GLoBES - Max-Planck-Institut für Kernphysik€¦ · Patrick Huber1, Joachim Kopp2, Manfred...

1
Patrick Huber 1 , Joachim Kopp 2 , Manfred Lindner 3 , Walter Winter 4 GLoBES General Long Baseline Experiment Simulator 1 Department of Physics, Virginia Tech, Blacksburg, VA 24062, USA 2 Theoretical Physics Department, Fermilab, PO Box 500, Batavia, IL 60510, USA 3 Max–Planck–Institut f¨ ur Kernphysik, Postfach 10 39 80, 69029 Heidelberg, Germany 4 Institut f¨ ur theoretische Physik und Astrophysik, Universit¨at W¨ urzburg, 97074 W¨ urzburg, Germany GLoBES is a modular open-source software library for simulating short- and long-baseline neutrino oscillation experiments, and for studying the oscillation phenomenology. What GLoBES can do: Compute 3-flavour oscillation probabilities in matter Simulate event spectra for reactor experiments, super- beams, beta beams, neutrino factories, . . . Perform sophisticated χ 2 analyses Adapt to the user’s needs What GLoBES cannot (yet) do: Replace a detector Monte Carlo simulation Simulate solar and atmospheric neutrinos In GLoBES, experiments are described using AEDL, the Abstract Experiment Definition Language. AEDL files specify, for example Source types and spectra Matter density profiles Cross sections Detector properties: Efficiencies, resolutions, backgrounds, . . . Systematical uncertainties A channel corresponds to oscillations from one flavour into another: Cross Section Flux Energy- function Initial / final flavor, polarity Energy Channel Event rates efficiencies dependent Resolution A rule consists of the combination of all signal and background chan- nels in an experimental data sample (e.g. ν e appearance from ν μ ν e oscillations in a superbeam, with contamination from ν e ν e ). Signal Background Channel 1 Channel 2 . . . . . . Rule Signal + Backgrounds with systematics ∆χ 2 Rule 2 Rule 1 Rule 3 Experiment Σ ∆χ 2 . . . Experiments can contain sev- eral rules, and several exper- iments can be handled si- multaneously. Experiment definition in GLoBES The oscillation engine is the heart of the soft- ware. Its main features are Full three-flavour treatment Arbitrary (non-adiabatic) matter profiles The PREM (Preliminary Reference Earth Model) matter profile is hard-coded in GLoBES. The user can choose approxima- tions to this profile (e.g. constant density, mantle-core-mantle profile, etc.) or define completely new profiles. High numerical efficiency GLoBES uses specifically designed numeri- cal algorithms to ensure an excellent perfor- mance, which is, for the specific problem of neutrino oscillations, far superior to that of “black box” libraries. Extensibility The user has the possibility to modify or com- pletely replace the GLoBES oscillation en- gine, e.g. to include sterile neutrinos, non- standard interactions, and other kinds of “new physics”. Oscillations GLoBES uses the χ 2 method to extract physical information from the simulated event spectra. Main features are Cuts and projections of the multi-dimensional χ 2 manifold (“marginal- ization”) Inclusion of systematical uncertainties (fully customizable) Inclusion of correlations and degeneracies Inclusion of external priors (fully customizable) Supports setups with Multiple sources and multiple detectors Excellent numerical efficiency The builtin χ 2 functions of GLoBES have the Poissonian form χ 2 ( ~ λ,~a) =2 X exp 0 s X rules X bins " N th ( ~ λ,~a) - N obs + N obs log N obs N th ( ~ λ,~a) # + χ 2 prior ( ~ λ)+ χ 2 pull ( ~a), where N obs and N th are the “observed” and theoretically predicted event rates, respectively. The vector ~ λ contains the oscillation parameters, and ~a are the systematical biases. χ 2 prior ( ~ λ) and χ 2 pull ( ~a) implement external input on these parameters. Note that GLoBES allows also for arbitrary, user-defined χ 2 functions. Example: θ 13 δ CP correlation and intrinsic degeneracy in a ν -fact. 10 4 10 3 10 2 sin 2 2Θ 13 0 50 100 150 200 CP Degrees Correlation between sin 2 2Θ 13 and CP 1Σ 2Σ 3Σ GLoBES 2007 10 4 10 3 10 2 sin 2 2Θ 13 0 5 10 15 20 Χ 2 Projection onto sin 2 2Θ 13 axis 1Σ 2Σ 3Σ GLoBES 2007 χ 2 analysis The AEDL file: A simple neutrino factory $version="3.0.0" nuflux(#mu plus)< @builtin = 1 @parent energy = 50 @stored muons = 10.66e+20 @time = 4 > $target mass = 50 $bins = 20 $emin = 4 $emax = 50 $profiletype = 1 $baseline = 3000 energy(#ERES)< /*E res.*/ @type = 1 @sigma e= {0.15, 0, 0} > cross(#CC)< /* Cross sections */ @cross file = "XCC.dat" > channel(#nu mu app)< @channel = #mu plus:+:e:m:#CC:#ERES > channel(#nu mu bar disapp)< @channel = #mu plus:-:m:m:#CC:#ERES > rule(#Nu Mu Appearance)< @signal = 0.45@#nu mu app @signalerror = 0.025 : 0.0001 @background = 5e-6@#nu mu bar disapp @backgrounderror = 0.2 : 0.0001 @sys on function = "chiSpectrumTilt" @sys off function = "chiNoSysSpectrum" > Application code snippet: Project χ 2 onto θ 13 axis /* Define priors for θ 12 and m 2 21 */ glbDefineParams(input errors, theta12*0.1, 0, 0, 0, sdm*0.1, 0); glbSetDensityParams(input errors, 0.05, GLB ALL); glbSetCentralValues(true values); glbSetInputErrors(input errors); /* Loop over log(sin 2 2θ 13 ) */ double theta13, x; for (x=-4;x< -2.0+0.001; x+=2.0/50) { theta13 = asin(sqrt(pow(10,x)))/2; /* Choose starting value for δ CP marginalization */ glbSetOscParams(test values, 200.0/2*(x+4)*M PI/180, GLB DELTA CP); /* Compute χ 2 and marginalize over all parameters except θ 13 */ chi2 = glbChiTheta13(test values, NULL, GLB ALL); } GLoBES example GLoBES website: www.mpi-hd.mpg.de/globes/ Software download Many predefined AEDL files Extensive documentation Examples and tutorials GLoBES publications: CPC 167, 195 (2005), hep-ph/0407333 CPC 177, 432 (2007), hep-ph/0701187 Contact the authors: [email protected] Evolution of sin 2 2θ 13 disc. reach 2005 2010 2015 2020 2025 2030 Year 10 5 10 4 10 3 10 2 10 1 10 0 sin 2 2Θ 13 discovery reach 3Σ CHOOZSolar excluded Branching point Conv. beams SuperbeamsReactor exps Superbeam upgrades Νfactories MINOS CNGS DCHOOZ T2K NOA ReactorII NOAFPD 2 nd GenPDExp NuFact δ CP sensitivity of different exp’s 10 - 5 10 - 4 10 - 3 10 - 2 10 - 1 True value of sin 2 2θ 13 0 0.2 0.4 0.6 0.8 1 CP SPL T2HK WBB NF BB GLoBES 2006 Fraction of δ Impact of systematical errors in a reactor experiment 10 1 10 2 10 3 10 4 10 5 Integrated Luminosity in Far Detector GWtyears 0.002 0.005 0.01 0.02 0.05 0.1 sin 2 2Θ 13 sensitivity at 90% C.L. Statistical Limit 5 years DC 10 years DC 5 years DC 5 years TC Σ corr 2.8% Σ uncorr 0.6% Σ cal 0.5% Σ shape 2.0% Σ bintobin 0.5% Σ bintobin 2.0% GLoBES 2006 Sensitivity of ν -fact to standard and non-standard physics 10 5 10 4 10 3 10 2 10 1 10 5 10 4 10 3 10 2 10 1 sin 2 2Θ 13 5Σ NH for CP true 3Π2 5Σ CPV for CP true 3Π2 5Σ sin 2 2Θ 13 5Σ NH for CP true 3Π2 5Σ CPV for CP true 3Π2 5Σ Ε ee m 3Σ Ε eΤ m 3Σ Ε ΜΤ m 3Σ Ε ΤΤ m 3Σ Ε ΑΒ m sin 2 2Θ 13 GLoBES 2008 better 5 GeV 25 GeV 50 GeV Improvement by Silver 4000 km sin 2 2Θ 13 reach no NSI sin 2 2Θ 13 reach fit including Ε eΤ m Ε ΑΒ m reach Recent GLoBES results

Transcript of GLoBES - Max-Planck-Institut für Kernphysik€¦ · Patrick Huber1, Joachim Kopp2, Manfred...

Page 1: GLoBES - Max-Planck-Institut für Kernphysik€¦ · Patrick Huber1, Joachim Kopp2, Manfred Lindner3, Walter Winter4 GLoBES GeneralLongBaselineExperimentSimulator 1 Department of

Patrick Huber1, Joachim Kopp2, Manfred Lindner3, Walter Winter4

GLoBESGeneral Long Baseline Experiment Simulator

1 Department of Physics, Virginia Tech, Blacksburg, VA 24062, USA 2 Theoretical Physics Department, Fermilab, PO Box 500, Batavia, IL 60510, USA3 Max–Planck–Institut fur Kernphysik, Postfach 10 39 80, 69029 Heidelberg, Germany 4 Institut fur theoretische Physik und Astrophysik, Universitat Wurzburg, 97074 Wurzburg, Germany

GLoBES is a modular open-source software library for simulating short- and long-baseline neutrino oscillation experiments,and for studying the oscillation phenomenology.

What GLoBES can do:

• Compute 3-flavour oscillation probabilities in matter

• Simulate event spectra for reactor experiments, super-beams, beta beams, neutrino factories, . . .

• Perform sophisticated χ2 analyses

•Adapt to the user’s needs

What GLoBES cannot (yet) do:

•Replace a detector Monte Carlo simulation

• Simulate solar and atmospheric neutrinos

In GLoBES, experiments are described using AEDL, the AbstractExperiment Definition Language. AEDL files specify, for example

• Source types and spectra

•Matter density profiles

• Cross sections

•Detector properties: Efficiencies, resolutions, backgrounds, . . .

• Systematical uncertainties

A channel corresponds to oscillations from one flavour into another:

CrossSection

Flux

Energy−

function

Initial / finalflavor, polarity

Energy

Channel

Event rates

efficienciesdependent

Resolution

A rule consists of the combination of all signal and background chan-nels in an experimental data sample (e.g. νe appearance from νµ → νeoscillations in a superbeam, with contamination from νe→ νe).

Signal

Background

Channel 1

Channel 2

. . .

. . .

RuleSignal + Backgrounds

with systematics

∆χ2

Rule 2Rule 1 Rule 3

Experiment

Σ ∆χ2

. . .

Experiments can contain sev-eral rules, and several exper-iments can be handled si-multaneously.

Experiment definition in GLoBES

The oscillation engine is the heart of the soft-ware. Its main features are

• Full three-flavour treatment

•Arbitrary (non-adiabatic) matter profilesThe PREM (Preliminary Reference EarthModel) matter profile is hard-coded inGLoBES. The user can choose approxima-tions to this profile (e.g. constant density,mantle-core-mantle profile, etc.) or definecompletely new profiles.

•High numerical efficiencyGLoBES uses specifically designed numeri-cal algorithms to ensure an excellent perfor-mance, which is, for the specific problem ofneutrino oscillations, far superior to that of“black box” libraries.

• ExtensibilityThe user has the possibility to modify or com-pletely replace the GLoBES oscillation en-gine, e.g. to include sterile neutrinos, non-standard interactions, and other kinds of“new physics”.

Oscillations

GLoBES uses the χ2 method to extract physical information from thesimulated event spectra. Main features are

• Cuts and projections of the multi-dimensional χ2 manifold (“marginal-ization”)

• Inclusion of systematical uncertainties (fully customizable)

• Inclusion of correlations and degeneracies

• Inclusion of external priors (fully customizable)

• Supports setups with Multiple sources and multiple detectors

• Excellent numerical efficiency

The builtin χ2 functions of GLoBES have the Poissonian form

χ2(~λ,~a) =2∑exp′s

∑rules

∑bins

[N th(~λ,~a)−Nobs + Nobs log

Nobs

N th(~λ,~a)

]

+ χ2prior(

~λ) + χ2pull(~a),

where Nobs and N th are the “observed” and theoretically predicted eventrates, respectively. The vector ~λ contains the oscillation parameters, and~a are the systematical biases. χ2

prior(~λ) and χ2

pull(~a) implement external

input on these parameters. Note that GLoBES allows also for arbitrary,user-defined χ2 functions.

Example: θ13–δCP correlation and intrinsic degeneracy in a ν-fact.

10-4 10-3 10-2

sin2 2Θ13

0

50

100

150

200

∆C

P@D

egre

esD

Correlation between sin2 2Θ13 and ∆CP

1Σ2Σ3Σ

GLoBES 2007

10-4 10-3 10-2

sin2 2Θ13

0

5

10

15

20

Χ2

Projection onto sin2 2Θ13-axis

GLoBES 2007

χ2 analysis

The AEDL file: A simple neutrino factory

$version="3.0.0"

nuflux(#mu plus)<

@builtin = 1

@parent energy = 50

@stored muons = 10.66e+20

@time = 4

>

$target mass = 50

$bins = 20

$emin = 4

$emax = 50

$profiletype = 1

$baseline = 3000

energy(#ERES)< /*E res.*/

@type = 1

@sigma e = {0.15, 0, 0}>

cross(#CC)< /* Cross sections */

@cross file = "XCC.dat"

>

channel(#nu mu app)<

@channel = #mu plus:+:e:m:#CC:#ERES

>

channel(#nu mu bar disapp)<

@channel = #mu plus:-:m:m:#CC:#ERES

>

rule(#Nu Mu Appearance)<

@signal = 0.45@#nu mu app

@signalerror = 0.025 : 0.0001

@background = 5e-6@#nu mu bar disapp

@backgrounderror = 0.2 : 0.0001

@sys on function = "chiSpectrumTilt"

@sys off function = "chiNoSysSpectrum"

>

Application code snippet: Project χ2 onto θ13 axis

/* Define priors for θ12 and ∆m221 */

glbDefineParams(input errors, theta12*0.1, 0, 0, 0, sdm*0.1, 0);

glbSetDensityParams(input errors, 0.05, GLB ALL);

glbSetCentralValues(true values);

glbSetInputErrors(input errors);

/* Loop over log(sin2 2θ13) */

double theta13, x;

for (x=-4; x < -2.0+0.001; x+=2.0/50)

{theta13 = asin(sqrt(pow(10,x)))/2;

/* Choose starting value for δCP marginalization */

glbSetOscParams(test values, 200.0/2*(x+4)*M PI/180, GLB DELTA CP);

/* Compute χ2 and marginalize over all parameters except θ13 */

chi2 = glbChiTheta13(test values, NULL, GLB ALL);

}

GLoBES example

GLoBES website:

www.mpi-hd.mpg.de/∼globes/• Software download

•Many predefined AEDL files

•Extensive documentation

•Examples and tutorials

GLoBES publications:

CPC 167, 195 (2005), hep-ph/0407333CPC 177, 432 (2007), hep-ph/0701187

Contact the authors:

[email protected]

Fermilab

Evolution of sin2 2θ13 disc. reach

2005 2010 2015 2020 2025 2030Year

10-5

10-4

10-3

10-2

10-1

100

sin2

2Θ13

disc

over

yre

achH3ΣL

CHOOZ+Solar excluded

Branching pointConv. beams

Superbeams+Reactor exps

Superbeam upgrades

Ν-factories

MINOSCNGSD-CHOOZT2KNOîAReactor-IINOîA+FPD2ndGenPDExpNuFact

δCP sensitivity of different exp’s

10−5 10−4 10−3 10−2 10−1

True value of sin22θ13

0

0.2

0.4

0.6

0.8

1

CP

SPLT2HKWBBNFBB

GLoBES 2006

Frac

tion

ofδ

Impact of systematical errorsin a reactor experiment

101 102 103 104 105

Integrated Luminosity in Far Detector @GW×t×yearsD

0.002

0.005

0.01

0.02

0.05

0.1

sin2

2Θ13

sens

itivi

tyat

90%

C.L

.

Statistical Limit

5ye

ars

DC

10ye

ars

DC

5ye

ars

DC+

5ye

ars

TC

Σcorr = 2.8%Σuncorr = 0.6%Σcal = 0.5%

Σshape = 2.0%

Σbin-to-bin = 0.5%

Σbin-to-bin = 2.0%

GLoBES 2006

Sensitivity of ν-fact to standardand non-standard physics

10-5 10-4 10-3 10-2 10-1

10-5 10-4 10-3 10-2 10-1

sin2 2Θ13

H5ΣL

NH for ∆CPtrue = 3Π�2

H5ΣL

CPV for ∆CPtrue = 3Π�2

H5ΣL

sin2 2Θ13

H5ΣL

NH for ∆CPtrue = 3Π�2

H5ΣL

CPV for ∆CPtrue = 3Π�2

H5ΣL

ÈΕeem È H3ΣL

ÈΕeΤm È H3ΣL

ÈΕΜΤm È H3ΣL

ÈΕΤΤm È H3ΣL

ÈΕΑΒmÈ

sin2 2Θ13

GLoBES 2008

better

5 GeV

25 GeV

50 GeV

Improvement bySilver* � 4000 km

sin2

2Θ13

reac

hno

NSI

sin2

2Θ13

reac

hfi

tinc

ludi

ngΕ eΤm

ÈΕΑΒ

mÈre

ach

Recent GLoBES results