FE Review Web

download FE Review Web

of 31

Transcript of FE Review Web

  • 7/27/2019 FE Review Web

    1/31

    ransparen

    SMA01

    Strong and weak

    forms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    SMA01: Advanced numerical modeling of

    mechanical structuresFinite Element - Basics

    D.Brancherie, A. Rassineux

    1 / 2 7

    http://find/
  • 7/27/2019 FE Review Web

    2/31

    ransparen

    SMA01

    Strong and weak

    forms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    Strong and weak forms

    Definitions

    A scalar problem : the thermal diffusion problemA vectorial problem : the elasticity problem

    linear elasticityquasi-static

    2 / 2 7

    http://find/
  • 7/27/2019 FE Review Web

    3/31

    ransparen

    SMA01

    Strong and weak

    forms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    Strong and weak form

    Definitions

    Strong form :

    set of differential or partial differential equations + boundary

    conditions written on each point of a domain

    D(u(x)) = 0 x

    with boundary conditions

    BC(u(x)) = 0 x

    weak form (or variational formulation) :

    an integral version of the strong form

    w(x) D(u(x)) = 0 w(x)

    with boundary conditions

    BC(u(x)) = 0 x

    3 / 2 7

    http://find/
  • 7/27/2019 FE Review Web

    4/31

    ransparen

    SMA01

    Strong and weak

    formsFinite Elementapproximation

    Finite Elementformulation

    Implementationissues

    A scalar problem : the thermal diffusion

    The strong form :

    Equilibrium

    cTt

    = divqth + Pth

    for stationary problem :

    divqth + Pth = 0 x

    Behavior : Fouriers law(homogeneous material)

    qth = kT

    Boundary conditions

    qth = qd ontT = Td onu

    qd

    t

    Tdu

    Thermal problem

    kT = Pth x

    with qth = qd on t and T = Td on u4 / 2 7

    http://goforward/http://find/http://goback/
  • 7/27/2019 FE Review Web

    5/31

    ransparen

    SMA01

    Strong and weak

    formsFinite Elementapproximation

    Finite Elementformulation

    Implementationissues

    A sclar problem : the thermal diffusion

    Weak form of equilibrium

    div qth Pthwd = 0 wuse of the integral theorems :

    wkT d

    wPth

    d

    (kT

    qthn)w dS = 0 w

    remark : weak form and strong form are equivalent

    practically, for FEM issues, w can be chosen in KA0

    KA0 = {w regular | w = 0 on u}

    Weak form for FE issues

    find T KA such that

    wkT d

    wPth

    d

    (kT

    qth

    n)w dS = 0 w KA0

    where KA = {T regular | T = Td on u}5 / 2 7

    http://find/
  • 7/27/2019 FE Review Web

    6/31

    ransparen

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    A vectorial problem : the continuum mechanics problem

    The strong form :

    Equilibrium (quasi-static)div + b = 0 x

    n = t = td on t

    Kinematics(small perturbation hypothesis)

    (u) = 12

    u +uT

    u = ud on u

    Behavior (linear elasticity, isotropic,homogeneous)

    = C : (u)ou = tr((u))1 + 2(u)

    td

    t

    udu

    Navier equation for elasticity

    ( + )(divu) + u + b = 0 x

    with u = ud on u and n = t = td on t6 / 2 7

    http://find/
  • 7/27/2019 FE Review Web

    7/31

    ransparen

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    Continuum mechanics problem

    Weak form of equilibrium

    (div

    + b) w d = 0 w

    use of the integral theorems (Green formula) :

    : (w) d

    b w d

    n

    tw dS = 0 w

    remark : weak form and strong form are equivalent

    practically, for FEM issues, w can be chosen in KA0

    KA0 = {w regular | w = 0 on u}

    Weak form for FE issues

    find u KA such that

    : (w) d

    b w d

    t

    td w dS = 0 w KA0

    where KA = {u regular | u = ud on u} and = ((u))7 / 2 7

    ransparen

    http://find/
  • 7/27/2019 FE Review Web

    8/31

    ransparen

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    Continuum mechanics problem

    Weak form for FE issuesIn the case of linear elastic isotropic homogeneous material, the

    solution u solves :

    (u) : C : (w) d =

    b w d +

    t

    td w dS w KA0

    Remarks :for elastic problems, the solution u can also be defined as theminimum of the potential energy

    potential energy :

    (v) = 12

    (v) : C : (v) d

    b v d t

    td v dS

    u = arg minvKA

    (v)

    strong /weak form :

    derivatives order lower in the weak form than in the strong form8 / 2 7

    ransparen

    http://find/
  • 7/27/2019 FE Review Web

    9/31

    ransparen

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    Summary (for elasticity problem)

    Objectivefind u KA solution of :

    (u) : C : (w) d =

    bw d+

    t

    tdw dS w KA0

    where u = u(x) is a field defined on

    9 / 2 7

    ransparen

    ( )

    http://find/
  • 7/27/2019 FE Review Web

    10/31

    ransparen

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    Summary (for elasticity problem)

    Tensor to vector notations (Voigt notations)Second order tensors :

    =

    xxyyzz

    2 xy2 xz2 yz

    and =

    xxyyzzxyxzyz

    Fourth order tensor : elasticity tensor

    C =

    + 2 0 0 0 + 2 0 0 0 + 2 0 0 00 0 0 0 00 0 0 0 0

    0 0 0 0 0

    9 / 2 7

    ransparen

    S (f )

    http://find/
  • 7/27/2019 FE Review Web

    11/31

    ransparen

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    Summary (for elasticity problem)

    Objectivefind u KA solution of :

    (u) : C : (w) d =

    bw d+

    t

    tdw dS w KA0

    where u = u(x) is a field defined on

    Weak form in Voigt notations

    (w)TC(u) d =

    wTb d+

    t

    wTtd dS w KA0

    9 / 2 7

    ransparen

    S (f l i i bl )

    http://find/
  • 7/27/2019 FE Review Web

    12/31

    ransparen

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    Summary (for elasticity problem)

    Objectivefind u KA solution of :

    (u) : C : (w) d =

    bw d+

    t

    tdw dS w KA0

    where u = u(x) is a field defined on

    Weak form in Voigt notations

    (w)TC(u) d =

    wTb d+

    t

    wTtd dS w KA0

    FE purposefind an approximation uh Sh KA of the solution u solvingthe previous equation by choosing a priori the form of thesolution

    the weak form is not solved w KA0 but only forw Vh0 KA0

    FE mesh, FE approximation9 / 2 7

    ransparen

    O li

    http://goforward/http://find/http://goback/
  • 7/27/2019 FE Review Web

    13/31

    ransparen

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    Outline

    Discretisation of the domain : mesh

    Approximation, shape functions

    10/27

    ransparen

    M h

    http://find/
  • 7/27/2019 FE Review Web

    14/31

    ransparen

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    Mesh

    Discretisation of the domain into h

    Geometry approximation : h approximation of

    Mesh :partition of h into elements connected through their nodes

    h =

    Nele=1

    e with e

    f(e = f) =

    an edgea vertex

    node element

    1

    2 3

    Forbidden situation

    11/27

    ransparen

    M h

    http://find/
  • 7/27/2019 FE Review Web

    15/31

    ransparen

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    Mesh

    Practical definition of the meshThe mesh is fully defined by giving

    the node coordinate tabledefinition of the node position

    node number x y z

    1 x1 y1 z1...

    ......

    ...i xi yi zi...

    ......

    ...

    the connectivity tabledefinition of the elements through their nodes

    element number node 1 node 2 node 3

    1 node 1(1) node 2(1) node 3(1)...

    ......

    ... node 1() node 2() node 3()...

    .

    .....

    .

    ..12/27

    ransparen

    FE approximation and shape functions

    http://find/
  • 7/27/2019 FE Review Web

    16/31

    ransparen

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    FE approximation and shape functions

    Main idearepresentation of a field through a minimum number ofparameters (the degrees of freedom)

    parameters : the value of the field on the nodes of the mesh

    Shape (interpolation) functionsFor each node i of the mesh, a spatial function Ni(x) is definedsuch that :

    Ni(xj) = 0 if j = i

    1 if j = i

    Ni(x)

    13/27

    ransparen

    FE approximation

    http://find/
  • 7/27/2019 FE Review Web

    17/31

    p

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    FE approximation

    1 2 3 4 5 6 7node

    For elasticity, approximated displacement field :

    uh(x) =Nnodei=1

    Ni(x)di = N(x)d

    with di = uh(xi), d the nodal solution vector (displacement,

    temperature, ...) andNi(x

    ) the FE shape functions.

    uh(x) =

    N1 0 N2 0 ... N Nnode 0

    0 N1 0 N2 ... 0 NNnode

    N(x)

    d1xd1y

    .

    .

    .

    dNnodex

    dNnodey

    d14/27

    ransparen

    FE approximation

    http://find/
  • 7/27/2019 FE Review Web

    18/31

    p

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    FE approximation

    1 2 3 4 5 6 7node

    Remarks

    the field uh(x) is defined for all x through the definition ofd

    d is a vector of parameters, of limited length Nnode defining thesolution

    for standard FE, shape functions are polynomial functions (moreelaborated for XFEM or isogeometric elements)

    15/27

    ransparen

    Outline

    http://find/
  • 7/27/2019 FE Review Web

    19/31

    p

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    Outline

    FE formulation

    16/27

    ransparen

    From continuum mechanics to FEM

    http://find/
  • 7/27/2019 FE Review Web

    20/31

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    From continuum mechanics to FEM

    Construction of the FE problem

    Weak form (recall)(u) : C : (w) d =

    b w d +

    t

    td w dS w KA0

    FE formulation (Voigt notations)

    h

    (uh)TC(wh) d =h

    wTb d +

    t

    hwTtd dS wh KA0

    FE approximation

    solution : uh

    (x) =

    Nnode

    i=1

    Ni(x)di = N(x)d

    test function : wh(x) =

    Nnodei=1

    Ni(x)qi = N(x)q

    (uh) = Bd where B = LN with L the matrix form ofs

    17/27

    ransparen

    From continuum mechanics to FEM

    http://find/
  • 7/27/2019 FE Review Web

    21/31

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    From continuum mechanics to FEM

    FE problemfind uh such that

    h

    (uh)TC(wh) d =

    hwTb d +

    th

    wTtd dS wh KA0

    FE formulation

    find d such that q s.t. q = 0 on uh

    qT

    hBTCB d

    d = qT

    hNTb d +

    th

    NTtd dS

    18/27

    ransparen

    FE problem

    http://find/
  • 7/27/2019 FE Review Web

    22/31

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    FE problem

    find d such that q s.t. q = 0 on uh

    qT

    h BTCB dd h N

    Tb d th N

    Ttd

    dS = 0

    find d solution of

    hBTCB d

    K

    d = hNTb d +

    thNTtd dS

    fext

    FE problem

    find d solution ofKd = fext

    Remarks :K : (Ndof Nnode, Ndof Nnode)fext : (Ndof Nnode, 1)

    K is a symmetric, def., positive matrix (with a lot of zeros !)19/27

    ransparen

    Outline

    http://find/
  • 7/27/2019 FE Review Web

    23/31

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    Outline

    Construction ofK and fext

    Reference element

    Numerical integration

    Numerical resolution

    20/27

    ransparen

    Construction of the FE problem

    http://find/
  • 7/27/2019 FE Review Web

    24/31

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    Construction of the FE problem

    FE problem - construction ofK and fext

    K = hBTCB d =

    Neleme=1

    eBTCB de

    Term ij of matrix K

    Kij =Neleme=1

    eBTi CBj d

    e

    case 1 : i and j have disconnected

    supports : Kij = 0

    case 2 : Supp(i) Supp(j) =

    Kij =

    eSupp(i)Supp(j)

    eBTi CBj d

    e

    only a limited number of elements have a contribution to KijElement stiffness :

    computation on each element ofKe =

    eBTeCBe d

    Stiffness K obtained by assembly procedure of all Ke

    21/27

    ransparen

    Construction of the FE problem

    http://find/
  • 7/27/2019 FE Review Web

    25/31

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    Construction of the FE problem

    FE problem - construction ofK and fext

    K = hBTCB d =

    Neleme=1

    eBTCB de

    Term ij of matrix K

    Kij =Neleme=1

    eBTi CBj d

    e

    case 1 : i and j have disconnected

    supports : Kij = 0

    case 2 : Supp(i) Supp(j) =

    Kij =

    eSupp(i)Supp(j)eBTi CBj d

    e

    only a limited number of elements have a contribution to KijElement stiffness :

    computation on each element ofKe =

    eBTeCBe d

    Stiffness K obtained by assembly procedure of all Ke

    21/27

    ransparen

    Isoparametric finite elements

    http://find/
  • 7/27/2019 FE Review Web

    26/31

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    p

    Reference element ( to limit the number of geometry to consider)introduction of the natural coordinates : ,

    geometry described by : x =

    Nnodei=1

    Ni(, )xi

    Example for a quadrangular element :

    1 2

    4 3

    1

    3

    2

    4

    Ni(, ) =14

    (1 i)(1 i)Example for a linear triangle :N1(, ) = 1 , N2(, ) = , N3(, ) =

    Isoparametric elementsthe geometry and the solution are interpolated with the sameshape functions

    uh =

    Nnode

    i=1

    Ni(, )di and x =Nnode

    i=1

    Ni(, )xi

    22/27

    ransparen

    Numerical integration

    http://find/
  • 7/27/2019 FE Review Web

    27/31

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    g

    Computation ofKe, fe,ext

    Numerical integration : only an approximation of the integrals iscomputed :

    ref

    g(, ) d Nint=1

    g(, )w

    (, ) : natural coordinates of integration pointsw : integration weight

    23/27

    ransparen

    Numerical integration

    http://find/
  • 7/27/2019 FE Review Web

    28/31

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    g

    Computation ofKe (2D case)

    Ke = eBTCB g(x,y)

    dxdy

    1 change of variable : (x, y) (, )

    Ke =

    eg(x, y) dx dy =

    ref

    g (x(, ), y(, )) | detJ(, )| d d

    2 numerical integration (quadrature formula)

    Ke =eg(x, y) dxdy

    =

    ref

    g (x(, ), y(, )) | detJ(, )| d d

    Nint

    =1

    g (x(, ), y(, )) | detJ(, )|w

    Ke =

    Nint=1

    BT(, )CB(, )| det J(, )|w

    only the shape functions and their derivatives with respect to

    and are needed to implement a finite element24/27

    ransparen

    Architecture of a FE code

    http://find/
  • 7/27/2019 FE Review Web

    29/31

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    Global level of FE code

    Equilibrium :

    Nelem

    Ae=1

    fe,int fe,ext

    = 0 Ku = fext

    Element level

    Computation :Ke =

    eBTCB dx

    fe,int =eBTAdx, fe,ext

    Integration points level

    Computation : = C

    = Bu

    uK

    e

    f

    e,int

    , fe,ex

    25/27

    ransparen

    Global computation - static

    http://find/http://goback/
  • 7/27/2019 FE Review Web

    30/31

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    General form to be solved :

    Ku = fDirect method : (Gauss elimination)

    triangular decomposition : K = LUwith L lower triangular part, U upper triangular part(diag(L)=1, diag(U)=diag(K))

    solution : Uu = yLy = f

    2 lower and upper triangular systems to be solved

    Iterative method : conjugate gradient or preconditionnedconjugate gradient

    use the terms in K directly, no need to decompose K

    efficient for large problems

    ifK symmetric definite matrix

    26/27

    ransparen

    Global computation - static

    http://find/
  • 7/27/2019 FE Review Web

    31/31

    SMA01

    Strong and weakforms

    Finite Elementapproximation

    Finite Elementformulation

    Implementationissues

    Gauss elimination : computation cost

    system ofn linear algebraic equations

    Triangular decomposition : K = LU

    additions n3n3

    n3multiplications n3n3

    divisions n(n1)2Lower triangular system : Ly = f

    additions n(n1)2 n2

    multiplications n(n1)2

    Upper triangular system : Uu = yadditions n(n1)2

    n2multiplications n(n1)2divisions n

    27/27

    http://find/