HILTI PROFIS Anchor Design Guide

362
7/21/2019 HILTI PROFIS Anchor Design Guide http://slidepdf.com/reader/full/hilti-profis-anchor-design-guide 1/362 PROFIS Anchor Design Guide  Anchor design at a click. Hilti. Outperform. Outlast.

Transcript of HILTI PROFIS Anchor Design Guide

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    1/362

    PROFIS AnchorDesign Guide

    Anchor design at a click.

    Hilti. Outperform. Outlast.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    2/362

    Table of Contents

    1

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Tension. . . . . .6

    Tension Steel Strength. . . . . . .7

    Equations Nsa

    cast-in-place . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    Equations Nsa

    post-installed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    Equations Nsa

    versus Nua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    Variables Ase,n

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    Variables futa

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    Variables n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Calculations N

    sa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    Results Nsa

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    Results Nua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    Results steel

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    Results nonductile

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    Results Nsa

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    Tension Concrete Breakout Strength. . .14

    Equations Anc

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    Equations ANc0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    Equations Nb D-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    Equations Nb D-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    Equations Ncb

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    Equations Ncbg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Equations

    Ncbor

    Ncbgversus N

    ua. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    Equations cp,N

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    Equations ec,N

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    Equations ed,N

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    Variables ca,min

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    Variables cac

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    Variables ec1,N

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    Variables ec2,N

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    Variables fc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    Variables hef. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    Variables kc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    Variables c,N

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    Calculations ANc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Calculations A

    Nc0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    Calculations Nb D-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    Calculations Nb D-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    Calculations cp,N

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    Calculations ec1,N

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    Calculations ec2,N

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    Calculations ed,N

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    Results Ncb

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    Results Ncbg

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    Results Ncb

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    Results Ncbg

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    Results Nua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    Results concrete

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    Results seismic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Results

    nonductile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    3/362

    Table of Contents

    2

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Tension Pullout Strength Mechanical Anchors. . . . . . . 53

    Equations Npn,

    fc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    Equations Npn,fc

    versus Nua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    Variables fc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    Variables Np,2500

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    Variables c,p

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    Calculations (fc 2500) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    Results Npn,

    fc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    Results Nua. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Results N

    pn,f

    c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    Results concrete

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    Results nonductile

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    Results seismic

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    Tension Pullout Strength Cast-In-Place Anchors. . . . . . .62

    Equations NP= 8A

    brgf

    c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    Equations NPn

    = c,P

    NP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    Equations Npn

    Nua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    Variables Abrg

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    Variables fc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    Variables c,p

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    Calculations NP

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    Results Npn

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    Results Nua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    Results Npn

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    Results concrete

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    Results nonductile

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    Results seismic

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    Tension Bond Strength Adhesive Anchors. . . . . . 70.

    Equations ANa

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    Equations ANa0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    Equations ccr,na

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    Equations Na. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    Equations Na0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    Equations Nag

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    Equations Naor N

    agversus N

    ua. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    Equations ec,Na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Equations

    ed,Na. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    Equations g,Na

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    Equations g,Na0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

    Equations p,Na

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    Equations scr,Na

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    Equations ,max

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    Variables ca,min

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

    Variables cac

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    Variables da. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    Variables ec1,N

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    Variables ec2,N

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

    Variables fc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

    Variables hef. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

    Variables bond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Variables k

    c,xxx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    Variables n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

    Variables savg

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    Variables k,uncr

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

    Variables k,xxxx

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

    Calculations ANa

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

    Calculations ANa0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    Calculations ccr,Na

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    Calculations Na0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    Calculations ec1,Na

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

    Calculations ec2,Na

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    Calculations ed,Na

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

    Calculations g,Na

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

    Calculations g,Na0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Calculations

    p,Na. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    Calculations scr,Na

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    Calculations k,max,xxxx

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    Results N,seis

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

    Results Na. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

    Results Nag

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

    Results Nua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

    Results N,seis

    Na. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    Results N,seis

    Nag

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    Results bond

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

    Results seismic

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    Results nonductile

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    4/362

    Table of Contents

    3

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Tension Side-Face Blowout Strength

    for Cast-in-Place Anchors. . . . . . .115

    Equations corner

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

    Equations group

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

    Equations Nsb

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    Equations Nsbg

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    Equations Nsb

    or Nsbg

    versus Nua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    Variables Abrg

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    Variables ca1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118Variables c

    a2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    Variables fc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    Variables s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

    Calculations group

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

    Calculations corner

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

    Results Nsb

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

    Results Nsbg

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

    Results Nua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

    Results Nsb

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

    Results Nsbg

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

    Results concrete

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

    Results nonductile

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    Results seismic

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    Shear . . . . . . . . 130

    Shear Steel Strength. . . . . . .131

    Anchor Steel Strength in Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

    Equations Vsa

    f or Adhesive Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

    Equations Vsa

    for Headed Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    Equations Vsa

    f or Headed Studs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    Equations Vsa

    Seismic fo r Mechanica l Anchors . . . . . . . . . . . . . . . . . . . . 133

    Equations Vsa

    Stat ic for Mechanical Anchors . . . . . . . . . . . . . . . . . . . . . . 133

    Equations Vsa

    versus Vua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

    Variables V,seis

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

    Variables Ase,V

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

    Variables futa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

    Variables n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

    Variables Vsa

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

    Calculations Vsa

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

    Results Vsa

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    Results Vsa

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    Results eb

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    Results steel

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    Results nonductile

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    Results Vua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

    Shear Concrete Breakout Strength. . . . . . .143

    Equations AVc

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    Equations AVc0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

    Equations Vcb

    or Vcbg

    Vua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

    Equations ec,v

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    Equations ed,v

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    Equations h,v

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    Equations Vb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    Equations Vcb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148Equations V

    cbg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    Variables ca1

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    Variables ca2

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    Variables da. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    Variables eV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    Variables fc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

    Variables ha. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

    Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

    Variables le. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

    Variables c,V

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

    Variables parallel,V

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

    Calculations AVc

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    Calculations AVc0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

    Calculations ec,V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160Calculations

    ed,V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

    Calculations h,V

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

    Calculations Vb Equation D-24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

    Calculations Vb Equation D-25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

    Results Vcb

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

    Results Vcbg

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

    Results Vcb

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

    Results Vcbg

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

    Results concrete

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

    Results nonductile

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

    Results seismic

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

    Results Vua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

    Shear Pryout Strength Concrete Breakout Controls. . . . . . .172

    Equations Vcp

    or Vcpg

    versus Vua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

    Equations Vcp

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

    Equations Vcpg

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

    Variables kcp

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

    Calculations Vcp

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

    Calculations Vcpg

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

    Results Vcp

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

    Results Vcpg

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

    Results Vcp

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

    Results Vcpg

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

    Results concrete

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

    Results seismic

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

    Results nonductile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183Results V

    ua. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    5/362

    Table of Contents

    4

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Shear Pryout Strength Bond Controls. . . . . . . 186

    Equations Vcp

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

    Equations Vcpg

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

    Equations Vcp

    or Vcpg

    versus Vua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

    Variables kcp

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

    Calculations Vcp

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

    Calculations Vcpg

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

    Results Vcp

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

    Results Vcpg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190Results V

    cp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

    Results Vcpg

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

    Results concrete

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

    Results seismic

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

    Results nonductile

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

    Results Vua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

    Shear Steel Failure with Lever Arm . . . . . . .197

    Equa tions Stand-off Condi tion None . . . . . . . . . . . . . . . . . . . . . . . . . . 197

    Equations Stand-off Condition without Clamping. . . . . . . . . . . . . . . . . 19 7

    Equations Stand-off Condition with Clamping . . . . . . . . . . . . . . . . . . . 198

    Equat ions Stand-off Condition with Grouting . . . . . . . . . . . . . . . . . . . . 199

    Equations Vs

    m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

    Equations MS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

    Equations MS

    0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

    Equations S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

    Equations Lb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

    Equations (1 Nua

    /Nsa

    ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

    Equations VsMversus V

    ua. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

    Variables M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

    Variables fu,min

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

    Variables Nua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

    Variables z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

    Variables d0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

    Variables n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

    Variables Nsa

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

    Calculations Lb

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    Calculations MS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    Calculations MS

    0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    Calculations S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

    Calculations (1 Nua

    /Nsa

    ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

    Results VsM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

    Results nonductile

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

    Results steel

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

    Results VS

    M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

    Results Vua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

    ACI 318-08 Seismic Provisions. . . . . . .216

    Seismic Calculation ACI 318-08, Part D.3.3 . . . . . . . . . . . . . . . . . . . . . . . 217

    Seismic Calculat ion ACI 318-08, Part D.3.3.2 . . . . . . . . . . . . . . . . . . . . . . 218

    Seismic Calculat ion ACI 318-08, Part D.3.3.3 . . . . . . . . . . . . . . . . . . . . . . 220

    Seismic Calculat ion ACI 318-08, Part D.3.3.4 . . . . . . . . . . . . . . . . . . . . . . 222

    Seismic Calculat ion ACI 318-08, Part D.3.3.5 . . . . . . . . . . . . . . . . . . . . . . 224

    Seismic Calculat ion ACI 318-08, Part D.3.3.6 . . . . . . . . . . . . . . . . . . . . . . 226

    ACI 318-11 Provisions. . . . . . . . 228

    ACI 318-11 Seismic Provisions . . . . . . . 229

    Seismic Calculat ion ACI 318-11, Part D.3.3.1 . . . . . . . . . . . . . . . . . . . . . . 229

    Seismic Calculat ion ACI 318-11, Part D.3.3.2 . . . . . . . . . . . . . . . . . . . . . . 230

    Seismic Calculat ion ACI 318-11, Part D.3.3.3 . . . . . . . . . . . . . . . . . . . . . . 231

    Seismic Calculation ACI 318-11, Part D.3.3.4.1 . . . . . . . . . . . . . . . . . . . . 232

    Seismic Calculation ACI 318-11, Part D.3.3.4.2 . . . . . . . . . . . . . . . . . . . . 234

    Seismic Calculation ACI 318-11, Part D.3.3.4.3 . . . . . . . . . . . . . . . . . . . . 236

    Seismic Calculation ACI 318-11, Part D.3.3.4.4 . . . . . . . . . . . . . . . . . . . . 248

    Seismic Calculation ACI 318-11, Part D.3.3.4.5 . . . . . . . . . . . . . . . . . . . . 249

    Seismic Calculation ACI 318-11, Part D.3.3.5.1 . . . . . . . . . . . . . . . . . . . . 250

    Seismic Calculation ACI 318-11, Part D.3.3.5.2 . . . . . . . . . . . . . . . . . . . . 252

    Seismic Calculation ACI 318-11, Part D.3.3.5.3 . . . . . . . . . . . . . . . . . . . . 254

    Seismic Calculation ACI 318-11, Part D.3.3.5.4 . . . . . . . . . . . . . . . . . . . . 261

    Seismic Calculat ion ACI 318-11, Part D.3.3.6 . . . . . . . . . . . . . . . . . . . . . . 262

    Seismic Calculat ion ACI 318-11, Part D.3.3.7 . . . . . . . . . . . . . . . . . . . . . . 263

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    6/362

    Table of Contents

    5

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    ACI 318-11 Adhesive Anchor Provisions . . . . . . . 264

    Equations ANa

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

    Equations ANa0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

    Equations cNa

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

    Equations Na. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

    Equations Nag

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

    Equations Nba

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

    Equations Naor N

    agversus N

    ua. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

    Equations cp,Na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272Equations

    ec,Na. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

    Equations ed,Na

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

    Variables N,seis

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

    Variables ca,min

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

    Variables cac

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

    Variables da. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

    Variables ec1,N

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

    Variables ec2,N

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

    Variables hef

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

    Variables bond

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

    Variables a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

    Variables k,c

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

    Calculations ANa

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

    Calculations ANa0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298Calculations c

    Na. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

    Calculations Nba

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

    Calculations cp,Na

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

    Calculations ec1,Na

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

    Calculations ec2,Na

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

    Calculations ed,Na

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

    Results Na. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

    Results Nag

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

    Results Nua

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

    Results bond

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

    Results nonductile

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

    Results seismic

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

    Results Na. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

    Results Nag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

    ACI 318-11 Sustained Load Provisions. . . . . . .324

    Sustained Load Calculations ACI 318-11, Part D.4.1.2 . . . . . . . . . . . . . . . 324

    Factored Load Calculations . . . . . . . 329

    Load Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

    Equation Nnversus N

    ua. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

    Equation Vnversus V

    ua. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

    % Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 32

    Resultan t Tension and Sh ear L oad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 33

    Resultant Shear Load Torsion and Shear Towards Edge. . . . . . . . . . . . . . 334

    Resultant Shear Load Torsion and Shear Away From Edge . . . . . . . . . . . 337

    Resultant Shear Load Torsion and Shear Parallel To Edge .. . . . . . . . . . . 340Resultant Shear Load Pure Torsion with a Fixed Edge . . . . . . . . . . . . . . . 343

    Interaction Calculations. . . . . . .346

    Equations Tri-Linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

    Equations Parabolic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

    Calcu lations % Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

    Base Plate Calculations. . . . . . .349

    Design A ssumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

    Tension Forces on the Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 52

    Tens ion Eccentr ic it y Calcu lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    7/362

    Tension

    6

    The PROFIS Anchor Design Guide provides information about

    the following:

    Strength Design calculations per ACI 318-08

    Strength Design calculations per ICC-ES AC308

    PROFIS Anchor design assumptions

    Utilizing data from ICC-ES Evaluation Service Reports

    This Design Guide is intended to be used as a reference for

    the information provided in the Design Report. Questions

    about a particular section in the Design Report output can be

    referenced directly to the corresponding section in the Design

    Guide. All the information in the Hilti North American Product

    Technical Guide, including data sourcing, caveats, limitations,

    design principles, and assumptions, apply to all data and

    calculations generated by PROFIS Anchor.

    The TENSION section of the Design Guide providesinformation on the tension design strengths calculated using

    PROFIS Anchor.

    Tension Steel Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    Tension Concrete Breakout Strength . . . . . . . . . . . . . . . 14

    Tension Pullout Strength Mechanical Anchors . . . . . 53

    Tension Pullout Strength Cast-In-Place Anchors . . . . 62

    Tension Bond Strength Adhesive Anchors . . . . . . . . 70

    Tension Side-Face BlowoutStrength for Cast-in-Place Anchors . . . . . . . . 115

    Hilti. Outperform. Outlast.

    Tension

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    8/362

    Tension Steel Strength

    7

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Equations Nsa

    cast-in-place

    Equations Reference Comments

    cast-in-place anchors

    Nsa

    = nAse,N

    futa

    ACI 318-08, Part D.5.1.2 EQ. (D-3) PROFIS Anchor uses EQ. (D-3) to calculate the Nominal Steel Strength in

    tension (Nsa) for a single cast-in-place anchor.

    The Design Report shows EQ. (D-3) in the Equationssection of the Steel

    Strength design parameters.

    Equations Nsa

    post-installed

    Equations Reference Comments

    post-installed anchors

    Nsa

    = see ICC-ES ESR-xxxx

    Refer to the ICC-ES Evaluation Service Report

    for the selected anchor.

    When designing post-installed anchors, PROFIS Anchor uses a pre-calculated

    value for the Nominal Steel Strength in tension (Nsa) that is given in the

    ICC-ES Evaluation Service Report for each anchor. This value corresponds to

    Nominal Steel Strength (Nsa) for a single anchor calculated using EQ. (D-3).

    The Design Report for post-installed anchors shows EQ. (D-3) in the

    Equationssection of the Steel Strength design parameters but references

    the ESR from which the value for Nsa

    has been taken.

    Equations Nsaversus NuaEquations Reference Comments

    Nsa

    > Nua

    ACI 318-08, Part D.4.1.1 EQ. (D-1) Per the provisions of ACI 318-08, D.4.1.2; PROFIS Anchor compares each

    calculated Design Strength in tension (Nn) to the Factored Service Load in

    tension (Nua) that has been input by the user.

    When Nua

    is not equally distributed among the anchors in the connection,

    PROFIS Anchor compares the Design Steel Strength in tension (Nsa) for a

    single anchor to the highest loaded anchor in tension. When Nua

    is equally

    distributed among the anchors in the connection, PROFIS Anchor compares

    Nsa

    for a single anchor to Nua

    divided by the number of anchors in tension.

    A summary of tension Design Strengths versus tension Factored Service

    Loads is given in Part 3. Tension loadof the Design Report.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    9/362

    Tension Steel Strength

    8

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Variables Ase,n

    Variables Reference Comments

    Ase,N

    ACI 318-08, Part D.5.1.2 EQ. (D-3) Ase,N

    is the effective cross-sectional area of a single anchor in tension. Values

    for Ase,N

    specic to each anchor in the PROFIS Anchor portfolio are stored in

    the program internal database.

    The Design Report shows Ase,N

    in theVariablessection of the Steel Strength

    design parameters.

    Variables futa

    Variables Reference Comments

    futa

    ACI 318-08, Part D.5.1.2 EQ. (D-3) futa

    is the specied tensile strength of the anchor steel. Values for futa

    specic

    to each anchor in the PROFIS Anchor portfolio are stored in the program

    internal database.

    Cast-in-place anchor steel properties correspond to ASTM F1554 bolts and

    AWS D1.1 headed studs. Post-installed anchor steel properties are given in

    the ICC-ES Evaluation Service Report for each anchor.

    The Design Report shows futa

    in theVariablessection of the Steel Strength

    design parameters.

    Variables n

    Variables Reference Comments

    n_______

    1.000

    ACI 318-08, Part D.5.1.2 EQ. (D-3) PROFIS Anchor always uses n = 1 to calculate Nsa

    because some of theanchors in the connection may be more highly loaded than others in the

    connection. The Design Report shows n = 1.0 in the Variablessection of the

    Steel Strength design parameters.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    10/362

    Tension Steel Strength

    9

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Calculations Nsa

    Calculations Reference Comments

    Nsa

    cast-in-place anchor: ACI 318-08 EQ. (D-3)

    post-installed anchor: value from ESR-xxxx

    PROFIS Anchor calculates Nsa

    per EQ. (D-3) for a single cast-in-place anchor,

    or uses the value given for Nsa

    in the ICC-ES Evaluation Service Report for a

    single post-installed anchor.

    The Design Report shows the calculated value for Nsa

    in the Calculations

    section and in the Resultssection of the Steel Strength design parameters.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    11/362

    Tension Steel Strength

    10

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Results Nsa

    Results Reference Comments

    Nsa

    cast-in-place anchor: ACI 318-08 EQ. (D-3)

    post-installed anchor: value from ESR-xxxx

    PROFIS Anchor calculates Nsa

    per EQ. (D-3) for a single cast-in-place anchor,

    or uses the value given for Nsa

    in the ICC-ES Evaluation Service Report for a

    single post-installed anchor.

    The Design Report shows the calculated value for Nsa

    in the Calculations

    section and in the Resultssection of the Steel Strength design parameters.

    Results Nua

    Results Reference Comments

    Nua

    Strength Design compares a calculated Design Strength (Nn) to a Factored

    Service Load (Nua). ACI 318-08, Chapter 2 denes N

    uaas the factored tensile

    force applied to an anchor or group of anchors.

    PROFIS Anchor users select Strength Design provisions by clicking on the

    Loadstab, then highlighting and clicking on Strength Design according to

    ACI 318-08.

    Factored load values can be input directly on the main screen. Place thecursor over the appropriate load parameter, highlight it, and input the desired

    value. Click the Enter key to set the new value.

    Factored load values can also be input by clicking on the Loadstab, thenclicking on the Enter loadsicon.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    12/362

    Tension Steel Strength

    11

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Results Nua

    (continued)

    The Design Report shows the factored loads input by the user in Part

    1. Input Data. PROFIS Anchor does not apply any load factors. It is theresponsibility of the user to determine factors and then input a load value that

    includes the factors. PROFIS Anchor assumes the factored loads input by the

    user utilize the factors given in ACI 318-08 Chapter 9, Part 9.2 .

    The section denotedAnchor reactions inPart 2. Load case/Resultinganchor forcesof the Design Report shows the tension and shear loads

    acting on each anchor resulting from the factored loads input by the user. The

    sum of these individual anchor loads equals the resultant load for tension or

    shear.

    Load combinations input by the user may result in some of the anchors

    being loaded in tension and some in compression. The Design Report shows

    the magnitude and location of the resultant tension and compression loads

    acting on the connection. This information is shown in Part 2. Load case/Resulting anchor forces. PROFIS Anchor does not perform calculations for

    anchors determined to be in compression.

    The Design Report shows Nuacorresponding to Steel Strength in Part 3.Tension Load and in theResultssection of the Steel Strength design

    parameters. When evaluating Design Steel Strength, Nua

    corresponds tothe highest factored tension load acting on a single anchor for the anchors

    that are determined to be in tension. Part 3Tension loadwill show a single

    asterisk (*) next to Steel Strengthindicating that the value for Nua

    pertains to

    the highest factored tension load acting on a single anchor for the anchors

    that are determined to be in tension.

    Per ACI 318-08, Part D.4.1.1; Nsa

    Nua

    must be satised. If the value forN

    sashown under the heading Capacity in Part 3of the Design Report is

    the value shown for Nua

    under the heading Load, the note OK will appear

    under the heading Status. The statement Fastening meets the design

    criteria! will be given at the back of the Design Report if all of the other

    calculated Design Strengths in tension and shear are the corresponding

    value for Nua

    or Vua

    respectively.

    If the value for Nsa

    is < Nua

    , the note not recommended will appear under

    the heading Status. The statement Fastening does not meet the designcriteria! will be given at the back of the Design Report because the criteria

    of D.4.1.1 have not been satised.

    The value shown under the heading Utilization N[%] in Part 3of the

    Design Report corresponds to the ratio Nua

    / Nn. When evaluating Steel

    Strength, Nua

    corresponds to the highest factored tension load acting on

    a single anchor for the anchors that are determined to be in tension asdescribed above. N

    ncorresponds to the Design Steel Strength N

    saas

    dened above.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    13/362

    Tension Steel Strength

    12

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Results steel

    Results Reference Comments

    steel

    cast-in-place anchors: ACI 318-08, Part D.4.4.a.i

    post-installed anchors: ICC-ES ESR-xxxx

    PROFIS Anchor uses the provisions of ACI 318-08, D.4.4.a.i to determine

    the Steel Strength -factor for cast-in-place anchors. This value = 0.75 for

    all cast-in-place anchors in the PROFIS Anchor portfolio because all of these

    anchors satisfy the denition of ductile steel element given in ACI 318-08,

    Part D.1.

    Steel Strength -factors used for post-installed anchors follow the provisionsof ACI 318-08, D.4.4; but the actual value for the -factor is derived fromtesting. Therefore, the -factors for post-installed anchors are specic to an

    anchor. The -factors are given in the ICC-ES Evaluation Service Report for

    each anchor. PROFIS Anchor uses the -factor from the ESR to calculate the

    Design Steel Strength for post-installed anchors.

    The Design Report denotes the Steel Strength -factor as steel

    and shows

    this value in the Resultssection of the Steel Strength design parameters.

    Results nonductile

    Results Reference Comments

    nonductile

    ACI 318-08, Part D.3.3.6 The PROFIS Anchor Design Report denotes the reduction factor dened in

    ACI 318-08, Part 3.3.6 as nonductile. This factor is applied to Nominal Strengthscorresponding to non-ductile failure modes.

    For tension calculations, these modes include:

    Nominal Steel Strength for anchor elements that do not satisfy the

    denition of ductile steel element given in Part D.1.

    Nominal Concrete Breakout Strength

    Nominal Pullout Strength

    Nominal Bond Strength

    Nominal Side-Face Blowout Strength

    For shear calculations, these modes include:

    Nominal Steel Strength for anchor elements that do not satisfy the

    denition of ductile steel element given in Part D.1.

    Steel Strength With Lever Arm for anchor elements that do not satisfy

    the denition of ductile steel element given in Part D.1. Nominal Concrete Breakout Strength

    Nominal Pryout Strength

    Click on the Loadstab to select seismic conditions.

    Click on the icon titled Seismic Design. The Design Report will indicate if

    Seismic Design has been selected by highlighting the Seismic Designicon

    in yellow.

    Select D.3.3.6 as a design option. Values for nonductile

    can be input ranging

    from 0.4 to 1.0. It is the responsibility of the user when inputting values for

    nonductile

    different than those noted in ACI 318-08, Part D.3.3.6 to determineif they are consistent with the design provisions of ACI 318-08, ASCE 7 and

    the governing building code. PROFIS Anchor defaults to the D.3.3.6 value of

    nonductile

    = 0.4 if no specic value is input by the user.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    14/362

    Tension Steel Strength

    13

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Results nonductile

    (continued)

    Results Reference Comments

    The value for nonductile

    is shown in the Resultssection of the Steel Strength

    design parameters.

    The Design Report results to the left show how nonductile

    is applied to the

    Nominal Steel Strength because the anchor is considered to be a non-ductilesteel element.

    The Design Report results to the left show how nonductile

    is not applied to theNominal Steel Strength because the anchor is considered to be a ductile

    steel element.

    Results Nsa

    Results Reference Comments

    Nsa

    ACI 318-08, Part D.4.1.1 EQ. (D-1) Strength Design compares a calculated Design Strength (Nn) to a Factored

    Service Load (Nua).

    The PROFIS Anchor Design Report denotes the Design Steel Strength as

    Nsa

    and shows this value in the Resultssection of the Steel Strength design

    parameters.

    Design Steel Strength equals: steel

    * Nsa

    for non-seismic conditions.

    Design Steel Strength equals: steel

    * nonductile

    * Nsa

    for seismic conditions.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    15/362

    Tension Concrete Breakout Strength

    14

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Equations Anc

    Equations Reference Comments

    ANc

    ACI 318-08, Fig. RD.5.2.1(b) ANc

    is dened in ACI 318-08, Part D.5.2.1 as the projected concrete failurearea of a single anchor or group of anchors. PROFIS Anchor calculates A

    Nc

    per the provisions of D.5.2.1 and as illustrated in Fig. RD.5.2.1(b).

    The Design Report shows ANc

    in the Equationssection of the ConcreteBreakout Strength design parameters. The Design Report shows the

    calculated value of ANcin the Calculationssection of the Concrete BreakoutStrength design parameters.

    The illustration to the left shows an example for calculating ANc

    .

    The PROFIS Anchor user can input the spacing and edge distanceparameters used to calculate A

    Ncdirectly on the main screen.

    Place the cursor over the appropriate spacing or edge distance parameter,highlight it, and input the desired value.

    Click the Enter key to set the new value.

    Anchor spacing values can also be input by clicking on theAnchor Layouttab, then clicking on the Customize layouticon.

    Edge Distance values can also be input by clicking on the Base Materialtab,then clicking on the Input geometryicon.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    16/362

    Tension Concrete Breakout Strength

    15

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Equations ANc0

    Equations Reference Comments

    ANc0

    ACI 318-08, Fig. RD.5.2.1(a) and Equation (D-6 ) ANc0

    is dened in ACI 318-08, Part D.5.2.1 as the projected concrete failurearea of a single anchor. It corresponds to the idealized area of inuenceassumed to develop at the surface of the concrete when spacing and edgedistance are unlimited.

    PROFIS Anchor calculates ANc0

    per the provisions of D.5.2.1 and as illustrated

    in Fig. RD.5.2.1(a) using a value input for effective embedment depth. Referto the illustration at the left.

    The Design Report shows EQ. (D-6) in the Equationssection of the ConcreteBreakout Strength design parameters, and the calculated value for A

    Nc0in the

    Calculationssection of the Concrete Breakout Strength design parameters.

    Equations Nb

    Equations Reference Comments

    Nb= k

    c fc hef

    1.5 ACI 318-08, Part D.5.2.2 Equation (D-7) Nbis dened in ACI 318-08 as the basic concrete breakout strength in

    tension of a single anchor in cracked concrete. Nbis multiplied by various

    modication factors that account for anchor spacing and edge distances(A

    Nc/ A

    Nc0); eccentric loading (

    ec,n), edge distances < 1.5 h

    ef(

    ed,n); uncracked

    concrete (c,N

    ); or splitting (cp,N

    ) to determine the Nominal ConcreteBreakout Strengthin tension.

    The PROFIS Anchor Design Report shows EQ. (D-7) in the Equationssectionof the Concrete Breakout Strength design parameters.

    Equations Nb

    Equations Reference Comments

    Nb= 16 fc hef

    5 / 3 ACI 318-08, Part D.5.2.2 Equation (D-8) PROFIS Anchor calculates Nbper Equation (D-8) for cast-in-place anchors

    only, when 11 hef 25. PROFIS Anchor does not use EQ. (D-8) for post-

    installed anchor calculations.

    When EQ. (D-8) is used, kc= 16 and h

    efis raised to the 5/3 power.

    Refer to the comments for Nbcalculated using EQ. (D-7) for additional details

    regarding Nb.

    The Design Report shows EQ. (D-8) in the Equationssection of the ConcreteBreakout Strength design parameters, and the calculated value for N

    busing

    EQ. (D-8) in the Calculationssection of the Concrete Breakout Strengthdesign parameters.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    17/362

    Tension Concrete Breakout Strength

    16

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Equations Ncb

    Equations Reference Comments

    ANc

    Ncb

    = _____ ed,N

    c,N

    cp,N

    Nb

    ANc0

    ACI 318-08, Part D.5.2.1(a) Equation (D-4) Equation used to calculate Nominal Concrete Breakout Strength (Ncb) for a

    single cast-in-place anchor or for a single post-installed anchor.

    The PROFIS Anchor Design Report shows EQ. (D-4) in the Equationssectionof the Concrete Breakout Strength design parameters.

    Equations Ncbg

    Equations Reference Comments

    ANc

    Ncbg

    = _____ ec,N

    ed,N

    c,N

    cp,N

    Nb

    ANc0

    ACI 318-08, Part D.5.2.1(b) Equation (D-5) Equation used to calculate Nominal Concrete Breakout Strength (Ncbg

    ) for agroup of cast-in-place anchors or for a group of post-installed anchors.

    The PROFIS Anchor Design Report shows EQ. (D-5) in the Equationssectionof the Concrete Breakout Strength design parameters.

    Equations Ncb

    or Ncbg

    versus Nua

    Equations Reference Comments

    Ncb

    orNcbg

    Nua

    Strength Design compares a calculated Design Strength (Nn) to a Factored

    Service Load (Nua). ACI 318-08, Chapter 2 denes N

    uaas the factored tensile

    force applied to an anchor or group of anchors.

    PROFIS Anchor users select Strength Design provisions by clicking on theLoads tab, then highlighting and clicking on Strength Design according toACI 318-08.

    A summary of tension Design Strengths versus tension Factored ServiceLoads is given in Part 3. Tension load of the Design Report.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    18/362

    Tension Concrete Breakout Strength

    17

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Equations cp,N

    Equations Reference Comments

    ca,min

    1.5hef

    cp,N

    = MAXIMUM _____;______ 1.0 cac cac

    ACI 318-08, Part D.5.2.7: Equation (D-13) cp,N

    is the modication factor for splitting for anchors loaded in tension inuncracked concrete conditions. The critical edge distance for splitting, c

    ac,

    corresponds to the edge distance needed to preclude splitting in uncrackedconcrete. c

    acis typically greater than the maximum assumed edge distance

    for Strength Design calculations in tension of 1.5 hef.

    cp,N

    is only calculated for post-installed anchors because splitting is apossible failure mode when post-installed anchors are installed near an edge.

    Splitting is not a typical failure mode for cast-in-place anchors; therefore,

    cp,Nequals 1.0 for cast-in-place anchors.

    PROFIS Anchor calculates (1.5 hef/c

    ac) using the value for h

    efinput by the user

    and the value for cac

    given in the Evaluation Service Report for the anchor.It compares this calculation to (c

    a,min/c

    ac) where c

    a,minis the smallest edge

    distance < 1.5 heffor the connection.

    The value for cp,N

    shown in the Design Report equals:

    MAX. {(ca,min

    /cac) ; (1.5 h

    ef/c

    ac)} < 1.0.

    EQ. (D-13) is shown in the Equationssection of the Concrete BreakoutStrength design parameters.

    The calculated value for cp,N

    is shown in the Calculationssection of the

    Concrete Breakout Strength design parameters.

    Concrete cracks when tensile stresses in the concrete imposed by loads or restraint conditionsexceed its tensile strength. Concrete is typically assumed to crack under normal serviceload conditions. Crack width and distribution are generally controlled through the use ofreinforcement. With consideration for the protection of the reinforcing steel, crack widths areassumed to be less than approximately 0.012 in (0.3 mm). Under seismic loading, exuralcrack widths corresponding to the onse t of reinforcing yield are assumed to be approximately1-1/2 x static crack width = 0.02" (0.5 mm). Both ACI 318 and the International Building Codeassume cracked concrete as the baseline condition for the design of cast-in-place and post-installed anchors since the existence of cracks in the anchor vicinity can result in a reducedultimate load capacity and increased displacement at ultimate load compared to uncrackedconcrete conditions. Design for uncracked concrete conditions is permitted only for caseswhere it can be shown that cracking of the concrete at service load levels will not occur overthe anchor service life. For cases involving design for seismic actions, post-installed anchorsmust be prequalied for use in cracked concrete as well as for seismic loading.

    Select cracked or uncracked concrete conditions by clicking on the Basematerialtab then clicking on the drop down containing these options.Uncracked conditions are typically selected if it is assumed that the concretewill not develop cracks under service load conditions or the life of theanchorage.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    19/362

    Tension Concrete Breakout Strength

    18

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Equations ec,N

    Equations Reference Comments

    1

    ec,N=________

    2 eN'

    1 +

    ____

    3 hef

    ACI 318-08, Part D.5.2.4: Equation (D-9) ec,N

    is the modication factor for anchor groups loaded eccentrically intension.

    The PROFIS Anchor Design Report shows EQ. (D-9) in the Equationssectionof the Concrete Breakout Strength design parameters, and the calculatedvalue for

    ec,Nin the Calculationssection of the Concrete Breakout Strength

    design parameters.

    PROFIS Anchor calculates ec,N

    using the factored loads, anchor spacing andbase plate dimensions input by the user. The program determines the loaddistribution among the anchors and identies the anchors that are in tension.This information is utilized to calculate the tension eccentricity.

    Factored load values can be input directly on the main screen. Place thecursor over the appropriate load parameter, highlight it, and input the desiredvalue. Click the Enter key to set the new value.

    Factored load values can also be input by clicking on the Loadstab, thenclicking on the Enter loadsicon.

    The PROFIS Anchor user can input the spacing parameters used to calculate

    ec,Ndirectly on the main screen. Place the cursor over the appropriate

    spacing value, highlight it, and input the desired value. Click the Enter keyto set the new value.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    20/362

    Tension Concrete Breakout Strength

    19

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Equations ec,n

    (continued)

    Equations Reference Comments

    Anchor spacing values can also be input by clicking on theAnchor Layout

    tab, then clicking on theCustomize layout

    icon.

    Base plate dimensions can be input directly on the main screen. Place thecursor over the appropriate par ameter, highlight it, and input the desiredvalue. Click the Enter key to set the new value.

    NOTE: PROFIS Anchor is not intended to be used to design base plates.The dimensions input are used in conjunction with a rigid base plateassumption to determine load distribution among the anchors. Referto the section on Base Plate Calculationsfor more information.

    Base plate dimensions can also be input by clicking on theAnchor plate tab.Input a value for base plate thickness in the box titled Plate thickness.

    NOTE: PROFIS Anchor is not intended to be used to design base plates.The thickness value input is assumed to be sufcient to transfershear forces into the anchors. Refer to the section on Base PlateCalculations for more information.

    Click on the Customize geometryicon to input values for the base plate

    length and width.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    21/362

    Tension Concrete Breakout Strength

    20

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Equations ec,n

    (continued)

    Equations Reference Comments

    For a given load condition, anchor spacing and base plate dimensionsinput by the user; PROFIS Anchor calculates resultant loads acting on theconnection. It uses a nite element program to determine the resultant axialloads.

    When part of the anchor/base plate connection is determined to be in tensionand part in compression, PROFIS Anchor determines the location andmagnitude of the resultant tension/compression forces acting on the anchors.The x/y-coordinates for the resultant tension and compression forces aregiven in Part 2. Load case/Resulting anchor forcesof the Design Report.Part 2shows the magnitude of the resultant tension and compressionforces. It also denotes which anchors have been determined to be in tension,and the magnitude of force acting on each anchor in tension based on thelocation of the anchor from the resultant tension load and from the internallycalculated neutral axis.

    Equations ed,N

    Equations Reference Comments

    ca,min

    ed,N= 0.7 + 0.3 ______

    1.5 hef

    ACI 318-08, Part D.5.2.5: Equation (D-11) ed,N

    is the modication factor for edge effects for anchors loaded in tension.

    ed,N

    is included in the tension Nominal Concrete Breakout Strengthcalculation when the smallest edge distance (c

    a,min) is < 1.5 h

    ef.

    The PROFIS Anchor Design Report shows EQ. (D-11) in the Equationssection of the Concrete Breakout Strength design parameters, and thecalculated value for

    ed,Nin the Calculationssection of the Concrete

    Breakout Strength design parameters.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    22/362

    Tension Concrete Breakout Strength

    21

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Variables Ca,min

    Variables Reference Comments

    ca,min

    ca,min

    corresponds to the minimum anchor edge distance for the connection.c

    a,minvalues for post-installed anchors are determined via testing and

    published in the ICC-ES Evaluation Ser vice Report specic to the anchor.

    Values for cast-in-place anchors are based on ACI 318-08, Part D.8.2.PROFIS Anchor users can select edge distance criteria for torqued oruntorqued conditions when designing cast-in-place anchors.

    The minimum edge distance for untorqued CIP anchors is dened in PROFISAnchor as:

    = minimum cover + minimum rebar size + minimum CIP anchor diameter

    = 3/4" + 3/8" + 1/2" = 1.625"; rounded up to 1.75".

    Refer to 7.7.1 but disregard parameters for Shells and Folded Plate Members.c

    a,minfor cast-in-place anchors

    ca,min

    for HIT-RE 500-SD adhesive anchor system

    D.8.2 Unless determined in accordance with D.8.4.

    minimum edge distances for cast-in headed anchorsthat will not be torqued shall be based on speciedcover requirements for reinforcement in 7.7. For cast-in headed anchors that will be torqued the minimumedge distances shall be 6d

    a.

    ESR-3013, Part 4.1.9:

    HY 150 MAX-SD

    ESR-2262, Part 4.1.9:

    HY 150 MAX-SD

    ESR-2322, Part 4.1.10:

    RE 500-SD

    When using adhesive anchors, edge distances less than the ca,min

    valuepublished in the ICC-ES Evaluation Service Report can be used. An edgedistance as small as 1.75 in can be used for all threaded rod diameters in agiven adhesive anchor portfolio.

    Use of reduced edge distances also require use of a reduced installationtorque to minimize concrete edge failure.

    Figure 5 Instructions for use (IFU) as provided with product packaging (continued)

    Refer to the Instructions For Useprovided in each Evaluation Service

    Report for installation torque values.The information to the left was taken from ESR-3013 for HIT-HY 150 MAX-SD.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    23/362

    Tension Concrete Breakout Strength

    22

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Variables Ca,min

    (continued)

    Variables Reference Comments

    Edge distance values for adhesive anchor systems can be input such that:

    1.75 in edge distance < ca,min

    PROFIS Anchor will highlight edge distances less than ca,min

    in red. Anytime a parameter is highlighted in red, it indicates that the value being inputis outside the range of values programmed into PROFIS Anchor for that

    parameter. Post-installed anchor edge distance values are programmed tocoincide with the c

    a,minvalues given in the Evaluation Service Report. Edge

    distance values < ca,min

    are therefore outside the range of ca,min

    . PROFISAnchor will not permit calculations to be made until the value is changed sothat it is within the range of values for that parameter, or until the user hassignied their understanding that the edge distance being input requires areduced installation torque. The Boundary Conditionsin the Resultspanewill indicate which parameter is being violated.

    When an edge distance value < ca,min

    is input, it will be highlighted in red.Refer to the Messages in the Resultspane. The user will be prompted toclick on theAnchor layouttab, then go to the box titled Reduced EdgeDistance, then check the box titled Reduced Installation Torque.

    Checking this box permits calculations to be made using the reduced edgedistance. The edge distance value will revert to black on the PROFIS Anchormain screen. User's should keep in mind that Design Strengths calculated

    using reduced edge distances presume the anchors will be installed withthe reduced installation torque given in the Evaluation Service Report for theselected anchor.

    The tool tip corresponding to reduced edge distances can be displayed byplacing the cursor over the Reduced Installation Torqueoption. It will serveto remind users of the criteria for using reduced edge distance

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    24/362

    Tension Concrete Breakout Strength

    23

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Variables Ca,min

    (continued)

    Variables Reference Comments

    Edge distance values are input by the user and PROFIS Anchor determinesc

    a,min. The Design Report shows c

    a,minin theVariablessection of the Concrete

    Breakout Strength design parameters.

    The edge distance parameters used to calculate ca,min

    can be input directly onthe main screen. Place the cursor over the appropriate edge distance value,highlight it, and input the desired value.

    Click the Enter key to set the new value.

    Edge Distance values can also be input by clicking on the Base Materialtab,then clicking on the Inputgeometry icon.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    25/362

    Tension Concrete Breakout Strength

    24

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Variables cac

    Variables Reference Comments

    cac

    Illustration referencesSection 4.1.10 in ICC-ESESR-2322 for HIT RE 500-SD.

    cac

    corresponds to the critical edge distance required to develop the basicconcrete breakout strength of a post-installed anchor in uncracked concretewithout supplementary reinforcement to control splitting. It corresponds tothe edge distance needed to minimize the potential of splitting in uncrackedconcrete.

    cac

    is typically greater than the maximum assumed edge distance for StrengthDesign calculations in tension of 1.5 hef.

    Splitting is only considered when using post-installed anchors because itis a possible failure mode when post-installed anchors are installed near anedge. c

    acis determined via testing and will be given in the ICC-ES Evaluation

    Service Report specic to an anchor.

    Splitting is not a typical failure mode for cast-in-place anchors; therefore, cac

    is not considered when using cast-in-place anchors.

    The PROFIS Anchor Design Report shows cac

    in theVariablessection of theConcrete Breakout Strength design parameters.

    Variables e'c1,N

    Variables Reference Comments

    e'c1,N The value for e'c1,Ncorresponds to eccentricity in the x-direction and equalsthe distance in the x-direction between the resultant tension force and thecentroid of the anchors that are in tension.

    The Design Report shows e'c1,N

    in theVariablessection of the ConcreteBreakout Strength design parameters.

    PROFIS Anchor determines e'c1,N

    using the factored loads, anchor spacingand base plate dimensions input by the user. The program determines theload distribution among the anchors and identies the anchors that are intension. This permits a determination of e'

    c1,Nand the subsequent calculation

    of ec1,N

    .

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    26/362

    Tension Concrete Breakout Strength

    25

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Variables e'c1,N

    (continued)

    Variables Reference Comments

    Factored load values can be input directly on the main screen. Place thecursor over the appropriate load parameter, highlight it, and input the desiredvalue. Click the enter key to set the new value.

    Factored load values can also be input by clicking on the Loadstab, thenclicking on the Enter loadsicon.

    The spacing parameters used to calculate ec1,Ncan be input directly on themain screen. Place the cursor over the appropriate spacing value, highlight it,and input the desired value. Click the enter key to set the new value.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    27/362

    Tension Concrete Breakout Strength

    26

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Variables e'c1,N

    (continued)

    Variables Reference Comments

    Anchor spacing values can also be input by clicking on theAnchor Layouttab, then clicking on the Customize layouticon.

    Base plate dimensions can be input directly on the main screen. Place thecursor over the appropriate par ameter, highlight it, and input the desiredvalue. Click the enter key to set the new value.

    NOTE: PROFIS Anchor is not intended to be used to design base plates.The dimensions input are used in conjunction with a rigid base plateassumption to determine load distribution among the anchors. Refer

    to the section on Base Plate Calculationsfor more information.

    Base plate dimensions can also be input by clicking on theAnchor platetab.Input a value for base plate thickness in the box titled Plate thickness.

    NOTE: PROFIS Anchor is not intended to be used to design base plates.The thickness value input is assumed to be sufcient to transfershear forces into the anchors. Refer to the section on Base PlateCalculationsfor more information.

    Click on the Customize geometryicon to input values for the base platelength and width.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    28/362

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    29/362

    Tension Concrete Breakout Strength

    28

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Variables ec2,N

    Variables Reference Comments

    ec2,N

    ACI 318-08, Part D.5.2.4 EQ (D-9) ec2,N

    corresponds to the tension eccentricity with respect to the y-direction.The PROFIS Anchor Design Report shows e

    c2,Nin theVariablessection of the

    Concrete Breakout Strength design parameters.

    PROFIS Anchor determines ec2,N

    using the factored loads, anchor spacingand base plate dimensions input by the user. The program determines theload distribution among the anchors and identies the anchors that are in

    tension. This permits a determination of ec2,Nand the subsequent calculationof

    ec2,N.

    Factored load values can be input directly on the main screen. Place thecursor over the appropriate load parameter, highlight it, and input the desiredvalue.

    Click the enter key to set the new value.

    Factored load values can also be input by clicking on the Loadstab, thenclicking on the Enter loadsicon.

    The spacing parameters used to calculate ec2,N

    can be input directly on themain screen. Place the cursor over the appropriate spacing value, highlight it,and input the desired value. Click the enter key to set the new value.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    30/362

    Tension Concrete Breakout Strength

    29

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Variables ec2,N

    (continued)

    Variables Reference Comments

    Anchor spacing values can also be input by clicking on theAnchor Layout

    tab, then clicking on the Customize layouticon.

    Base plate dimensions can be input directly on the main screen. Place thecursor over the appropriate par ameter, highlight it, and input the desiredvalue. Click the enter key to set the new value.

    NOTE: PROFIS Anchor is not intended to be used to design base plates.The dimensions input are used in conjunction with a rigid base plateassumption to determine load distribution among the anchors. Referto the section on Base Plate Calculationsfor more information.

    Base plate dimensions can also be input by clicking on theAnchor platetab.Input a value for base plate thickness in the box titled Plate thickness.

    NOTE: PROFIS Anchor is not intended to be used to design base plates.The thickness value input is assumed to be sufcient to transfershear forces into the anchors. Refer to the section on Base PlateCalculationsfor more information.

    Click on the Customize geometryicon to input values for the base platelength and width.

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    31/362

    Tension Concrete Breakout Strength

    30

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Variables ec2,N

    (continued)

    Variables Reference Comments

    For a given load condition, anchor spacing and base plate dimensionsinput by the user; PROFIS Anchor calculates resultant loads acting on theconnection. It uses a nite element program to determine the resultant axialloads.

    When part of the anchor/base plate connection is determined to be in tensionand part in compression, PROFIS Anchor determines the location and

    magnitude of the resultant tension/compression forces acting on the anchors.The x/y-coordinates for the resultant tension and compression forces aregiven in Part 2. Load case/Resulting anchor forcesof the Design Report.Part 2 shows the magnitude of the resultant tension and compressionforces. It also denotes which anchors have been determined to be in tension,and the magnitude of force acting on each anchor in tension based on thelocation of the anchor from the resultant tension load and from the internallycalculated neutral axis.

    The value for ec2,N

    corresponds to eccentricity in the y-direction and equalsthe distance in the y-direction between the resultant tension force and thecentroid of the anchors that are in tension.

    The Design Report shows ec2,N

    in theVariablessection of the ConcreteBreakout Strength design parameters.

    PROFIS Anchor users can use the data given in the Design Report todetermine how the software has calculated the eccentricity variable (e

    c2,N).

    The example shown to the left will be used to explain these calculations.

    The moment about the x-axis of 240,000 in-lb results in Anchors 1, 2, 4 and 5being in tension. The resultant tension force of 11,676 lb is calculated using anite element program.

    Refer to the section on Base Plate Calculationsfor more information onresultant load calculations.

    C S

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    32/362

    Tension Concrete Breakout Strength

    31

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Variables ec2,N

    (continued)

    Variables Reference Comments

    For the example shown, there are six anchors spaced 8 in apart in thex-direction and 12 in apart in the y-direction. The variable e

    c2,Ncorresponds

    to the tension eccentricity that is used in the equation to calculate themodication factor for eccentricity:

    ec,N = modication for eccentricity when calculating concrete breakoutstrength (N

    cbg).

    Note: eccentricity is only considered for anchor groups.

    ec2,N

    is dened as the distance in the y-direction of the resultant tension loadfrom the centroid of the anchors that are in tension.

    Per Part 2of the Design Report, the resultant tension load (TR) is located

    8.592 in from the center of the base plate in the +y direction. Likewise, onlyfour of the six anchors in the connection are in tension. The centroid of theanchors that are in tension is located 6.000 in from the center of the baseplate in the +y direction.

    The tension eccentricity in the y-direction (ec2,N

    ) = 2.592 in.

    Part 3, Tension loadof the Design Report shows the values for tensioneccentricity. Values are given for eccentricity in the x-direction and in they-direction.

    The illustration to the left shows how PROFIS Anchor references the variablesfor tension eccentricity in the Design Report. Eccentricity in the y-directionis denoted as e

    c2,N. The Design Report shows e

    c2Nin theVariablessection of

    the Concrete Breakout Strength design parameters.

    If eccentricity in the x-direction exists, PROFIS Anchor denotes this value ase

    c1,N. The value for e

    c1,Nequals the distance in the x-direction between the

    resultant tension force and the centroid of the anchors that are in tension.

    T i C t B k t St th

  • 7/21/2019 HILTI PROFIS Anchor Design Guide

    33/362

    Tension Concrete Breakout Strength

    32

    Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458www.hilti.ca

    Variables fc

    Variables Reference Comments

    fc

    ACI 318-08, Part D.3.5 and Commentary RD.3.5 fccorresponds to the concrete compressive strength that will be used in

    PROFIS Anchor calculations. The range of fcvalues in PROFIS Anchor is as

    follows:

    cast-in-place anchors: 2000 psi fc 10000 psi

    post-installed anchors: 2500 psi fc 8000 psi

    Refer to the ICC-ES Evaluation Service Report, for values specic to eachanchor.

    The Design Report shows fcin theVariablessection of the Concrete

    Breakout Strength design parameters.

    D.3.5 The values of fcused for calculation purposes

    in this appendix shall not exceed 10,000 psi for