Motor BreakingProcedure Questions66AA –13

77AA +13, opposite

Experiment Questions1. A.

2. True

3. B.

4. B.

57

Experiment41

Page 59: Industrial Control Electronics:

Time Proportioning DC Circuit

Table 42-1

Experiment Questions1. B.

2. B., A.

3. C.

4. A.

Experiment42

PPootteennttiioommeetteerrSSeettttiinngg

AApppprrooxxiimmaatteeDDuuttyy CCyyccllee

CCaallccuullaatteedd AAvveerraaggeeDDCC VVoollttaaggee ((PPkk OOnn--TTiimmee

VVoollttss ×× DDuuttyyCCyyccllee

MMeeaassuurree AAvveerraaggeeDDCC VVoollttaaggee

0V 0 0V 0V

2.5V 25 2.5V 2.5V

5.0V 50 5.0V 5.0V

7.5V 75 7.5V 7.5V

10.0V 100 10V 10V

58

Page 60: Industrial Control Electronics:

Time Proportioning AC Circuit

Table 43-1

Experiment Questions1. B.

2. C.

3. A.

4. A.

Experiment43

PPootteennttiioommeetteerrSSeettttiinngg

RReellaayy IInnppuuttWWaavveeffoorrmm TTPP22

NNuummbbeerr ooff AACC CCyycclleessAAccrroossss LLiigghhttbbuullbb DDuurriinngg

11 PPeerriioodd TTPP33

LLiigghhttbbuullbbIInntteennssiittyy

0V 0 None

2.5V 2 to 3 Low

5.0V 5 Medium

7.5V 7 to 8 Brighter

10.0V 10 Brightest

59

Page 61: Industrial Control Electronics:

Unijunction Transistor (UJT)Experiment Questions1. B., A.

2. A., A.

3. A., B.

4. A.

5. C.

6. B.

Figure 44-2

Figure 44-3

60

Experiment44

Condition VE VB1VB2

IE = IB1– IB2

Before firing < Vp 0 11.9 0 1mA 0

After firing VV = .7 11.4 7 mA 6 mA 1 mA

IB =V

RB1

11

IB2=

−V V

RBB B2

2

(a)

Vp-p

Vp-p

Vp-p

R =100 Ω

1

R =100 Ω

2R =16 kΩ

E

C =0.1 µF

E

V E V B

V B1

2f ~~1

R CE E

+V = 12 VBB

RE(kΩΩ)

CE(µµF) Calculated Measured

16 0.1 625 625

22 0.1 455 455

47 0.1 213 213

16 0.2 312 313

16 0.05 1250 1250

f ≈≈ 1/RECE hertz

(b)

Page 62: Industrial Control Electronics:

Silicon Controlled Rectifier (SCR)Experiment Questions1. B.

2. B.

3. A.

4. A.

5. holding current

Figure 45-1

Experiment45

61

S1condition

S2condition

VG VA Condition of SCR(on or off)

A A 0 10 off

B A .7 .8 on

A A .7 .8 on

A B 0 10 off

A A 0 10 0ff

(b)

Page 63: Industrial Control Electronics:

DIAC/TRIAC (Thyristors)Experiment Questions1. A.

2. B.

3. A.

4. B.

5. C.

Figure 46-1

Experiment46

62

Circuit condition

VT Condition ofDiac (on, off)

Beforefiring

0 to VB0 Off

Afterfiring 27 On

Beforefiring

0 toVB0 Off

Afterfiring 27 On

Reverse Diac in circuit

(b)

Note: use only a single channel of the oscilloscope

100 V at 60 Hz

p-p

R =1 kΩ

s 0 V

0 V

0 90 180 270 360o o o o o