File 1a Kinematika 1

download File 1a Kinematika 1

of 20

Transcript of File 1a Kinematika 1

  • 8/17/2019 File 1a Kinematika 1

    1/20

     

    Chapter 3Chapter 3

    KINEMATICS IKINEMATICS IRahmat Rasyid M.SiRahmat Rasyid M.Si

  • 8/17/2019 File 1a Kinematika 1

    2/20

     

    IntroductionIntroduction

    The mechanics science is the sciencestudying about motion, force concept, andenergy.

    They divided to the two form :• Kinematics

    • Dynamics

    Kinematics is the science studying the

    motion without oo!ing the cause of motion. Dynamics is the science studying the force

    cause of motion.

  • 8/17/2019 File 1a Kinematika 1

    3/20

     

    Motion ?Motion ?

    The ob"ect can referred motion if changeof the position and need time to do that.

    Three variabe of the motion : Speed #eocity

    $cceeration

  • 8/17/2019 File 1a Kinematika 1

    4/20

     

    SpeedSpeed

    The measurement to how fast the ob"ectmove.

  • 8/17/2019 File 1a Kinematika 1

    5/20

     

    VelocityVelocity

    %&pressing vaue and direction of speed orrate of change of position.

    They divided to the two form :

    • 'nstantaneous veocity

    • $verage veocity

  • 8/17/2019 File 1a Kinematika 1

    6/20

     

    The Difference Speed & VelocityThe Difference Speed & Velocity

    Comparing both of the pictures

     Aboe ! the car hae re"ain #peed

    but the direction chan$e for eery

    "o"ent% o' 'ith the picture

    be#ide?

  • 8/17/2019 File 1a Kinematika 1

    7/20

     

     Acceleration Acceleration

  • 8/17/2019 File 1a Kinematika 1

    8/20

     

     Acceleration Acceleration

    The e&pression that how fast the veocity ofchange.

    They divided to the two form : 'nstantaneous acceeration

    $verage acceeration

  • 8/17/2019 File 1a Kinematika 1

    9/20

     

     Acceleration for Inclined (lane Acceleration for Inclined (lane

    %ver greater theob"ect ange, henceever greater the

    acceeration of ob"ect.

    (ase :• )ow much vaue of the

    acceeration if theob"ect in perpendicuarpane as shown picturebeside*

  • 8/17/2019 File 1a Kinematika 1

    10/20

     

    )ree )all Motion)ree )all Motion

    The ob"ect can freefa as conse+uenceof the earth

    gravitation withacceeration ag-. m/s0

  • 8/17/2019 File 1a Kinematika 1

    11/20

     

    Motion in * di"en#ionMotion in * di"en#ion

    'n 12D, we usuay write position as x(t 1 ).

    Since it3s in 12D, a we need to indicate directionis 4 or −.Dispacement in a time ∆t = t 2 - t 1  is 

    ∆ x = x(t 2 ) - x(t 1 ) = x 2 - x 1

     x 

    t 1 t 2 

    ∆ x 

    ∆ t 

     x 1

     x 2 #o"e particle+# tra,ectory

    in *-D

  • 8/17/2019 File 1a Kinematika 1

    12/20

     

    *-D .ine"atic#*-D .ine"atic#

    #eocity v  is the 5rate of change of position6 

    $verage veocity V av   in the time ∆ t = t 2 - t 1  is:

     x 

    t t 

     )t (  x  )t (  x v 

    12 

    12 av 

    ∆=

    −≡

     x 

    t 1 t 2 

    ∆ x 

     x 1

     x 2 tra,ectory

    ∆ t 

    V av = #lope of line connectin$ x 1 and x 2 %

  • 8/17/2019 File 1a Kinematika 1

    13/20

     

    *-D .ine"atic#%%%*-D .ine"atic#%%%

    (onsider imit t1 t0 'nstantaneous veocity v  is defined as:

    dt 

    t dxt v

      )()(   =

     x 

    t 1 t 2 

    ∆ x 

     x 1

     x 2 

    ∆ t 

    #o v(t 2  ) = #lope of line tan$ent to path at t 2 %

    ( )t 

    t  xt v

    ∆=

    →∆

    )(lim

    0

  • 8/17/2019 File 1a Kinematika 1

    14/20

     

    E/a"pleE/a"ple

    7ind instantaneous veocity for every times, by7ind instantaneous veocity for every times, bye+uatione+uation  x(t) = 5t 2

     Answer : Answer : 7or the ne&t time7or the ne&t time , , t = t + ∆t  , , so that:so that:

     x(t +∆t) = 5(t + ∆t)2

    then :then :  ∆x = x(t +∆t) - x(t) 

    7inay :7inay : 

     ∆t→0 then :then : vavg  = 10t 

    ( )t t t 

    t t t 

     xvavg  ∆+=∆

    ∆+∆

    =∆

    =   5105.10  2

  • 8/17/2019 File 1a Kinematika 1

    15/20

     

    *-D .ine"atic#%%%*-D .ine"atic#%%%

    • $cceeration a is the 5rate of change of veocity6 

    • $verage acceeration aav  in the time ∆t = t 2  - t 1 

    is:

    t t 

     )t ( v  )t ( v 

    a 12 

    12 

    av  ∆

    =−

    $nd then the 

    instantaneous acceeration a isdefined as:

    dt 

     )t (  x d 

    dt 

     )t ( dv 

     )t ( a   ==

    dt 

     )t ( dx  )t ( v    =u#in$

  • 8/17/2019 File 1a Kinematika 1

    16/20

     

    0ecap0ecap

    'f the position x  is !nown as a function of time,then we can find both veocity v  and acceerationa as a function of time8

    a   dv dt 

    d x dt 

    = =

    2

    2

    v   dx 

    dt =

     x x t =   ( )

     x 

    a

    v t 

  • 8/17/2019 File 1a Kinematika 1

    17/20

     

    *-D Motion 'ith con#tant*-D Motion 'ith con#tant

    accelerationacceleration 9y cacuus:

    $so reca that

    Since a is constant, we can integrate this usingthe above rue to find:

    Simiary, since we can integrate againto get:

    const t 1n

    1dt t   1nn ++

    =   +∫ 

    a  dv 

    dt =

    v   dx 

    dt =

    ∫ ∫    +===   0 v at dt adt av 

    0 0 2 

    0    x t v at 2 

    1dt  )v at ( dt v  x    ++∫ ∫    =+==

  • 8/17/2019 File 1a Kinematika 1

    18/20

     

    0ecap0ecap

    at v v  0  +=

    2 0 0    at 2 

    1t v  x  x    ++=

    a const  =

     x 

    a

    v t 

  • 8/17/2019 File 1a Kinematika 1

    19/20

     

    Deriation!Deriation!

    ugging in for t:

    at v v  0  +=  2 

    0 0    at 2 

    1t v  x  x    ++=

    Soving for t:

    a

    v v t    0 

    −=

    0 0 0 0 

    a

    v v a

    1

    a

    v v v  x  x     

      

         −+ 

      

         −+=

     ) x  x ( a2 v v  0 2 

    0 2  −=−

  • 8/17/2019 File 1a Kinematika 1

    20/20

     

    (roble" !(roble" !

    %&press your comment for under the picture by%&press your comment for under the picture by

    using average and instantaneous veocity andusing average and instantaneous veocity and

    acceeration in point a, b c, d, e, f and g :acceeration in point a, b c, d, e, f and g :

    t ;sec<

    =  ; m