Fig. 12-CO, p. 315

81
Fig. 12-CO, p. 315

description

Fig. 12-CO, p. 315. Fig. 12-1a, p. 317. Post-Glacial Sea Level Rise. 0. 0. 20. 75. 40. 150. Sea level change (m) from present day. 60. Sea level change (ft) from present day. 225. 80. 300. 100. 375. 120. 450. 140. 20. 18. 16. 14. 12. 10. 8. 6. 4. 2. 0. - PowerPoint PPT Presentation

Transcript of Fig. 12-CO, p. 315

Page 1: Fig. 12-CO, p. 315

Fig. 12-CO, p. 315

Page 2: Fig. 12-CO, p. 315

Fig. 12-1a, p. 317

Page 3: Fig. 12-CO, p. 315

Fig. 12-1a, p. 317

Post-Glacial Sea Level Rise0 0

75 20

150

60

40

22580

300100

Sea

lev

el c

han

ge

(ft)

fr

om

pre

sen

t d

ay

375 120

450 140

18 16 14 12 10 8 6 4 2 0

Thousands of years ago

Sea

lev

el c

han

ge

(m)

fro

m p

rese

nt

day

20

Page 4: Fig. 12-CO, p. 315

Fig. 12-1b, p. 317

Page 5: Fig. 12-CO, p. 315

Fig. 12-1b, p. 317

Sea Level Projections

30 80

7025

60

20

15

1030

20 Sea

lev

el r

ise

(cm

)

40

50

Sea

lev

el r

ise

(in

ch)

5 10

−5 −10

0Observations

0

1950 1975 2000 2025 2050 2075 2100

Page 6: Fig. 12-CO, p. 315

Fig. 12-2a, p. 318

Page 7: Fig. 12-CO, p. 315

Fig. 12-2b, p. 318

Page 8: Fig. 12-CO, p. 315

Fig. 12-3, p. 319

Page 9: Fig. 12-CO, p. 315

Fig. 12-4a, p. 319

Page 10: Fig. 12-CO, p. 315

Fig. 12-4a, p. 319

Blowhole

HeadlandSea cliffs Sea stack

Sea caveExposed beach

Sea arch

Wave-cut platform

Sediments

Page 11: Fig. 12-CO, p. 315

Fig. 12-4b, p. 319

Page 12: Fig. 12-CO, p. 315

Fig. 12-4c, p. 319

Page 13: Fig. 12-CO, p. 315

Fig. 12-4c, p. 319

Wave-cut platform

Original land surface

Sea cliff

Notch eroded by waves

Page 14: Fig. 12-CO, p. 315

Fig. 12-4d, p. 319

Page 15: Fig. 12-CO, p. 315

Fig. 12-5, p. 320

Page 16: Fig. 12-CO, p. 315

Fig. 12-5, p. 320

Wave crests

Wave energy converging on headlands

Wave energy diverging

Sediment movementQuiet beach

Quiet beach

Page 17: Fig. 12-CO, p. 315

Fig. 12-6, p. 321

Page 18: Fig. 12-CO, p. 315

Fig. 12-7, p. 321

Page 19: Fig. 12-CO, p. 315

Fig. 12-8, p. 322

Page 20: Fig. 12-CO, p. 315

Fig. 12-9, p. 322

Page 21: Fig. 12-CO, p. 315

Fig. 12-10, p. 322

Page 22: Fig. 12-CO, p. 315

Fig. 12-11, p. 323

Page 23: Fig. 12-CO, p. 315

Fig. 12-12, p. 323

Page 24: Fig. 12-CO, p. 315

Table 12-1, p. 324

Page 25: Fig. 12-CO, p. 315

Fig. 12-13, p. 324

Page 26: Fig. 12-CO, p. 315

Fig. 12-13, p. 324

Shallow-water wave

A

To shoreB

Page 27: Fig. 12-CO, p. 315

Fig. 12-14, p. 325

Page 28: Fig. 12-CO, p. 315

Fig. 12-14, p. 325

Back-shore Fore-

shore Nearshore (through breakers)

Dunes

Berms Beach scarp

Offshore

Berm crest

Longshore trough

Longshore bars

High tide

Low tide (dotted line)

Page 29: Fig. 12-CO, p. 315

Fig. 12-15a, p. 325

Page 30: Fig. 12-CO, p. 315

Fig. 12-15b, p. 325

Page 31: Fig. 12-CO, p. 315

Fig. 12-16a, p. 326

Page 32: Fig. 12-CO, p. 315

Fig. 12-16a, p. 326

Upper limit of wave actionSurf

zone

Longshore current

Path followed by sand grains

Direction of wave approach

Page 33: Fig. 12-CO, p. 315

Fig. 12-16b, p. 326

Page 34: Fig. 12-CO, p. 315

Fig. 12-17, p. 327

Page 35: Fig. 12-CO, p. 315

Fig. 12-18a, p. 328

Page 36: Fig. 12-CO, p. 315

Fig. 12-18a, p. 328

Coastal cellCliff

erosion River input Major river forming

a delta

Longshore transport Rocky

point

River inputSubmarine

canyon

Sediment entering longshore transport system

Sediment movement down continental shelf and slope

Sediment transport to ocean basin within a submarine canyon

Page 37: Fig. 12-CO, p. 315

Fig. 12-18b, p. 328

Page 38: Fig. 12-CO, p. 315

Fig. 12-18b, p. 328

Santa Monica

NMalibu

RedondoLos Angeles

Long Beach

Palos Verdes

HuntingtonNewport

Santa Cruz Island

Submarine canyon OceansideLongshore drift

Santa Catalina IslandRocky headlands

0 50 San Clemente Island

Laguna

km

Page 39: Fig. 12-CO, p. 315

Fig. 12-18c (1), p. 328

Page 40: Fig. 12-CO, p. 315

Fig. 12-18c (1), p. 328

W–

Cliff

C+Surf

zone

V+O+

Beach

V–

O–

Page 41: Fig. 12-CO, p. 315

Fig. 12-18c (2), p. 328

Page 42: Fig. 12-CO, p. 315

Fig. 12-19, p. 329

Page 43: Fig. 12-CO, p. 315

Fig. 12-19, p. 329

Longshore current

Sand spitBay mouth bar Barrier

islandBay

Inlet Sea island

Lagoon Bay Tombolo

Beach

Page 44: Fig. 12-CO, p. 315

Fig. 12-20, p. 329

Page 45: Fig. 12-CO, p. 315

Fig. 12-21, p. 329

Page 46: Fig. 12-CO, p. 315

Fig. 12-22, p. 330

Page 47: Fig. 12-CO, p. 315

Fig. 12-22, p. 330

Isle of Wight Bay

Fenwick Island

N

Ocean City

Ocean City InletMARYLAND

Upper Sinepuxent Neck Atlantic Ocean

Position of shoreline

19801849Assateague

Island

Sin

epux

ent B

ay

km0 1 2

0 .62 1.24mi

Page 48: Fig. 12-CO, p. 315

Box 12-1a, p. 331

Page 49: Fig. 12-CO, p. 315

Box 12-1b, p. 331

Page 50: Fig. 12-CO, p. 315

Fig. 12-23a, p. 332

Page 51: Fig. 12-CO, p. 315

Fig. 12-23b, p. 332

Page 52: Fig. 12-CO, p. 315

Fig. 12-23c, p. 332

Page 53: Fig. 12-CO, p. 315

Fig. 12-24a, p. 333

Page 54: Fig. 12-CO, p. 315

Fig. 12-24b, p. 333

Page 55: Fig. 12-CO, p. 315

Fig. 12-25, p. 334

Page 56: Fig. 12-CO, p. 315

Fig. 12-26, p. 334

Page 57: Fig. 12-CO, p. 315

Fig. 12-26, p. 334

0 10

km

Massachusetts

Elizabeth Islands

Recessional moraine Atlantic

OceanTerminal moraines

Martha's Vineyard

Moraine Present land

Nantucket

Cape Cod

Page 58: Fig. 12-CO, p. 315

Fig. 12-27, p. 334

Page 59: Fig. 12-CO, p. 315

Fig. 12-28a-c, p. 335

Page 60: Fig. 12-CO, p. 315

Fig. 12-28a-c, p. 335

Fringing reef Barrier reef Atoll

a b c

Page 61: Fig. 12-CO, p. 315

Fig. 12-28d, p. 335

Page 62: Fig. 12-CO, p. 315

Fig. 12-29, p. 336

Page 63: Fig. 12-CO, p. 315

Fig. 12-30, p. 337

Page 64: Fig. 12-CO, p. 315

Fig. 12-30, p. 337

a Drowned river mouth b fjord

c Bar-built d Tectonic

Mainland

Lagoon

Barrier islands

Ocean

Page 65: Fig. 12-CO, p. 315

Fig. 12-31, p. 338

Page 66: Fig. 12-CO, p. 315

Fig. 12-31, p. 338

River

Seawater

a Salt wedge

Page 67: Fig. 12-CO, p. 315

Fig. 12-31, p. 338

River

Seawater

b Well-mixed

Page 68: Fig. 12-CO, p. 315

Fig. 12-31, p. 338

River

Seawater

c Partially mixed

Page 69: Fig. 12-CO, p. 315

Fig. 12-31, p. 338

River

Seawater

d Fjord

Page 70: Fig. 12-CO, p. 315

Fig. 12-32, p. 338

Page 71: Fig. 12-CO, p. 315

Fig. 12-32, p. 338

Lat

itu

de

38.0 24.00

0.00

Longitude–76.0

Page 72: Fig. 12-CO, p. 315

Fig. 12-33, p. 339

Page 73: Fig. 12-CO, p. 315

Fig. 12-34, p. 340

Page 74: Fig. 12-CO, p. 315

Fig. 12-35a, p. 341

Page 75: Fig. 12-CO, p. 315

Fig. 12-35b, p. 341

Page 76: Fig. 12-CO, p. 315

Fig. 12-36, p. 342

Page 77: Fig. 12-CO, p. 315

Fig. 12-36, p. 342

(a) Groin Groins are structures that extend from the beach into the water. They help counter erosion by trapping sand from the current. Groins accumulate sand on their updrift side, but erosion is worse on the downdrift side, which is deprived of sand.

Current

(b) Seawall Seawalls protect property temporarily, but they also increase beach erosion by deflecting wave energy onto the sand in front of and beside them. High waves can wash over seawalls and destroy them and property.

(c) Importing sand Importing sand to a beach is considered the best response to erosion. The new sand often is dredged from offshore, can cost tens of millions of dollars, and can disturb aquatic biodiversity. Because it is often finer than beach sand, dredged sand erodes more quickly.

Page 78: Fig. 12-CO, p. 315

Fig. 12-36, p. 342

(a) Groin Groins are structures that extend from the beach into the water. They help counter erosion by trapping sand from the current. Groins accumulate sand on their updrift side, but erosion is worse on the downdrift side, which is deprived of sand.

Current

(b) Seawall Seawalls protect property temporarily, but they also increase beach erosion by deflecting wave energy onto the sand in front of and beside them. High waves can wash over seawalls and destroy them and property.

(c) Importing sand Importing sand to a beach is considered the best response to erosion. The new sand often is dredged from offshore, can cost tens of millions of dollars, and can disturb aquatic biodiversity. Because it is often finer than beach sand, dredged sand erodes more quickly.

Stepped Art

Page 79: Fig. 12-CO, p. 315

Fig. 12-37, p. 342

Page 80: Fig. 12-CO, p. 315

Fig. 12-38, p. 343

Page 81: Fig. 12-CO, p. 315

Fig. 12-38, p. 343

Alaska region Great Lakes region

28

66North Pacific region

1310 1391

14 North Atlantic region

5 7 1390California region

8180

3 9

Hawai’i regionPuerto Rico and the Virgin Islands (included in South Atlantic – Gulf region)

Percent stableTexas Gulf region

182

Percent noncritical erosion Lower

Mississippi region

Percent critical erosion

86 80

South Atlantic – Gulf region

6

74

88

72

104