GaN Transistors for Efficient Power Conversion · 2016. 1. 10. · Reference: Texas Instruments,...

173
www.epc-co.com 1 EPC - The Leader in GaN Technology | September , 2014 | GaN Transistors for Efficient Power Conversion Alex Lidow and David Reusch Efficient Power Conversion

Transcript of GaN Transistors for Efficient Power Conversion · 2016. 1. 10. · Reference: Texas Instruments,...

  • www.epc-co.com 1 EPC - The Leader in GaN Technology | September , 2014 |

    GaN Transistors for Efficient Power Conversion

    Alex Lidow

    and David Reusch

    Efficient Power Conversion

  • www.epc-co.com 2 EPC - The Leader in GaN Technology | September , 2014 |

    Agenda

    • How GaN works and the state-of-the-art

    • Design Basics

    • Design Examples

    • What is in the future?

  • www.epc-co.com 3 EPC - The Leader in GaN Technology | September , 2014 |

    How GaN Works and the

    State-of-the-Art

  • www.epc-co.com 4 EPC - The Leader in GaN Technology | September , 2014 |

    Power Switch Wish List

    • Lower On-Resistance

    • Faster

    • Less Capacitance

    • Smaller

    • Lower Cost

  • www.epc-co.com 5 EPC - The Leader in GaN Technology | September , 2014 |

    Material Comparison

  • www.epc-co.com 6 EPC - The Leader in GaN Technology | September , 2014 |

    State of the Art

    Theoretical on-resistance vs. blocking voltage capability for silicon, silicon carbide, and gallium nitride.

  • www.epc-co.com 7 EPC - The Leader in GaN Technology | September , 2014 |

    GaN Switch

    AlGaN

    GaN

    V

  • www.epc-co.com 8 EPC - The Leader in GaN Technology | September , 2014 |

    GaN Switch

    AlGaN

    GaN

    V

    Now we have a switch That has high voltage blocking

    capability, low on resistance, and is

    very, very fast.

    Depletion Mode = Normally On

  • www.epc-co.com 9 EPC - The Leader in GaN Technology | September , 2014 |

    Device Construction Concept

    GaN

    Silicon

    Protection Dielectric

    Drain Source

    Gate AlGaN

  • www.epc-co.com 10 EPC - The Leader in GaN Technology | September , 2014 |

    What about “Normally Off” devices?

  • www.epc-co.com 11 EPC - The Leader in GaN Technology | September , 2014 |

    Cascode GaN Device

    Reference: “The Status of GaN Power Device Development at International Rectifier,” PCIM 2012

  • www.epc-co.com 12 EPC - The Leader in GaN Technology | September , 2014 |

    Cascode Penalty

    Gate

    Source

    Drain

    Cascode devices combine a depletion mode GaN transistor with a low voltage enhancement mode MOSFET

    GaN Improves

    Si Improves

  • www.epc-co.com 13 EPC - The Leader in GaN Technology | September , 2014 |

    Enhancement Mode

    A positive voltage from Gate-To-Source establishes an electron gas under the gate

  • www.epc-co.com 14 EPC - The Leader in GaN Technology | September , 2014 |

    A positive voltage from Gate-To-Drain also establishes an electron gas under the gate

    Body Diode?

  • www.epc-co.com 15 EPC - The Leader in GaN Technology | September , 2014 |

    Cross Section of an eGaN® FET

  • www.epc-co.com 16 EPC - The Leader in GaN Technology | September , 2014 |

    Electrical Characteristics

  • www.epc-co.com 17 EPC - The Leader in GaN Technology | September , 2014 |

    MOSFET

    + QRR

    eGaN FET

    + Zero QRR

    eGaN FET Reverse Conduction

  • www.epc-co.com 18 EPC - The Leader in GaN Technology | September , 2014 |

    On Resistance vs. Temperature

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7

    1.8

    1.9

    2

    2.1

    2.2

    -50 -25 0 25 50 75 100 125 150

    Nor

    mal

    ized

    On

    Res

    ista

    nce

    Junction Temperature (°C)

    GaN

    MOSFET B

    About 20%

    Difference At 125 °C

    eGaN FET

  • www.epc-co.com 19 EPC - The Leader in GaN Technology | September , 2014 |

    Threshold vs. Temperature

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    -50 -25 0 25 50 75 100 125 150

    Nor

    mal

    ized

    The

    rsho

    ld V

    olta

    ge

    Junction Temperature (°C)

    GaN

    MOSFET A

    eGaN FET

  • www.epc-co.com 20 EPC - The Leader in GaN Technology | September , 2014 |

    eGaN FET Transfer Characteristics

    EPC2001

  • www.epc-co.com 21 EPC - The Leader in GaN Technology | September , 2014 |

    MOSFET Transfer Characteristics

    Source: www.infineon.com

    Negative temperature coefficient region of silicon MOSFET

  • www.epc-co.com 22 EPC - The Leader in GaN Technology | September , 2014 |

    eGaN FET Safe Operating Area

    22

    1 ms

    10 ms

    100 ms

    DC

  • www.epc-co.com 23 EPC - The Leader in GaN Technology | September , 2014 |

    eGaN FET Safe Operating Area

    23

    1 ms

    10 ms

    100 ms

    DC

  • www.epc-co.com 24 EPC - The Leader in GaN Technology | September , 2014 |

    eGaN FET Capacitances

    GaN

    Silicon

    CGD

    CDS

    CGS

  • www.epc-co.com 25 EPC - The Leader in GaN Technology | September , 2014 |

    Total Gate Charge

    EPC2001 = 100 V, 5.6 mΩ typ.

    BSC057N08 = 80 V, 4.7 mΩ typ.

    BSC057N08NS

  • www.epc-co.com 26 EPC - The Leader in GaN Technology | September , 2014 |

    VIN=48 V VOUT=1 V IOUT=10 A fsw=300 kHz L=10 µH eGaN FET T/SR: 100 V EPC2001

    MOSFET T/SR: 80 V BSZ123N08NS3G

    10 V/ div 20 ns/ div

    80 V

    Si MOSFET

    10.3 mΩ 100 V

    eGaN FET

    5.6 mΩ

    Switching Comparison

  • www.epc-co.com 27 EPC - The Leader in GaN Technology | September , 2014 |

    0

    1

    2

    3

    4

    5

    6

    0 20 40 60 80 100 120

    RD

    S(o

    n) (m

    Ω)

    Drain-to-Source Voltage (V)

    GaN Improvements

    VGS=5 V

    Generation 2

    2011

    Generation 4

    2014

    2.3x

    2.6x

  • www.epc-co.com 28 EPC - The Leader in GaN Technology | September , 2014 |

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 50 100 150 200 250

    FO

    M=

    QG·R

    DS

    (on

    ) (p

    C·Ω

    )

    Drain-to-Source Voltage (V)

    Gate Charge FOM

    1.4x

    1.4x

    1.4x

    Generation 2

    2011

    Generation 4

    2014

    28

  • www.epc-co.com 29 EPC - The Leader in GaN Technology | September , 2014 |

    Gate Charge Figure of Merit

    0

    100

    200

    300

    400

    500

    600

    0 50 100 150 200 250

    FO

    M=

    QG·R

    DS

    (on

    ) (p

    C·Ω

    )

    Drain-to-Source Voltage (V)

    EPC Gen 4

    EPC Gen 2

    Vendor A

    Vendor B

    Vendor C

    Vendor D

    Vendor E

    9.9x

    1.3x

    4.2x

  • www.epc-co.com 30 EPC - The Leader in GaN Technology | September , 2014 |

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0 50 100 150 200 250

    FO

    MH

    S=

    (QG

    D+

    QG

    S2)·

    RD

    S(o

    n) (p

    C·Ω

    )

    Drain-to-Source Voltage (V)

    VDS=0.5·VDSS, IDS=20 A

    Hard Switching FOM

    1.4x

    2.4x

    2.4x

    Generation 2

    2011

    Generation 4

    2014

    30

  • www.epc-co.com 31 EPC - The Leader in GaN Technology | September , 2014 |

    1

    10

    100

    0 50 100 150 200 250

    FO

    MH

    S=

    (QG

    D+

    QG

    S2)·

    RD

    S(o

    n) (p

    C·Ω

    )

    Drain-to-Source Voltage (V)

    EPC Gen 4

    EPC Gen 2

    Vendor A

    Vendor B

    Vendor C

    Vendor D

    Vendor E

    GaN Transistors

    2014

    GaN Transistors

    2011

    Si MOSFETs

    2014

    VDS=0.5·VDSS, IDS=20 A

    Hard Switching FOM

    5x

    4.8x

    8x

    31

  • www.epc-co.com 32 EPC - The Leader in GaN Technology | September , 2014 |

    Miller Ratio

    VDS=0.5·VDSS, IDS=20 A

    0

    0.5

    1

    1.5

    2

    2.5

    0 50 100 150 200 250

    Mil

    ler

    Rati

    o=

    QG

    D/Q

    GS

    1

    Drain-to-Source Voltage (V)

    EPC Gen 4

    EPC Gen 2

    Vendor A

    Vendor B

    Vendor C

    Vendor D

    Vendor E

    2.5x

    2.5x

    2x

  • www.epc-co.com 33 EPC - The Leader in GaN Technology | September , 2014 |

    Soft-Switching Figure of Merit

    VDS=0.5·VDSS

    0

    500

    1000

    1500

    2000

    2500

    0 50 100 150 200 250

    FO

    MS

    S=

    (QG+

    QO

    SS)·

    RD

    S(o

    n) (p

    C·Ω

    )

    Drain-to-Source Voltage (V)

    EPC Gen 4

    EPC Gen 2

    Vendor A

    Vendor B

    3.2x

    2.5x 2.4x

  • www.epc-co.com 34 EPC - The Leader in GaN Technology | September , 2014 |

    eGaN FET Loss Mechanisms

    Like A MOSFET

    • I²R Conduction Loss

    • Capacitive Switching Losses

    • Gate Drive Losses

    • V×I Switching Loss

    Not Like A MOSFET

    • High Reverse Conduction Loss

    • No Body Diode Reverse Recovery Loss

    Can be much, much better than comparable silicon MOSFET

  • www.epc-co.com 35 EPC - The Leader in GaN Technology | September , 2014 |

    Package Wish List

    • Low parasitic resistance

    • Low parasitic inductance

    • Low thermal resistance

    • Small size

    • Low cost

  • www.epc-co.com 36 EPC - The Leader in GaN Technology | September , 2014 |

    Flip-Chip LGA Construction

    Printed Circuit Board

    Copper Trace

    eGaN FET Silicon Solder

    Bar

    Absolute minimum lead resistance and inductance!

  • www.epc-co.com 37 EPC - The Leader in GaN Technology | September , 2014 |

    Gate

    Substrate

    Source Contacts

    LGA Construction

    Drain Contacts Interleaving to reduce layout

    inductance

  • www.epc-co.com 38 EPC - The Leader in GaN Technology | September , 2014 |

    Size Comparison – 200 V

    D-PAK

    eGaN FET

    Drawn To Scale

    5.76 mm²

    65.3 mm²

  • www.epc-co.com 39 EPC - The Leader in GaN Technology | September , 2014 |

    Design Basics

  • www.epc-co.com 40 EPC - The Leader in GaN Technology | September , 2014 |

    Design Basics Agenda

    • Requirements for: – Gate Driver – Dead-time – Layout – Paralleling – Thermal – Measurement

  • www.epc-co.com 41 EPC - The Leader in GaN Technology | September , 2014 |

    Gate Drive

  • www.epc-co.com 42 EPC - The Leader in GaN Technology | September , 2014 |

    Low VGS(on) Overhead

    VGS(Max) = 6 V

  • www.epc-co.com 43 EPC - The Leader in GaN Technology | September , 2014 |

    VGS eGaN FET

    Minimizing Overshoot

    80 ns/ div 2 V/ div

  • www.epc-co.com 44 EPC - The Leader in GaN Technology | September , 2014 |

    eGaN FET Drive Requirements

    • Minimize gate loop inductance

    • Separate source and sink transistors allowing

    for separate drive paths

    To avoid overshoot:

    GS

    SGG

    C

    LLR

    )(4

    LS

    RG(INT)

    CGS

    LGR

    G(EXT)

    RG

    = RG(INT)

    + RG(EXT)

  • www.epc-co.com 45 EPC - The Leader in GaN Technology | September , 2014 |

    VGS eGaN FET VGS eGaN FET

    Minimizing Overshoot

    20 ns/ div 1 V/ div

  • www.epc-co.com 46 EPC - The Leader in GaN Technology | September , 2014 |

    eGaN FET Driver IC

    • Bootstrap clamp limits (HS) supply

    Reference: Texas Instruments, “Gate Drivers for Enhancement Mode GaN Power FETs 100 V Half-Bridge and

    Low-Side Drivers Enable Greater Efficiency, Power Density, and Simplicity,” SNVB001

    • Optimized drive impedance

    • Separate inputs allow accurate, dead-time management

  • www.epc-co.com 47 EPC - The Leader in GaN Technology | September , 2014 |

    Dead-time Requirements

  • www.epc-co.com 48 EPC - The Leader in GaN Technology | September , 2014 |

    TDead

    Cin

    T

    SR

    Reverse Conduction Period

    VGS_T

    V VSW

    t

    VGS_SR

    VSW

  • www.epc-co.com 49 EPC - The Leader in GaN Technology | September , 2014 |

    MOSFET

    eGaN FET

    eGaN FET Reverse Conduction

    + Zero QRR

    + QRR

  • www.epc-co.com 50 EPC - The Leader in GaN Technology | September , 2014 |

    TDead

    VGS_T

    V VSW

    t

    VGS_SR

    Cin

    T

    SR

    VSW

    Reverse Conduction Period

  • www.epc-co.com 51 EPC - The Leader in GaN Technology | September , 2014 |

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    -5 0 5 10 15

    Dead

    -tim

    e L

    oss (

    W)

    Dead-Time (ns)

    eGaN FET

    Si MOSFET

    w/o QRR

    Impact of Dead-time

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    -5 0 5 10 15

    Dead

    -tim

    e L

    oss (

    W)

    Dead-Time (ns)

    eGaN FET

    Si MOSFET

    w/o QRR

    eGaN FET w/Schottky

    VIN =12 V, VOUT =1.2 V, IOUT=20 A, and fsw =1 MHz

  • www.epc-co.com 52 EPC - The Leader in GaN Technology | September , 2014 |

    82

    83

    84

    85

    86

    87

    88

    89

    90

    2 4 6 8 10 12 14 16 18 20 22 24 26 28

    Eff

    icie

    ncy (

    %)

    Output Current (A)

    eGaN FET

    TDEAD ≈ 2.5 ns

    Si MOSFET

    TDEAD ≈ 2.5 ns

    w/o Schottky

    82

    83

    84

    85

    86

    87

    88

    89

    90

    2 4 6 8 10 12 14 16 18 20 22 24 26 28

    Eff

    icie

    ncy (

    %)

    Output Current (A)

    eGaN FET

    TDEAD ≈ 2.5 ns

    eGaN FET

    TDEAD ≈ 5 ns

    Si MOSFET

    TDEAD ≈ 2.5 ns

    w/o Schottky

    82

    83

    84

    85

    86

    87

    88

    89

    90

    2 4 6 8 10 12 14 16 18 20 22 24 26 28

    Eff

    icie

    ncy (

    %)

    Output Current (A)

    eGaN FET

    TDEAD ≈ 2.5 ns

    eGaN FET

    TDEAD ≈ 10 ns

    eGaN FET

    TDEAD ≈ 5 ns

    Si MOSFET

    TDEAD ≈ 2.5 ns

    w/o Schottky

    82

    83

    84

    85

    86

    87

    88

    89

    90

    2 4 6 8 10 12 14 16 18 20 22 24 26 28

    Eff

    icie

    ncy (

    %)

    Output Current (A)

    eGaN FET

    TDEAD ≈ 2.5 ns

    eGaN FET

    TDEAD ≈ 10 ns

    eGaN FET

    TDEAD ≈ 5 ns

    Si MOSFET

    TDEAD ≈ 2.5 ns

    w/o Schottky

    w/ Schottky

    VIN =12 V, VOUT =1.2 V, and fsw =1 MHz

    Impact of Dead-time

  • www.epc-co.com 53 EPC - The Leader in GaN Technology | September , 2014 |

    Fixed Dead-time Implementation

    G N D

    A

    B

    Y

    V D D

    U 1

    NC7SZ00L6X

    R 5

    47.0

    C 7

    1 0 0 p

    D 2

    SDM03U40

    R 4

    22.0

    C 6

    1 0 0 p

    D 1

    SDM03U40

    V C C

    2

    P 1

    Optional

    2

    P 2

    Optional

    G N D

    A

    B

    Y

    V D D

    U 4

    NC7SZ08L6X

    Used on all EPC90XX boards

    Single PWM input

    Inverter

    Buffer

    To LM5113 High side input To LM5113 Low side input

    RCD filters delay turn-on, but not turn-off

    Dead-time

  • www.epc-co.com 54 EPC - The Leader in GaN Technology | September , 2014 |

    Layout

  • www.epc-co.com 55 EPC - The Leader in GaN Technology | September , 2014 |

    tCF ∝ QGS2 tVR ∝ QGD

    Ideal Hard Switching

    VDS IDS

    VGS

    VIN

    IOFF

    𝐏𝐭𝐕𝐑 ≈𝐕𝐈𝐍 ∗ 𝐈𝐎𝐅𝐅 ∗ 𝐐𝐆𝐃

    𝟐 ∗ 𝐈𝐆 𝐏𝐭𝐂𝐅 ≈

    𝐕𝐈𝐍 ∗ 𝐈𝐎𝐅𝐅 ∗ 𝐐𝐆𝐒𝟐𝟐 ∗ 𝐈𝐆

    t

    VPL VTH

  • www.epc-co.com 56 EPC - The Leader in GaN Technology | September , 2014 |

    0

    10

    20

    30

    40

    50

    60

    70

    80

    100 V eGaN®FETGen2

    100 V eGaN®FETGen 4

    100 V MOSFET 1 100 V MOSFET 2 100 V MOSFET 3

    FO

    M =

    (Q

    GD+

    QG

    S2)*

    RD

    SO

    N (p

    C*Ω

    )

    QGD

    QGD

    QGD QGD QGD

    QGS2

    QGS2

    QGS2

    QGS2 QGS2

    100 V Device Comparison

    VDS=0.5*VDS, IDS= 10 A

    100 V

    eGaN FETs

    100 V MOSFETs

  • www.epc-co.com 57 EPC - The Leader in GaN Technology | September , 2014 |

    3

    3.25

    3.5

    3.75

    4

    4.25

    4.5

    4.75

    5

    5.25

    5.5

    0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3P

    ow

    er

    Lo

    ss(W

    )

    Parasitic Inductance (nH)

    Power Loss vs Parasitic Inductance

    Ls

    3

    3.25

    3.5

    3.75

    4

    4.25

    4.5

    4.75

    5

    5.25

    5.5

    0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3P

    ow

    er

    Lo

    ss(W

    )

    Parasitic Inductance (nH)

    Power Loss vs Parasitic Inductance

    Ls LLoop

    Cin

    T

    SR

    LS: Common Source

    Inductance VIN=12 V, VOUT=1.2 V,

    fsw=1 MHz, IOUT= 20 A LLoop: High Frequency

    Power Loop Inductance

    Converter Parasitics

  • www.epc-co.com 58 EPC - The Leader in GaN Technology | September , 2014 |

    LGA

    0

    0.5

    1

    1.5

    2

    2.5

    SO-8 LFPAK DirectFET LGA

    Po

    we

    r L

    os

    s (

    W)

    Device Loss Breakdown

    Package

    Die

    18%

    82%

    0

    0.5

    1

    1.5

    2

    2.5

    SO-8 LFPAK DirectFET LGA

    Po

    we

    r L

    os

    s (

    W)

    Device Loss Breakdown

    Package

    Die

    18%

    82%

    27%

    73%

    0

    0.5

    1

    1.5

    2

    2.5

    SO-8 LFPAK DirectFET LGA

    Po

    we

    r L

    os

    s (

    W)

    Device Loss Breakdown

    Package

    Die

    18%

    82%

    27%

    73%

    53%

    47%

    0

    0.5

    1

    1.5

    2

    2.5

    SO-8 LFPAK DirectFET LGA

    Po

    we

    r L

    os

    s (

    W)

    Device Loss Breakdown

    Package

    Die

    18%

    82%

    27%

    73%

    53%

    47%

    82%

    18%

    LGA eGaN FET SO-8 LFPAK DirectFET

    65

    70

    75

    80

    85

    90

    0.5 1 1.5 2 2.5 3 3.5

    Eff

    icie

    ncy (

    %)

    Switching Frequency (MHz)

    SO-8

    LFPAK

    DirectFET

    LGA

    VIN =12V

    VOUT =1.2V

    IOUT =20A

    fsw =1MHz

    Drain

    Source

    Gate

    Package Impact on Efficiency

  • www.epc-co.com 59 EPC - The Leader in GaN Technology | September , 2014 |

    83

    84

    85

    86

    87

    88

    89

    90

    91

    2 4 6 8 10 12 14 16 18 20 22 24

    Eff

    icie

    ncy (

    %)

    Output Current (A)

    LLoop≈

    1.0nH

    40 V eGaN FET 40 V MOSFET

    LLoop≈

    2.2nH

    83

    84

    85

    86

    87

    88

    89

    90

    91

    2 4 6 8 10 12 14 16 18 20 22 24

    Eff

    icie

    ncy (

    %)

    Output Current (A)

    LLoop≈

    1.0nH LLoop≈

    1.7nH

    40 V eGaN FET 40 V MOSFET

    LLoop≈

    2.2nH

    83

    84

    85

    86

    87

    88

    89

    90

    91

    2 4 6 8 10 12 14 16 18 20 22 24

    Eff

    icie

    ncy (

    %)

    Output Current (A)

    LLoop≈

    1.0nH LLoop≈

    1.7nH

    LLoop≈

    0.4nH

    40 V eGaN FET 40 V MOSFET

    LLoop≈

    2.2nH

    VIN=12 V, VOUT=1.2 V, fsw=1 MHz, L=300 nH

    Measured Efficiency

    Layout Impact on Efficiency

    Ref: D. Reusch, J. Strydom,

    “Understanding the Effect of PCB Layout

    on Circuit Performance in a High

    Frequency Gallium Nitride Based Point of

    Load Converter,” APEC 2013

    EPC Optimal Layout

  • www.epc-co.com 60 EPC - The Leader in GaN Technology | September , 2014 |

    LLoop≈1.0 nH LLoop ≈ 0.4 nH

    Layout Impact on Peak Voltage

    VIN=12 V VOUT=1.2 V IOUT=20 A

    fsw=1 MHz L=150 nH

    Switching Node Voltage

    70% Overshoot 30% Overshoot

  • www.epc-co.com 61 EPC - The Leader in GaN Technology | September , 2014 |

    Top View

    Conventional Lateral Layout

    Side View

    Shield Layer

  • www.epc-co.com 62 EPC - The Leader in GaN Technology | September , 2014 |

    Top View Side View

    Conventional Vertical Layout

    Bottom View

  • www.epc-co.com 63 EPC - The Leader in GaN Technology | September , 2014 |

    Side View

    Top View

    EPC Optimal Layout

    Top View

    Inner Layer 1

  • www.epc-co.com 64 EPC - The Leader in GaN Technology | September , 2014 |

    CIN

    Q1

    Q2

    U2

    Optimal Layout Implementation

    CIN

    Q1

    Q2

    U2

  • www.epc-co.com 65 EPC - The Leader in GaN Technology | September , 2014 |

    Layout Inductance Comparison

    Top View Test Cases Board Thickness (mils)

    Inner Layer Distance (mils)

    Design 1 31 4 Design 2 31 12 Design 3 62 4 Design 4 62 26

  • www.epc-co.com 66 EPC - The Leader in GaN Technology | September , 2014 |

    Power Loss Comparison

    VIN=12 V VOUT=1.2 V IOUT=20 A fsw=1 MHz L=300 nH

    T/SR: EPC2015 Driver LM5113

    3

    3.1

    3.2

    3.3

    3.4

    3.5

    3.6

    3.7

    3.8

    3.9

    4

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    Po

    wer

    Lo

    ss (

    W)

    High Frequency Loop Inductance (nH)

    Vertical Power

    Loop

    Lateral Power

    Loop

    Optimal Power

    Loop

  • www.epc-co.com 67 EPC - The Leader in GaN Technology | September , 2014 |

    Efficiency Comparison

    VIN=12 V VOUT=1.2 V fsw=1 MHz L=300 nH

    GaN T/SR: EPC2015 Driver LM5113

    83

    84

    85

    86

    87

    88

    89

    90

    91

    2 4 6 8 10 12 14 16 18 20 22 24 26

    Eff

    icie

    nc

    y (

    %)

    Output Current (A)

    40 V MOSFET

    Vertical Design 1

    Vertical

    Design 1

    Lateral

    Design 1

    Optimal

    Design 1

    40 V

    eGaN FET

  • www.epc-co.com 68 EPC - The Leader in GaN Technology | September , 2014 |

    Voltage Overshoot Comparison

    VIN=12 V VOUT=1.2 V IOUT=20 A fsw=1 MHz L=300 nH

    T/SR: EPC2015 Driver LM5113

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    Vo

    ltag

    e O

    vers

    ho

    ot

    (%)

    High Frequency Loop Inductance (nH)

    Vertical Power

    Loop

    Lateral Power

    Loop

    Optimal Power

    Loop

  • www.epc-co.com 69 EPC - The Leader in GaN Technology | September , 2014 |

    Switching Speed Comparison

    VIN=12 V VOUT=1.2 V IOUT=20 A fsw=1 MHz L=300 nH

    T/SR: EPC2015 Driver LM5113

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    eG

    aN

    FE

    T d

    V/d

    t (V

    /ns

    )

    High Frequency Loop Inductance (nH)

    Vertical Power

    Loop

    Lateral Power

    Loop

    Optimal Power

    Loop

  • www.epc-co.com 70 EPC - The Leader in GaN Technology | September , 2014 |

    eGaN FET vs. MOSFET

    VIN=12 V VOUT=1.2 V IOUT=20 A fsw=1 MHz L=300 nH eGaN FET

    T/SR: EPC2015 MOSFET T:BSZ097N04 SR:BSZ040N04

    Si MOSFET

    eGaN FET

    3 V/ div 20 ns/ div

  • www.epc-co.com 71 EPC - The Leader in GaN Technology | September , 2014 |

    0

    5

    10

    15

    20

    25

    30

    35

    40V eGaN®FETGen 2

    30V eGaN®FETGen 4

    40 V MOSFET 1 40 V MOSFET 2 25V MOSFET 1 25V MOSFET 2

    FO

    M=

    (QG

    D+

    QG

    S2)*

    RD

    SO

    N (p

    C*Ω

    )

    QGD

    QGD QGD

    QGD QGD

    QGS2

    QGS2

    QGS2

    QGS2 QGS2

    40 V MOSFETs

    25 V MOSFETs 40 V

    eGaN FET

    QGD

    QGS2

    30 V

    eGaN FET

    Lower Voltage Comparison

  • www.epc-co.com 72 EPC - The Leader in GaN Technology | September , 2014 |

    80

    81

    82

    83

    84

    85

    86

    87

    88

    89

    90

    91

    2 4 6 8 10 12 14 16 18 20 22

    Eff

    icie

    ncy (

    %)

    Output Current (A)

    40 V Discrete eGaN FET

    40 V Discrete MOSFET

    80

    81

    82

    83

    84

    85

    86

    87

    88

    89

    90

    91

    2 4 6 8 10 12 14 16 18 20 22

    Eff

    icie

    ncy (

    %)

    Output Current (A)

    40 V Discrete eGaN FET

    40 V Discrete MOSFET

    25 V Discrete MOSFET

    80

    81

    82

    83

    84

    85

    86

    87

    88

    89

    90

    91

    2 4 6 8 10 12 14 16 18 20 22

    Eff

    icie

    ncy (

    %)

    Output Current (A)

    40 V Discrete eGaN FET

    40 V Discrete MOSFET

    25 V Discrete MOSFET

    30 V Module MOSFET

    VIN=12 V VOUT=1.2 V fsw=1 MHz L=300 nH

    Lower Voltage Comparison

  • www.epc-co.com 73 EPC - The Leader in GaN Technology | September , 2014 |

    40 V Si MOSFET

    30 V Si MOSFET Module

    VIN=12 V VOUT=1.2 V IOUT=20 A fsw=1 MHz L=300 nH

    40 V

    eGaN FET

    3 V/Div 20 ns/ div

    Switch Node Voltage

    Switching Comparison

  • www.epc-co.com 74 EPC - The Leader in GaN Technology | September , 2014 |

    EPC9107 Demonstration Board

    VIN=12-28 V VOUT=3.3 V

    IOUT=15 A fsw=1 MHz

    2 x EPC2015

    5 V/ div

    Switching Node

    Voltage VIN=28 V, IOUT=15 A

    VIN=28 V ~3V overshoot @ 15 AOUT

    20ns

    ~1.1ns rise time @ 15 A

  • www.epc-co.com 75 EPC - The Leader in GaN Technology | September , 2014 |

    VIN=12 V VOUT=1.2 V

    86

    87

    88

    89

    90

    91

    92

    93

    94

    2 6 10 14 18 22 26 30 34 38 42 46 50

    Eff

    icie

    nc

    y (

    %)

    Output Current (A)

    EPC2015 +

    EPC2015

    EPC2015 +

    EPC2023

    fsw=0.5 MHz

    fsw=1 MHz

    30 V

    MOSFET

    Module

    Higher Current Devices

  • www.epc-co.com 76 EPC - The Leader in GaN Technology | September , 2014 |

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    2 6 10 14 18 22 26 30 34 38 42 46 50

    Po

    wer

    Lo

    ss

    (W

    )

    Output Current (A)

    EPC2015 +

    EPC2015

    EPC2015 +

    EPC2023

    fsw=0.5 MHz

    fsw=1 MHz

    30 V

    MOSFET

    Module

    VIN=12 V VOUT=1.2 V

    Higher Current Devices

  • www.epc-co.com 77 EPC - The Leader in GaN Technology | September , 2014 |

    Paralleling High-Speed eGaN FETs

  • www.epc-co.com 78 EPC - The Leader in GaN Technology | September , 2014 |

    Parallel Power Devices

    ?

  • www.epc-co.com 79 EPC - The Leader in GaN Technology | September , 2014 |

    QGS2 QGD

    VDS

    t

    VTH

    Unbalanced Loop Inductance

    VGS1

    VGS2

    IDS1

    IDS2

    IDS

    VGS

    VDS1

    VDS2

  • www.epc-co.com 80 EPC - The Leader in GaN Technology | September , 2014 |

    Loop Inductance Impact

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0 0.2 0.4 0.6 0.8 1 1.2

    Cu

    rre

    nt

    Dif

    fere

    nc

    e (

    %)

    Loop Inductance Difference (nH)

    LS=0.10nH

    LS=0.15nH

    LS=0.20nH

    LS=0.25nH

    LS=0.50nH

    VIN=48 V IOUT=25 A eGaN FET T/SR: 100 V EPC2001

  • www.epc-co.com 81 EPC - The Leader in GaN Technology | September , 2014 |

    VIN=48 V VOUT=12 V IOUT=30 A fsw=300 kHz L=3.3 µH GaN FET T/SR: 100 V EPC2001

    10 V/ div 5 ns/ div

    SR1 SR4

    Single Loop Optimal Layout

    T1-4 SR1 SR4

  • www.epc-co.com 82 EPC - The Leader in GaN Technology | September , 2014 |

    VIN=48 V VOUT=12 V IOUT=30 A fsw=300 kHz L=3.3 µH GaN FET T/SR: 100 V EPC2001

    10 V/ div 5 ns/ div

    SR1

    SR4

    T1

    T2 T4

    T3

    SR2 SR4

    SR3 SR1 SR4

    Parallel Loop Optimal Layout

  • www.epc-co.com 83 EPC - The Leader in GaN Technology | September , 2014 |

    94.5

    95

    95.5

    96

    96.5

    97

    2 6 10 14 18 22 26 30 34 38 42

    Eff

    icie

    ncy (

    %)

    Output Current (A)

    4 ǁ eGaN FETs

    Proposed Four Distributed

    Power Loops Design

    Conventional Single

    Power Loop Design

    Parallel Layout Performance

    VIN=48 V VOUT=12 V fsw=300 kHz L=3.3 µH GaN FET T/SR: 4x100 V EPC2001

    4 Layer 2 oz PCB

  • www.epc-co.com 84 EPC - The Leader in GaN Technology | September , 2014 |

    T1-4 SR1-4

    Parallel Layout Implementation

    T1

    T2 T4

    T3

    SR1

    SR2 SR4

    SR3

    VIN=48 V VOUT=12 V IOUT=30 A fsw=300 kHz L=3.3 µH GaN FET T/SR: 100 V EPC2001

  • www.epc-co.com 85 EPC - The Leader in GaN Technology | September , 2014 |

    30

    40

    50

    60

    70

    80

    90

    100

    110

    2 6 10 14 18 22 26 30 34 38

    Maxim

    um

    Tem

    pera

    ture

    (°C

    )

    Output Current (A)

    Proposed Four Distributed

    Power Loops Design

    Conventional Single

    Power Loop Design

    Parallel Layout Performance

    VIN=48 V VOUT=12 V fsw=300 kHz L=3.3 µH GaN FET T/SR: 100 V EPC2001

    Fan Speed 200 LFM 4 Layer 2 oz PCB

  • www.epc-co.com 86 EPC - The Leader in GaN Technology | September , 2014 |

    10 V/ div 5 ns/ div

    2x eGaN FET

    4x eGaN FET

    1x eGaN FET

    Parallel eGaN FET Swithcing

    VIN=48 V VOUT=12 V IOUT=30 A/ number of devices fsw=300 kHz GaN FET T/SR: 100 V EPC2001

  • www.epc-co.com 87 EPC - The Leader in GaN Technology | September , 2014 |

    92

    92.5

    93

    93.5

    94

    94.5

    95

    95.5

    96

    96.5

    97

    97.5

    98

    98.5

    0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

    Eff

    icie

    nc

    y (

    %)

    Output Current (A)

    300kHz

    EPC2001 4 ǁ EPC2001

    245 kHz Si

    Isolated IBC

    150 kHz Si

    Isolated IBC

    14 W

    Parallel Buck in IBC Applications

    VIN=48 V VOUT=12 V Fully Regulated IBC

    92

    92.5

    93

    93.5

    94

    94.5

    95

    95.5

    96

    96.5

    97

    97.5

    98

    98.5

    0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

    Eff

    icie

    nc

    y (

    %)

    Output Current (A)

    300kHz

    EPC2001 4 ǁ EPC2001

    300kHz EPC2001 + EPC2021

    245 kHz Si

    Isolated IBC

    150 kHz Si

    Isolated IBC

    14 W

  • www.epc-co.com 88 EPC - The Leader in GaN Technology | September , 2014 |

    Higher Current Devices

    VIN=48 V VOUT=12 V

    92

    93

    94

    95

    96

    97

    98

    0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

    Eff

    icie

    nc

    y (

    %)

    Output Current (A)

    fsw=300 kHz

    fsw=500 kHz

    80V MOSFET

    80 V EPC

    Gen 4

    100 V EPC

    Gen 2

  • www.epc-co.com 89 EPC - The Leader in GaN Technology | September , 2014 |

    Higher Current Devices

    VIN=48 V VOUT=12 V VIN=48 V VOUT=12 V

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

    Po

    wer

    Lo

    ss

    (W

    )

    Output Current (A)

    EPC2001

    +

    EPC2001

    EPC2001

    +

    EPC2021

    fsw=300 kHz

    fsw=500 kHz

    80V MOSFET

  • www.epc-co.com 90 EPC - The Leader in GaN Technology | September , 2014 |

    Fan Speed=200 LFM fsw=300 kHz VIN=48 V VOUT=12 V IOUT=30 A

    Improved Thermal Performance

  • www.epc-co.com 91 EPC - The Leader in GaN Technology | September , 2014 |

    Thermal

  • www.epc-co.com 92 EPC - The Leader in GaN Technology | September , 2014 |

    RƟCA

    Thermal Management

    Silicon Substrate

    Active GaN Device Region RƟJC

    RƟBA

    RƟJB

    TJ

  • www.epc-co.com 93 EPC - The Leader in GaN Technology | September , 2014 |

    Packaging Advancements

    Single Sided

    Cooling

    RƟJB ↓

  • www.epc-co.com 94 EPC - The Leader in GaN Technology | September , 2014 |

    Package Comparisons

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 5 10 15 20 25 30 35

    JB

    , Th

    erm

    al

    Resis

    tan

    ce (

    °C/W

    )

    Device Area (mm2)

    RθJB_Si RθJB_GaN

  • www.epc-co.com 95 EPC - The Leader in GaN Technology | September , 2014 |

    Package Comparisons

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 5 10 15 20 25 30 35

    JC

    , T

    herm

    al

    Re

    sis

    tan

    ce (

    °C/W

    )

    Device Area (mm2)

    RθJC_Si RθJC_GaN

  • www.epc-co.com 96 EPC - The Leader in GaN Technology | September , 2014 |

    80

    81

    82

    83

    84

    85

    86

    87

    88

    89

    90

    91

    2 4 6 8 10 12 14 16 18 20 22

    Eff

    icie

    ncy (

    %)

    Output Current (A)

    40 V eGaN FET

    40 V MOSFET

    Performance Comparison

    VIN=12 V, VOUT=1.2 V, fsw=1 MHz, L=300 nH

  • www.epc-co.com 97 EPC - The Leader in GaN Technology | September , 2014 |

    VIN=12 V, VOUT=1.2 V, IOUT=20 A, fsw=1 MHz, L=300 nH

    Thermal Comparison

    GaN is 38% Smaller 13% Cooler

  • www.epc-co.com 98 EPC - The Leader in GaN Technology | September , 2014 |

    VIN=12 V, VOUT=1.2 V, fsw=1 MHz, L=300 nH

    Thermal Comparison

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    120

    130

    140

    150

    2 4 6 8 10 12 14 16 18 20 22 24 26

    Ma

    xim

    um

    Te

    mp

    era

    ture

    (C

    )

    Output Current (A)

    eGaN FET

    MOSFET

    0 LFM

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    120

    130

    140

    150

    2 4 6 8 10 12 14 16 18 20 22 24 26

    Ma

    xim

    um

    Te

    mp

    era

    ture

    (C

    )

    Output Current (A)

    eGaN FET

    MOSFET

    0 LFM 200 LFM

  • www.epc-co.com 99 EPC - The Leader in GaN Technology | September , 2014 |

    VIN=12 V VOUT=1.2 V

    Generation 4 Thermal Performance

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    120

    130

    140

    150

    0 4 8 12 16 20 24 28 32 36 40 44

    Ma

    xim

    um

    Te

    mp

    era

    ture

    (°C

    )

    Output Current (A)

    400 LFM

    fsw=1 MHz

    200 LFM

    Natural

    Convection

  • www.epc-co.com 100 EPC - The Leader in GaN Technology | September , 2014 |

    Measurement

  • www.epc-co.com 101 EPC - The Leader in GaN Technology | September , 2014 |

    Voltage Measurement

    Place probe tip in large via or exposed pad

    Minimize loop

    Do not use probe ground lead

    Do not let probe

    tip touch the

    low-side die!

    Ground probe against TP3 OR use wire ground

  • www.epc-co.com 102 EPC - The Leader in GaN Technology | September , 2014 |

    Probe Options

    Yokogawa Probe Hand-made Probe Adapter

    Tektronix PCB Jack

    http://www.google.com/url?sa=i&source=images&cd=&cad=rja&docid=GxR4oJqSXMWk4M&tbnid=2KVfX9IRNlJiuM:&ved=0CAgQjRwwAA&url=http://www.cliftonlaboratories.com/july_2007.htm&ei=FknfUYzBBo2ujAKrmoCgAQ&psig=AFQjCNGu7o7kD8KZOEeXg1-zqyB2cmeBzg&ust=1373674134182653http://www.google.com/url?sa=i&source=images&cd=&cad=rja&docid=CkJfEDDyObddFM&tbnid=6OVVWJeJtOef0M:&ved=0CAgQjRwwADixAg&url=http://tmi.yokogawa.com/us/products/oscilloscopes/voltage-probes/pba2500-701913-25-ghz-active-probe/&ei=nknfUZWrMMmsiQLBqIH4Ag&psig=AFQjCNFExzkwIwq3rXy3Ifuk3UTpcvnaxg&ust=1373674270848600

  • www.epc-co.com 103 EPC - The Leader in GaN Technology | September , 2014 |

    1GHz, 100:1, 1pF / 5k probe

    4GHz, 40Gsa/s oscilloscope

    500MHz, 10:1, 10pF / 10M probes

    1GHz, 4Gsa/s oscilloscope

    High Speed Measurement

  • www.epc-co.com 104 EPC - The Leader in GaN Technology | September , 2014 |

    • eGaN FETs raise the bar for power conversion performance

    • Lower resistance per die area

    • Better FOM’s

    • Better Packaging

    • Improved PCB Layout Techniques

    • Superior In-Circuit Performance

    • Can parallel devices for higher current

    • Avoid gate overshoot and long dead-times

    Design Basics Summary

  • www.epc-co.com 105 EPC - The Leader in GaN Technology | September , 2014 |

    Design Examples

  • www.epc-co.com 106 EPC - The Leader in GaN Technology | September , 2014 |

    Design Example Agenda

    • Resonant Bus Converter

    • Envelope Tracking

    • Wireless Power

    • LiDAR

    • Class-D Audio

  • www.epc-co.com 107 EPC - The Leader in GaN Technology | September , 2014 |

    Resonant Bus Converter

  • www.epc-co.com 108 EPC - The Leader in GaN Technology | September , 2014 |

    Figure of Merit (FOM) History

    •In 1989, Baliga derived a switching FOM

    •𝐁𝐇𝐅𝐅𝐎𝐌 =𝟏

    𝐑𝐎𝐍,𝐒𝐏∙𝐂𝐈𝐍,𝐒𝐏

    •In 1995, Kim et al proposed a new FOM

    •𝐍𝐇𝐅𝐅𝐎𝐌 =𝟏

    𝐑𝐎𝐍,𝐒𝐏∙𝐂𝐎𝐒𝐒,𝐒𝐏

    •In 2004, Huang proposed a new FOM

    •𝐇𝐃𝐅𝐎𝐌 = 𝐑𝐎𝐍,𝐒𝐏 ∙ 𝐐𝐆𝐃,𝐒𝐏

  • www.epc-co.com 109 EPC - The Leader in GaN Technology | September , 2014 |

    LM

    Resonant Bus Converter

    Ref: Y. Ren, M. Xu, J. Sun, and F. C. Lee, “A family of high power density unregulated bus converters,” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1045–1054, Sep. 2005.

    High Frequency DC/DC Transformer

    4:1

    48V

    VIN

    +

    -

    Q1

    Q2 Q3

    Q4

    CO

    S2

    S1

    LK2

    LK1

    IPRIM

    ILK1

    VGS(Q2,Q4) VGS(S2)

    VGS(Q1,Q3) VGS(S1)

    VDS(Q1)

    t0 t1

    VIN

    t2 t3

    I Lk1

    D

    tZVS

    ILM

    IPRIM

  • www.epc-co.com 110 EPC - The Leader in GaN Technology | September , 2014 |

    Gate Charge Figure of Merit

    0

    100

    200

    300

    400

    500

    600

    0 50 100 150 200 250

    FO

    M=

    QG·R

    DS

    (on

    ) (p

    C·Ω

    )

    Drain-to-Source Voltage (V)

    EPC Gen 4

    EPC Gen 2

    Vendor A

    Vendor B

    Vendor C

    Vendor D

    Vendor E

    9.9x

    1.3x

    4.2x

  • www.epc-co.com 111 EPC - The Leader in GaN Technology | September , 2014 |

    𝑡𝑍𝑉𝑆

    I

    𝑡

    Output Charge

    sDRG fVQ =PG

    V

    𝑡

    𝑉𝐷𝑆 𝑡𝑍𝑉𝑆

    𝑉𝐺𝑆

    QOSS

    𝐼𝑆𝑊

    tZVS IRMS PCON

    𝐷 ∗ 𝑇𝑆

  • www.epc-co.com 112 EPC - The Leader in GaN Technology | September , 2014 |

    VDS=0.5·VDSS

    Output Charge FOM

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    0 50 100 150 200 250

    FO

    M=

    QO

    SS·R

    DS

    (on

    ) (p

    C·Ω

    )

    Drain-to-Source Voltage (V)

    EPC Gen 4

    EPC Gen 2

    Vendor A

    Vendor B

    2.6x

    1.9x 1.7x

  • www.epc-co.com 113 EPC - The Leader in GaN Technology | September , 2014 |

    0

    100

    200

    300

    400

    500

    600

    700

    800

    0 50 100 150 200 250

    FO

    M=

    QG\Q

    OS

    S·R

    DS

    (on

    ) (p

    C·Ω

    )

    Drain-to-Source Voltage (V)

    Soft-Switching FOM

    QOSS

    QG

    𝐅𝐎𝐌𝐒𝐒 = (𝐐𝐎𝐒𝐒+𝐐𝐆) ∙ 𝐑𝐃𝐒(𝐨𝐧)

    8x

    3.5x 1.2x

  • www.epc-co.com 114 EPC - The Leader in GaN Technology | September , 2014 |

    Soft-Switching FOM

    𝐅𝐎𝐌𝐒𝐒 = (𝐐𝐎𝐒𝐒+𝐐𝐆) ∙ 𝐑𝐃𝐒(𝐨𝐧)

    0

    500

    1000

    1500

    2000

    2500

    0 50 100 150 200 250

    FO

    MS

    S=

    (QG+

    QO

    SS)·

    RD

    S(o

    n) (p

    C·Ω

    )

    Drain-to-Source Voltage (V)

    EPC Gen 4

    EPC Gen 2

    Vendor A

    Vendor B

    3.2x

    2.5x 2.4x

  • www.epc-co.com 115 EPC - The Leader in GaN Technology | September , 2014 |

    Transformer

    Secondary

    Devices

    Primary

    Devices

    Input

    Capacitors

    Resonant

    Capacitors

    MOSFET vs. eGaN®FET

    eGaN FET vs. MOSFET

  • www.epc-co.com 116 EPC - The Leader in GaN Technology | September , 2014 |

    MOSFET VGS MOSFET VDS

    eGaN FET VDS

    eGaN FET VGS

    fsw = 1.2 MHz, VIN = 48 V, and VOUT ≈ 12 V

    TZVS = 87 ns

    TZVS = 42 ns

    ZVS Switching Comparison

  • www.epc-co.com 117 EPC - The Leader in GaN Technology | September , 2014 |

    MOSFET VGS

    MOSFET VDS

    DMOSFET = 34% eGaN FET VDS

    eGaN FET VGS

    DeGaN FET = 42%

    Duty Cycle Comparison

    fsw = 1.2 MHz, VIN = 48 V, and VOUT ≈ 12 V

  • www.epc-co.com 118 EPC - The Leader in GaN Technology | September , 2014 |

    90

    91

    92

    93

    94

    95

    96

    97

    98

    0 5 10 15 20 25 30 35 40

    Eff

    icie

    nc

    y (

    %)

    Output Current (A)

    1.2 MHz MOSFET

    1.2 MHz eGaN FET

    10 W 12 W

    14 W

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    22

    24

    0 5 10 15 20 25 30 35 40

    Po

    wer

    Lo

    ss

    (W

    )

    Output Current (A)

    1.2 MHz eGaN FET

    1.2 MHz MOSFET

    5 A

    Efficiency Comparison

    fsw = 1.2 MHz, VIN = 48 V, and VOUT ≈ 12 V

  • www.epc-co.com 119 EPC - The Leader in GaN Technology | September , 2014 |

    LK2

    **

    *

    VIN-

    VIN+ VOUT+

    LIN

    CIN

    LK1

    4:1

    LOUT

    COUTCRES

    Q1

    Q2 Q4

    Q3

    VOUT-

    Q6,Q7

    Q5,Q8

    2 SR

    2 SR

    EPC9105 Demonstration Board 36 - 60 VIN, 12 VOUT, 350 W, 1.2 MHz

    EPC9105 Bus Converter

  • www.epc-co.com 120 EPC - The Leader in GaN Technology | September , 2014 |

    Envelope Tracking

  • www.epc-co.com 121 EPC - The Leader in GaN Technology | September , 2014 |

    Same average

    Reference: Nujira.com website

    0

    2

    4

    6

    8

    10

    12

    2012 2013 2014 2015 2016 2017

    Ex

    ab

    yte

    s p

    er

    Mo

    nth

    Source: Cisco VNI Mobile Data Traffic Forecast

    66% Compound annual growth

    rate (CAGR)

    Why Envelope Tracking?

  • www.epc-co.com 122 EPC - The Leader in GaN Technology | September , 2014 |

    Output Power (dBm)

    Average

    Power

    Output

    Probability

    Envelope

    Tracking

    Fixed

    supply

    Peak Power

    PAPR = 0dB

    Peak efficiency

    up to 65%

    Envelope Tracking

  • www.epc-co.com 123 EPC - The Leader in GaN Technology | September , 2014 |

    Gen 3 FOM

    EPC2014

    EPC8004

    eGaN FET

    EPC8000 Series

  • www.epc-co.com 124 EPC - The Leader in GaN Technology | September , 2014 |

    Hard Switching FOM

  • www.epc-co.com 125 EPC - The Leader in GaN Technology | September , 2014 |

    HB Layout – Top Layer

    To BUS caps

    Switch

    node

    Ground Bottom Gate

    Top Gate Ga

    te

    Drain

    Source

    Sub

    S

    Gate

    Drain Sub

    S

    Re

    turn

    R

    etu

    rn

    Source

    Gate

    Current

    orthogonal

    to drain

    current

    Vias to next layer

    Supply

    Vias to next layer

  • www.epc-co.com 126 EPC - The Leader in GaN Technology | September , 2014 |

    Optimum gate

    loop return

    Optimum gate

    loop return

    To gate

    drive

    To gate

    drive

    Optimum power

    loop return

    Gate

    Drain

    Source

    Sub

    S

    Gate

    Drain Sub

    S

    Re

    turn

    R

    etu

    rn

    Source

    HB Layout – Inner Layer 1

  • www.epc-co.com 127 EPC - The Leader in GaN Technology | September , 2014 |

    Envelope Tracking Prototype Board

    EPC8005

    Bus caps

    SO-8 footprint

    EPC8005 LM5113

  • www.epc-co.com 128 EPC - The Leader in GaN Technology | September , 2014 |

    VIN=42 V VOUT=20 V

    65%

    70%

    75%

    80%

    85%

    90%

    95%

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    Eff

    icie

    nc

    y

    Output Current (A)

    5 MHz

    10 MHz EPC8005

    High Frequency Efficiency

  • www.epc-co.com 129 EPC - The Leader in GaN Technology | September , 2014 |

    EPC8005

    42VIN, 10 MHz Losses

    Conduction

    Switching

    COSS

    Unaccounted losses

  • www.epc-co.com 130 EPC - The Leader in GaN Technology | September , 2014 |

    10 MHz switching, no load, large dead-time

    No-Load Switching

    Initially slow

    rising edge

    Actual voltage commutation

    slopes are different, even

    though currents are the same

    10V/div, 100mA/div, 10ns/div

    Expected commutation based on

    eGaN FET COSS

  • www.epc-co.com 131 EPC - The Leader in GaN Technology | September , 2014 |

    Le

    ve

    l S

    hift

    VDD VDD

    IC c

    ap

    acita

    nce

    Bo

    ots

    tra

    p d

    iod

    e

    Reverse

    recovery

    charge

    Switch-node

    rising edge

    LM5113 half-bridge

    driver

    Parasitic Losses

  • www.epc-co.com 132 EPC - The Leader in GaN Technology | September , 2014 |

    Bootstrap QRR

    10 MHz switching, no load, large dead-time 10V/div, 100mA/div, 10ns/div

    Switch-node voltage

    Actual commutation based on total

    COSS – including IC capacitance

    Loss Breakdown

  • www.epc-co.com 133 EPC - The Leader in GaN Technology | September , 2014 |

    EPC8005

    Conduction

    Switching

    COSS

    Unaccounted losses

    42VIN, 10 MHz Losses

  • www.epc-co.com 134 EPC - The Leader in GaN Technology | September , 2014 |

    Calculated efficiency improvement

    eGaN FET Limited Efficiency

  • www.epc-co.com 135 EPC - The Leader in GaN Technology | September , 2014 |

    Wireless Power

  • www.epc-co.com 136 EPC - The Leader in GaN Technology | September , 2014 |

    Wireless Power

    • The global wireless charging market is estimated to grow to $10B by

    2018, a CAGR of 42.6%

    • eGaN FETs enable higher efficiency and operation at safer

    frequencies

  • www.epc-co.com 137 EPC - The Leader in GaN Technology | September , 2014 |

    Experimental System Setup

    eGaN FETs RF connection

    Device Board

    Source Coil Source Board

    Coil Feedback

    Device Coil

    25m

    m

    RF connection

    50mm

  • www.epc-co.com 138 EPC - The Leader in GaN Technology | September , 2014 |

    Coil Simplification

    Lsrc Ldev

    Cdevs

    RDCload

    Cout

    Ldevs

    Cdevp Zload

    Coil Set

    Simplified representation of coil-set for easy comparison between topologies

  • www.epc-co.com 139 EPC - The Leader in GaN Technology | September , 2014 |

    Single Ended Class-E

    VDD

    Ideal Waveforms

    VDS ID

    time

    3.56 x VDD

    V / I

    50%

    Q1

    +

    Csh

    Cs Le LRFck

    Zload

    • Switch voltage rating ≥ 3.56·Supply (VDD).

    • COSS “absorbed” into matching network.

    • Susceptible to load variation - high FET losses.

    • Coil voltage ≈ 0.707·VDD [VRMS].

  • www.epc-co.com 140 EPC - The Leader in GaN Technology | September , 2014 |

    Class-E Device Comparison

    FoMWPT [nC·mΩ]

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    EPC

    20

    12

    MO

    SFET

    SE-CE

    SE-CE

    GDGDS(on)WPT QQRFOM

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    0 100 200 300 400 500 600

    Devic

    e P

    ow

    er

    [mW

    ]

    RDS(on) [mΩ]

    MOSFET

    eGaN FET

    Gate Power

    dominant

    Conduction Loss

    dominant

    Lowest Power Dissipation

  • www.epc-co.com 141 EPC - The Leader in GaN Technology | September , 2014 |

    Class-E Analysis Comparison

    2

    6

    10

    14

    18

    80

    85

    90

    95

    100

    0 10 20 30 40 50

    Ou

    tpu

    t P

    ow

    er

    [W]

    Effi

    cie

    ncy

    [%

    ]

    DC Load Resistance [Ω]

    eGaN FET Eff.

    MOSFET Eff.

    eGaN FET Pout

    MOSFET Pout

    EPC2012

    MOSFET 95.6%

    98.5 %

    85.2%

    94.4%

    Peak Power Device losses = 279 mW No Heat-Sink Required

  • www.epc-co.com 142 EPC - The Leader in GaN Technology | September , 2014 |

    ZVS Class-D

    + VDD

    Cs Q2

    Q1 Zload

    LZVS

    CZVS

    V / I

    VDS ID

    time

    VDD

    50%

    Ideal Waveforms ZVS tank

    • Switch voltage rating = Supply (VDD).

    • COSS voltage is transitioned by the ZVS tank .

    • ZVS tank circuit does not carry load current.

    • Coil voltage = ½·VDD [VRMS].

  • www.epc-co.com 143 EPC - The Leader in GaN Technology | September , 2014 |

    Device Comparison

    020406080

    100120140160180

    EP

    C8009

    EP

    C2007

    MO

    SF

    ET

    2

    MO

    SF

    ET

    3

    ZVS-CD

    FoM

    WP

    T [

    nC

    ·mΩ

    ]

    VG

    S =

    10

    V

    GDGDS(on)WPT QQRFOM

    ZVS-CD

  • www.epc-co.com 144 EPC - The Leader in GaN Technology | September , 2014 |

    64

    68

    72

    76

    80

    84

    10 15 20 25 30 35 40 45 50

    Eff

    icie

    ncy [

    %]

    DC Load Resistance [Ω]

    64

    68

    72

    76

    80

    84

    10 15 20 25 30 35 40 45 50

    Eff

    icie

    ncy [

    %]

    DC Load Resistance [Ω]

    Load Variation Results

    η EPC8009 ZVS-CD

    η MOSFET 2 ZVS-CD

    η MOSFET 3 ZVS-CD η EPC2012 SE-CE

    η MOSFET 1 SE-CE

    Coil becomes Inductive

    Coil becomes Capacitive

    Fixed Supply Voltage

  • www.epc-co.com 145 EPC - The Leader in GaN Technology | September , 2014 |

    LiDAR

  • www.epc-co.com 146 EPC - The Leader in GaN Technology | September , 2014 |

    LIght Detection And Ranging

    • Autonomous vehicles • Video games • Geology • Agriculture

    http://www.usgs.gov/blogs/features/usgs_top_story/hurricane-season-is-here/

  • www.epc-co.com 147 EPC - The Leader in GaN Technology | September , 2014 |

    LiDAR

    Courtesy of OmniPulse

  • www.epc-co.com 148 EPC - The Leader in GaN Technology | September , 2014 |

    Class-D Audio

  • www.epc-co.com 149 EPC - The Leader in GaN Technology | September , 2014 |

    Why eGaN FETs in Class-D Audio

    • Low RDS(on) & Low COSS + High Efficiency

    + High Damping Factor = Low open loop output Impedance = Low T-IMD

    • Fast Switching & No Reverse Recovery (Qrr) + High output linearity, Low

    Cross-over Distortion

    = Low THD

  • www.epc-co.com 150 EPC - The Leader in GaN Technology | September , 2014 |

    eGaN FET Class-D Audio Amplifier

    RCA Inputs

    XLR Input

    XLR Input

    ±30 V supply

    Speaker Connections

    • Bridge-Tied-Load (BTL) • EPC2016 with LM5113

    LF1

    CF1Q2

    Q1 LF2

    Q4

    Q3

    CF2

    eGaN FET Power Stage:

    250 W into 4 Ω at 440 kHz without a heatsink

  • www.epc-co.com 151 EPC - The Leader in GaN Technology | September , 2014 |

    A Look Into the Future

  • www.epc-co.com 152 EPC - The Leader in GaN Technology | September , 2014 |

    Breaking Down the Barriers

    • Does it enable significant new capabilities?

    • Is it easy to use?

    • Is it VERY cost effective to the user?

    • Is it reliable?

  • www.epc-co.com 153 EPC - The Leader in GaN Technology | September , 2014 |

    • Does it enable significant new capabilities?

    • Is it easy to use?

    • Is it VERY cost effective to the user?

    • Is it reliable?

    Breaking Down the Barriers

  • www.epc-co.com 154 EPC - The Leader in GaN Technology | September , 2014 |

    Faster Transistors

    eGaN FETs are Faster

    Faster transistors enable the systems to get

    smaller, more efficient, and lower cost.

  • www.epc-co.com 155 EPC - The Leader in GaN Technology | September , 2014 |

    Key Applications

    • Wireless Power Transmission

    • RF DC-DC “Envelope Tracking”

    • LiDAR

    • RadHard

    • Network and Server Power Supplies

    • Point of Load Modules

    • Energy Efficient Lighting

    • Class D Audio

    • Various Medical

  • www.epc-co.com 156 EPC - The Leader in GaN Technology | September , 2014 |

    Product Revenue Forecast 2018

    NRE 1%

    Lighting 1%

    RadHard 1% MRI 2%

    Audio 2%

    DC-DC 9% LiDAR 6%

    WiPo 18%

    Envelope Tracking 22%

    AC-DC 38%

  • www.epc-co.com 157 EPC - The Leader in GaN Technology | September , 2014 |

    • Does it enable significant new capabilities?

    • Is it easy to use?

    • Is it VERY cost effective to the user?

    • Is it reliable?

    Breaking Down the Barriers

  • www.epc-co.com 158 EPC - The Leader in GaN Technology | September , 2014 |

    It’s just like a MOSFET

    Is an eGaN FET Easy to Use?

    except

    The high frequency capability makes circuits using eGaN FETs sensitive to layout

    The lower VG(MAX) of 6 V makes it advisable to have VGS regulation in your gate drive circuitry

  • www.epc-co.com 159 EPC - The Leader in GaN Technology | September , 2014 |

    Educating

  • www.epc-co.com 160 EPC - The Leader in GaN Technology | September , 2014 |

    • Virginia Tech • University of California at Santa Barbara • Rensselaer Polytechnic Institute • Hong Kong University of Science and Technology • Cornell University • Katholieke Universiteit Leuven • University of Bristol • University of Glasgow • University of Sheffield • University of Warsaw • University of Sydney • Massachusetts Institute of Technology • Cambridge University • National Central University of Taiwan • National Taiwan University • Chang Gung University • University of Florida • Florida State University • Case Western University

    • Yale University • University of Ohio, Toledo • Ohio State University • Kyushu Institute of Technology • National Chiao Tung University • University of Tennessee • Auburn University • University of Texas • Yamaguchi University • Universitat Kassel • National Tsinghua University • Mid Sweden University • New Mexico State University • University of Johannesburg • University of Toronto • Universita di Padova • Delft University of Technology • Missouri University of Science and Technology • University of Maryland • Insitituto Italiano di Technologia

    Universities all over the world are graduating well-trained engineers experienced in the use of GaN Transistors

    Universities with GaN Transistor Programs

  • www.epc-co.com 161 EPC - The Leader in GaN Technology | September , 2014 |

    92.5

    93

    93.5

    94

    94.5

    95

    95.5

    96

    96.5

    97

    0 1 2 3 4 5 6 7 8 9 10 11 12 13

    Eff

    icie

    nc

    y (

    %)

    Output Current (A)

    DrGaNPLUS

    300kHz

    80V MOSFET

    300kHz

    92.5

    93

    93.5

    94

    94.5

    95

    95.5

    96

    96.5

    97

    0 1 2 3 4 5 6 7 8 9 10 11 12 13

    Eff

    icie

    nc

    y (

    %)

    Output Current (A)

    DrGaNPLUS

    300kHz

    80V MOSFET

    300kHz

    DrGaNPLUS

    500kHz

    Simplifying GaN- DrGaNPLUS

    VIN=48 V VOUT=12 V fsw=300 kHz L=10 µH eGaN FET T/SR: 100 V EPC2001

    MOSFET T/SR: 80 V BSZ123N08NS3G

  • www.epc-co.com 162 EPC - The Leader in GaN Technology | September , 2014 |

    Breaking Down the Barriers

    • Does it enable significant new capabilities?

    • Is it easy to use?

    • Is it VERY cost effective to the user?

    • Is it reliable?

  • www.epc-co.com 163 EPC - The Leader in GaN Technology | September , 2014 |

    Silicon vs. eGaN Product Costs

    Starting Material

    Epi Growth

    Wafer Fab

    Test

    Assembly

    OVERALL

    2014 2015

    lower lower

    higher

    same

    same

    lower

    lower

    same

    lower

    ~same?

    lower! higher

  • www.epc-co.com 164 EPC - The Leader in GaN Technology | September , 2014 |

    Breaking Down the Barriers

    • Does it enable significant new capabilities?

    • Is it easy to use?

    • Is it VERY cost effective to the user?

    • Is it reliable?

  • www.epc-co.com 165 EPC - The Leader in GaN Technology | September , 2014 |

    High Temp Reverse Bias (HTRB)

    Part Number Stress VDS (V) Temperature (oC) Sample Size

    Results (# of fails)

    Duration (Hrs)

    EPC2001 80 150 207 0 500

    EPC2001 80 150 144 0 168

    EPC2001 80 150 80 0 1000

    EPC2001 80 125 96 0 168

    EPC2001 100 125 45 0 1000

    EPC2016 80 150 239 0 500

    EPC2016 100 150 80 0 168

    • Over 0.5 million accumulated device hours of reliability testing without

    failure across 891 devices.

  • www.epc-co.com 166 EPC - The Leader in GaN Technology | September , 2014 |

    100 V HTRB Acceleration

    90 °C

    35 °C

    150 °C

    FIT Rate vs VDS and Temperature

    0.0001%

    1%0.01%

    20 yrs

    10 yrs

    Tim

    e to

    Fai

    l

  • www.epc-co.com 167 EPC - The Leader in GaN Technology | September , 2014 |

    HTGB Acceleration

    10 yrs

    MTTF vs VGS

    1 FIT

    FIT Rate vs VGS

  • www.epc-co.com 168 EPC - The Leader in GaN Technology | September , 2014 |

    High Temp Gate Bias (HTGB)

    Part Number Stress VGS (V) Temperature (oC) Sample Size Results (# of fails) Duration (Hrs)

    EPC2001 5 150 48 0 168

    EPC2001 5 125 167 0 168

    EPC2001 5 150 192 0 500

    EPC2001 5 150 125 0 1000

    EPC2014 5 150 48 0 500

    EPC2015 5 125 96 0 168

    EPC2015 5 150 50 0 1000

    EPC2001 5.5 150 48 0 168

    EPC2001 5.5 150 208 0 500

    EPC2016 5.5 150 80 0 168

    EPC2016 5.5 150 80 0 500

    EPC2001 5.75 150 96 0 168

    EPC2001 5.75 125 32 0 168

    EPC2001 5.75 125 48 0 181

    EPC2001 5.75 125 64 0 200

    EPC2001 5.75 150 240 0 500

    EPC2001 5.75 125 32 0 500

    EPC2016 5.75 90 32 0 200

    EPC2016 5.75 150 32 0 350

    EPC2016 5.75 150 240 0 500

    EPC2019 5.75 150 160 0 168

    EPC2001 6 125 24 0 181

    EPC2001 6 150 32 0 200

    EPC2001 6 150 80 0 437

    EPC2001 6 150 32 0 500

    EPC2001 6 125 32 0 500

    EPC2016 6 90 32 0 200

    EPC2016 6 150 32 0 350

    EPC2001 6.3 150 32 0 200

    EPC2016 6.3 150 32 0 200

    EPC2016 6.3 90 32 0 200

    EPC2016 6.6 150 32 0 200

    • 0 fail in over 0.97 million

    accumulated device

    hours of HTGB reliability

    testing greater than 5V.

    • 0 fail in over 0.6 million

    accumulated device

    hours of HTGB reliability

    testing greater than

    5.5V.

  • www.epc-co.com 169 EPC - The Leader in GaN Technology | September , 2014 |

    A Look Into the Future

  • www.epc-co.com 170 EPC - The Leader in GaN Technology | September , 2014 |

    Gen 2

    2010-2013

    40 V - 200 V

    Generation 5

    ~December 2014

    Moore’s Law Revival

    Generation 3

    Higher Frequency

    Launched September 2013

    High Voltage

    September 2014

    Half Bridge ICs

    September 2014

    Generation 4

    2 X Performance Improvement

    Launched June 2014

  • www.epc-co.com 171 EPC - The Leader in GaN Technology | September , 2014 |

    Generation 2/4

    Discrete HB

    Generation 4

    Monolithic 4:1 HB

    +

    GaN Integration

    T

    SR

    Top Switch (T) Synchronous

    Rectifier (SR) 33 % die size reduction

  • www.epc-co.com 172 EPC - The Leader in GaN Technology | September , 2014 |

    Monolithic Half Bridge

    70

    72

    74

    76

    78

    80

    82

    84

    86

    88

    90

    2 6 10 14 18 22 26 30 34 38 42

    Eff

    icie

    ncy (

    %)

    Output Current (A)

    GaN POL

    w/ Gen 4

    Discrete Transistors

    GaN POL

    w/ Gen 4

    Monolithic HB 33 % die size reduction

    fsw=2 MHz fsw=4 MHz fsw=3 MHz

    VIN=12 V VOUT=1.2 V L=100 nH

  • www.epc-co.com 173 EPC - The Leader in GaN Technology | September , 2014 |

    Summary

    • GaN transistors enable exciting new applications such as LiDAR, RF Envelope Tracking and Wireless Power Transmission

    • GaN transistors have the potential to replace silicon power MOSFETs and LDMOS in power conversion applications with a low-cost and higher efficiency solution

    • GaN technology is keeping Moore’s Law alive!