Fire for the Post tensioned Concrete Structures in...

21
Fire Engineering Research: Key Issues for the Future Posttensioned Concrete Structures in Fire John Gales Supervision: Luke Bisby, Co supervision: Martin Gilliemodelling, Phase 1 and 3 Tim Stratfordexperimentation, Phase 2 and 3

Transcript of Fire for the Post tensioned Concrete Structures in...

Page 1: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Fire Engineering Research: Key Issues for the Future Post‐tensioned Concrete Structures in Fire

John Gales

Supervision: Luke Bisby, Co supervision: Martin Gillie‐modelling, Phase 1 and 3

Tim Stratford‐ experimentation, Phase 2 and 3

Page 2: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

What are post‐tensioned buildings?

Conventional steel rebar                Prestressing (PS) steel 

• Advantages of post‐tensioning concrete with PS steel for load balancing

‐ Thin floors (high ceilings)‐ Increased span lengths ‐ Reduces building materials ‐ Rapid construction

Highly optimized

Page 3: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Typical post‐tensioned buildings

Modern BPT building, UK

Modern UPT building, USA

Antiquated (1960s) UPT building, USA

Page 4: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Novel building optimization

“  Today’s flat‐slab post‐tensioned buildings, for example, with columns spaced (12 m) on center and span‐depth ratios of 40 are more complex and require more engineering attention thantypical flat‐slab buildings of 40 years ago, with columns spaced at (6 m) on center and span‐depth ratios of 20. ” ‐Randall Poston (chair ACI 318)

• Current guidance is dated and has not kept up with modern optimization trends

Page 5: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Real PT slab behaviour in fire is debatable

• PT optimization increases     susceptibility to fire:

‐ PS steel more sensitive to strength loss in high temperature

‐ Spalling of concrete cover (HS concrete, precompression of slab)

‐ Unbonded tendons run continuous, local damage WILLeffect the entire floor (Key Biscayne demolition)

• Code guidance is based on (often dated) standard furnace tests of simple span slabs: ‐ modern construction?, building materials?, real fires?

PT Standard fire test (Kelly and Purkiss, 2008)

Page 6: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

The PhD

• Phase 1 Fire code assessment for unbonded PS steel rupture (spalling, and variable heating length) 

• Phase 2 High temperature mechanical behaviour of modern PS steel (softening, strength and creep) 

• Phase 3 three large‐scale continuous PT slab tests under localised heating

• Side projects while I wait for Phase 3 to begin (curing time delayed)

Temperature compensated time (θ)

Cre

ep s

train

(ecr

)

∆θ

∆ecr Secondary Creep rate=Z= ∆ecr ∆θ

ecr,0

Prim

ary

Cre

ep

Sec

onda

r yC

reep

Terti

ary

Cre

ep

Page 7: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Phase 1: Localized fire damage to unbonded PS steel

• 2009 Tests demonstrated unbonded PS steel rupture is more probable under localized heating ‐ influenced by creep 

• Localized fires may be due to spalling, travelling, ceiling jets…

Localized heated UPT tendon tests (strong back tests) conducted in my masters

Lower ratio of heating, failed tendons at equivalent temperatures

Page 8: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Phase 1: Localized fire damage to unbonded PS steel

• IBC, and EC2 analyzed with simple tendon rupture modelling with creep (time, temp, load dependent) relation and heat transfer ( ASTM E119 curve)

Parametric analysis: Heated length ratio, spalling, specified concrete cover

Page 9: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Phase 1 results Performance based guidance not 

clearly specified in codes with respect to losing unbonded PS steel in a fire

Considerations to made; restraint, bonded reinforcing, spalling mitigation

American IBC code was unconservative Real unbonded PS steel behaviour more 

severe than Phase 1 modelling, new modelling parameters needed (Phase 2)

Results have tied in directly or inspired related PhD projects at Edinburgh(spalling, concrete cover influence using FEM)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

0 0.2 0.4 0.6 0.8 1

Time (hr)

Tem

pera

ture

(°C)

Cover (0mm)Cover (1mm)Cover (2mm)Cover (3mm)Cover (4mm)Cover (5mm)Cover (6mm)Cover (7mm)Cover (8mm)Cover (9mm)Cover (10mm)Cover (11mm)Cover (12mm)Cover (13mm)Cover (14mm)F|IR|E

0

100

200

300

400

500

600

700

800

900

1000

0 0.2 0.4 0.6 0.8 1

Time (hr)

Tem

pera

ture

(°C)

Cover (0mm)Cover (1mm)Cover (2mm)Cover (3mm)Cover (4mm)Cover (5mm)Cover (6mm)Cover (7mm)Cover (8mm)Cover (9mm)Cover (10mm)Cover (11mm)Cover (12mm)Cover (13mm)Cover (14mm)F|IR|E

Example heat transfer compensated for spalling input (200mm slab)

Page 10: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Phase 2: Modern PS steel behaviour in high temperature

Used Digital Image Correlation (DIC) in uniaxial tensile tests to measure deformation and cross section reduction

Page 11: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Phase 2: Modern PS steel behaviour in high temperature

• DIC patch correlations based on HT paint speckle pattern Patch A 750Px gauge length = 37.5mm Patch B

Pixel (y)

Pixel (x)

Stress = 0 MPa

Stress = 1950 MPa

Patch A Patch B

Method needed validation for current use……………….

Page 12: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Phase 2: Modern PS steel behaviour in high temperature

• DIC to bonded foil strain gauges and extensometer • DIC cross section to Poisson constant volume theory• DIC to theoretical thermal expansion calculation (EC2)

Page 13: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Phase 2: Modern PS steel behaviour in high temperature

• Creep behaviour using temperature compensated time.• PS steel types considered; ASTM 421‐1970, ASTM 416‐2008, and BS 5896‐2011 (all of different composition, but considered structurally equivalent)

Page 14: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Phase 2 results• Uniaxial creep tests at Steady state and Transientinvestigating equivalency

Results appeared similar (creep parameters were identical magnitudes; at 690MPa and 1000MPa stress levels)

Change in transient test heating rate had same magnitudes

Page 15: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Phase 2 results• Tertiary creep as manifestation of localized yielding

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 1E-19 2E-19 3E-19 4E-19 5E-19 6E-19

εcr

Virtual creepstrain (steadystate)

Harmathyequationw/ASTM 416params and areareduction

690 MPa

12

13

14

15

16

0 1E-19 2E-19 3E-19 4E-19 5E-19 6E-19

Temperature compensated time, θ (x 10-19 hrs)

Are

a (m

m2 )

Necking region

3300Px distance

1 2 3 4 5 6

Creep curve initiates runaway (tertiary) failure when a local necking region develops

Result appears in transient test

Possible to model, but relations produce error

Page 16: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Phase 2 results• Strength tests with true stress in steady state; Implicit creep strength tests comparison underway (post peak softening).

Reduction ratios matched well to Eurocode

Loading rate decrease, decreased yield point

True strength retention at elevated temperature better than EC2 until post peak softening occurs 

0

500

1000

1500

2000

2500

0 0.05 0.1 0.15 0.2 0.25 0.3

Stre

ss (M

Pa)

Strain

100ºC (true)

300ºC (true)

400ºC (true)

500ºC(true)

100

500ºC

400ºC

300ºC

Page 17: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Phase 2 results• Creep models were compared with the results of the locally heated strong back tests (varied transient and steady state heating with cooling)

600

650

700

750

800

850

900

950

1000

1050

0 1 2 3 4 5 6

Test duration (hrs)

Unb

onde

d PS

stre

ss le

vel

(MPa

)

ASTM 416 (2008)actual stress ASTM 416 (2008)modelASTM 421 (1970)modelBS 5896 (2011)

Transient heating (2°C/min) Steady heating (400°C)

Cooling (natural)

Creep model accuracy function of heating rate and metallurgy

Error at 2% for2⁰C/min growing to 7% error at 30⁰C/min

Third creep phase not considered yet

Page 18: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Phase 3: Continuous post‐tensioned concrete slabs under localized fire

• Two UPT and One BPT , 1‐hour rated EC2 slabs

Tests planned for this summer (6+ months, low MC%) Restraining forces measured from steel columns (stiffness based on 

representative concrete columns  Applied loading  Realistic span to depth ratio (>40) Bonded steel provided Thermocouples (x24), Linear Potentiometers (x8), Load cells (x2) Radiant panel heating (locally heated)

Page 19: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Phase 3: Continuous post‐tensioned concrete slabs under localized fire

Issues and problems with Phase 3:• What do we want to do with the results…..‐ Apriori and Aposteriori round robin modelling?‐ In house modelling (FEM packages)?

• Instrumentation‐What should we be measuring and what does it mean?‐Motion imaging? (2D DIC, 3D tracking?)

• Pretesting‐ Ambient tests before heating?

• Intangibles;  prestressing the slabs? 

Page 20: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Current collaborative side projects• Project 1: The History of Fire Safety 

Engineering (The full story is not recorded) Traditional and non traditional construction Large scale testing (Modern and antiquated)

ICEM15 conference this July in Porto Fire behaviour, dynamics and design philosophy

• Project 2: Axis distance vs. clear cover of miniature PS slabs exposed to ISO 834. Should this design rule change? 

• Project 3: Open access repositories for historical fire engineering photographs and articles

Page 21: Fire for the Post tensioned Concrete Structures in Firefire.fsv.cvut.cz/ifer/2012-Training_school/Student-presentations/10-1_Gales.pdfReal PT slab behaviour in fire is debatable •

Thank you

For additional information

Email: [email protected] reading:

•http://www.eng.ed.ac.uk/fire/2009‐phd‐john.html

•Results of Phase 1 can be consulted in the Journal of Structural Fire Engineering and 

Fire Safety Journal (see web link for references)

•Some preliminary results of Phase 2 will be presented at SIF 2012 conference in Zurich

•Phase 3 is currently in progress targeting 2013 for completion.