Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform:...

29
Modern Seismology – Data processing and 1 Fourier: Applications Fourier Transform: Applications • Seismograms Eigenmodes of the Earth Time derivatives of seismograms The pseudo-spectral method for acoustic wave propagation
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    219
  • download

    2

Transcript of Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform:...

Page 1: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion1

Fourier: Applications

Fourier Transform:Applications

• Seismograms• Eigenmodes of the Earth• Time derivatives of

seismograms• The pseudo-spectral

method for acoustic wave propagation

Page 2: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion2

Fourier: Applications

Fourier: Space and Time

Spacex space variableL spatial wavelengthk=2/ spatial wavenumberF(k) wavenumber spectrum

Spacex space variableL spatial wavelengthk=2/ spatial wavenumberF(k) wavenumber spectrum

Timet Time variableT periodf frequency=2f angular frequency

Timet Time variableT periodf frequency=2f angular frequency

Fourier integralsFourier integrals

With the complex representation of sinusoidal functions eikx

(or (eiwt) the Fourier transformation can be written as:

With the complex representation of sinusoidal functions eikx

(or (eiwt) the Fourier transformation can be written as:

dxexfkF

dxekFxf

ikx

ikx

)(2

1)(

)(2

1)(

Page 3: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion3

Fourier: Applications

The Fourier Transformdiscrete vs. continuous

dxexfkF

dxekFxf

ikx

ikx

)(2

1)(

)(2

1)(

1,...,1,0,

1,...,1,0,1

/21

0

/21

0

NkeFf

NkefN

F

NikjN

jjk

NikjN

jjk

discrete

continuousWhatever we do on the computer with data will be based on the discrete Fourier transform

Whatever we do on the computer with data will be based on the discrete Fourier transform

Page 4: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion4

Fourier: Applications

The Fast Fourier Transform

... the latter approach became interesting with the introduction of theFast Fourier Transform (FFT). What’s so fast about it ?

The FFT originates from a paper by Cooley and Tukey (1965, Math. Comp. vol 19 297-301) which revolutionised all fields where Fourier transforms where essential to progress.

The discrete Fourier Transform can be written as

1,...,1,0,ˆ

1,...,1,0,1

ˆ

/21

0

/21

0

Nkeuu

NkeuN

u

NikjN

jjk

NikjN

jjk

Page 5: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion5

Fourier: Applications

The Fast Fourier Transform

... this can be written as matrix-vector products ...for example the inverse transform yields ...

1

2

1

0

1

2

1

0

)1(1

22642

132

ˆ

ˆ

ˆ

ˆ

1

1

1

11111

2

NNNN

N

N

u

u

u

u

u

u

u

u

.. where ...

Nie /2

Page 6: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion6

Fourier: Applications

The Fast Fourier Transform

... the FAST bit is recognising that the full matrix - vector multiplicationcan be written as a few sparse matrix - vector multiplications

(for details see for example Bracewell, the Fourier Transform and its applications, MacGraw-Hill) with the effect that:

Number of multiplicationsNumber of multiplications

full matrix FFT

N2 2Nlog2N

this has enormous implications for large scale problems.Note: the factorisation becomes particularly simple and effective

when N is a highly composite number (power of 2).

Page 7: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion7

Fourier: Applications

The Fast Fourier Transform

.. the right column can be regarded as the speedup of an algorithm when the FFT is used instead of the full system.

Number of multiplicationsNumber of multiplications

Problem full matrix FFT Ratio full/FFT

1D (nx=512) 2.6x105 9.2x103 28.4 1D (nx=2096) 94.98 1D (nx=8384) 312.6

Page 8: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion8

Fourier: Applications

Spectral synthesis

The red trace is the sum of all blue traces!The red trace is the sum of all blue traces!

Page 9: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion9

Fourier: Applications

Phase and amplitude spectrum

)()()( ieFF

The spectrum consists of two real-valued functions of angular frequency, the amplitude spectrum mod (F()) and the phase spectrum

In many cases the amplitude spectrum is the most important part to be considered. However there are cases where the phase spectrum plays an important role (-> resonance, seismometer)

Page 10: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion10

Fourier: Applications

… remember …

22 ))((*

)sin(cos

)sin(cos*

ribaibazzz

rrir

iribazi

Page 11: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion11

Fourier: Applications

The spectrum

Amplitude spectrumAmplitude spectrum Phase spectrumPhase spectrumFo

uri

er

space

Fo

uri

er

space

Physi

cal sp

ace

Physi

cal sp

ace

Page 12: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion12

Fourier: Applications

The Fast Fourier Transform (FFT)

Most processing tools (e.g. octave, Matlab, Mathematica, Fortran, etc) have intrinsic functions for FFTs

Most processing tools (e.g. octave, Matlab, Mathematica, Fortran, etc) have intrinsic functions for FFTs

>> help fft

FFT Discrete Fourier transform. FFT(X) is the discrete Fourier transform (DFT) of vector X. For matrices, the FFT operation is applied to each column. For N-D arrays, the FFT operation operates on the first non-singleton dimension. FFT(X,N) is the N-point FFT, padded with zeros if X has less than N points and truncated if it has more. FFT(X,[],DIM) or FFT(X,N,DIM) applies the FFT operation across the dimension DIM. For length N input vector x, the DFT is a length N vector X, with elements N X(k) = sum x(n)*exp(-j*2*pi*(k-1)*(n-1)/N), 1 <= k <= N. n=1 The inverse DFT (computed by IFFT) is given by N x(n) = (1/N) sum X(k)*exp( j*2*pi*(k-1)*(n-1)/N), 1 <= n <= N. k=1 See also IFFT, FFT2, IFFT2, FFTSHIFT.

>> help fft

FFT Discrete Fourier transform. FFT(X) is the discrete Fourier transform (DFT) of vector X. For matrices, the FFT operation is applied to each column. For N-D arrays, the FFT operation operates on the first non-singleton dimension. FFT(X,N) is the N-point FFT, padded with zeros if X has less than N points and truncated if it has more. FFT(X,[],DIM) or FFT(X,N,DIM) applies the FFT operation across the dimension DIM. For length N input vector x, the DFT is a length N vector X, with elements N X(k) = sum x(n)*exp(-j*2*pi*(k-1)*(n-1)/N), 1 <= k <= N. n=1 The inverse DFT (computed by IFFT) is given by N x(n) = (1/N) sum X(k)*exp( j*2*pi*(k-1)*(n-1)/N), 1 <= n <= N. k=1 See also IFFT, FFT2, IFFT2, FFTSHIFT.

Matlab FFT

Page 13: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion13

Fourier: Applications

Frequencies in seismograms

Page 14: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion14

Fourier: Applications

Amplitude spectrumEigenfrequencies

Page 15: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion15

Fourier: Applications

Sound of an instrument

a‘ - 440Hz

Page 16: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion16

Fourier: Applications

Instrument Earth

26.-29.12.2004 (FFB )

0S2 – Earth‘s gravest tone T=3233.5s =53.9min

Theoretical eigenfrequencies

Page 17: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion17

Fourier: Applications

Fourier Spectra: Main Casesrandom signals

Random signals may contain all frequencies. A spectrum with constant contribution of all frequencies is called a white

spectrum

Random signals may contain all frequencies. A spectrum with constant contribution of all frequencies is called a white

spectrum

Page 18: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion18

Fourier: Applications

Fourier Spectra: Main CasesGaussian signals

The spectrum of a Gaussian function will itself be a Gaussian function. How does the spectrum change, if I make the

Gaussian narrower and narrower?

The spectrum of a Gaussian function will itself be a Gaussian function. How does the spectrum change, if I make the

Gaussian narrower and narrower?

Page 19: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion19

Fourier: Applications

Fourier Spectra: Main CasesTransient waveform

A transient wave form is a wave form limited in time (or space) in comparison with a harmonic wave form that is

infinite

A transient wave form is a wave form limited in time (or space) in comparison with a harmonic wave form that is

infinite

Page 20: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion20

Fourier: Applications

Puls-width and Frequency Bandwidthtime (space) spectrum

Narr

ow

ing

ph

ysi

cal si

gn

al

Wid

en

ing

fre

qu

en

cy b

an

d

Page 21: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion21

Fourier: Applications

Spectral analysis: an Example

24 hour ground motion, do you see any signal?

Page 22: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion22

Fourier: Applications

Seismo-Weather

Running spectrum of the same data

Page 23: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion23

Fourier: Applications

Some properties of FT

• FT is linearsignals can be treated as the sum of several signals, the transform will be the sum of their transforms

• FT of a real signals has symmetry properties

the negative frequencies can be obtained from symmetry properties

• Shifting corresponds to changing the phase (shift theorem)

• Derivative)(*)( FF

)()(

)()(

tfeaF

Featfai

ai

)()()( Fitfdt

d nn

Page 24: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion24

Fourier: Applications

Fourier Derivatives

dkekikF

dkekFxf

ikx

ikxxx

)(

)()(

.. let us recall the definition of the derivative using Fourier integrals ...

... we could either ...

1) perform this calculation in the space domain by convolution

2) actually transform the function f(x) in the k-domain and back

Page 25: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion25

Fourier: Applications

Acoustic Wave Equation - Fourier Method

let us take the acoustic wave equation with variable density

pp

c xxt 11 2

2

the left hand side will be expressed with our standard centered finite-difference approach

pdttptpdttp

dtc xx 1

)()(2)(1

22

... leading to the extrapolation scheme ...

Page 26: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion26

Fourier: Applications

Acoustic Wave Equation - Fourier Method

where the space derivatives will be calculated using the Fourier Method. The highlighted term will be calculated as follows:

)()(21

)( 22 dttptppdtcdttp xx

njx

nnnj PPikPP 1FFTˆˆFFT

multiply by 1/

n

jxx

n

x

n

xnjx PPikPP

1FFTˆ1ˆ1

FFT1 1

... then extrapolate ...

Page 27: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion27

Fourier: Applications

... and the first derivative using FFTs ...

function df=sder1d(f,dx)% SDER1D(f,dx) spectral derivative of vectornx=max(size(f));

% initialize kkmax=pi/dx;dk=kmax/(nx/2);for i=1:nx/2, k(i)=(i)*dk; k(nx/2+i)=-kmax+(i)*dk; endk=sqrt(-1)*k;

% FFT and IFFTff=fft(f); ff=k.*ff; df=real(ifft(ff));

.. simple and elegant ...

Page 28: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion28

Fourier: Applications

Fourier Method - Comparison with FD - Table

0

20

40

60

80

100

120

140

160

5 Hz 10 Hz 20 Hz

3 point5 pointFourier

Difference (%) between numerical and analytical solution as a function of propagating frequency

Simulation time5.4s7.8s

33.0s

Page 29: Fourier: ApplicationsModern Seismology – Data processing and inversion 1 Fourier Transform: Applications Seismograms Eigenmodes of the Earth Time derivatives.

Modern Seismology – Data processing and inversion29

Fourier: Applications

500 1000 15000

1

2

3

4

5

6

7

8

9

10

500 1000 15000

1

2

3

4

5

6

7

8

9

10

500 1000 15000

1

2

3

4

5

6

7

8

9

10

Numerical solutions and Green’s Functions

3 point operator 5 point operator Fourier MethodF

requ

ency

incr

ease

s

Impu

lse

resp

onse

(an

alyt

ical

) co

ncol

ved

with

sou

rce

Impu

lse

resp

onse

(nu

mer

ical

con

volv

ed w

ith s

ourc

e