Fast Reactor Physics - Meetings and...

24
Fast Reactor Physics Neutron Modera,on in Fast Reactor Typical Neutron Spectrum of Sodiumcooled Fast Reactor (SFR) Where neutrons go – Neutron Balance Two Faces of Fast Reactors Breeder Burner Neutronic Codes for Fast Reactor Analysis Fuel Cycle Implementa,on as Burner or Breeder 25 4/15/12 Sodium Cooled Fast Reactor PHYSOR2012

Transcript of Fast Reactor Physics - Meetings and...

Fast Reactor Physics

§  Neutron  Modera,on  in  Fast  Reactor  –  Typical  Neutron  Spectrum  of  Sodium-­‐cooled  Fast  Reactor  (SFR)  –  Where  neutrons  go  –  Neutron  Balance  

§  Two  Faces  of  Fast  Reactors  –  Breeder  –  Burner    

§  Neutronic  Codes  for  Fast  Reactor  Analysis  §  Fuel  Cycle  Implementa,on  as  Burner  or  Breeder  

25  4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

Neutron Moderation in FR

§  In  Fast  Reactors  (FRs),  neutron  modera,on  is  avoided  by  using  high  A  materials  –  Slowing  down  power  of  acKnides  in  FR  is  smaller  than  structural  or  coolant  materials    

–  Significant  elasKc  scaMering  of  the    neutrons  aNer  fission,  but  very  liMle  energy  loss  from  elasKcs  scaMering  

–  Slowing-­‐down  power  of  most  FR  materials  is  less  than  1%  of  H’s  slowing  down  power  in  PWR    

§  Neutrons  are  either  absorbed  or  leak  from  core  –  What  is  typical  FR  Spectrum?  –  Where  neutrons  go  in  a  criKcal  FR?  

26  

ScaMering    XSs  (barn)  

Atomic  density  (#/barn-­‐cm)  

Slowing  down  powers  (cm-­‐1)  

TRU   4.0   3.2E-­‐03   1.1E-­‐04  

U   5.6   5.6E-­‐03   2.7E-­‐04  

Fe   3.4   1.9E-­‐02   2.3E-­‐03  

Na   3.8   8.2E-­‐03   2.7E-­‐03  

H  (PWR)   11.9   2.9E-­‐02   3.5E-­‐01  

4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Energy (eV)

Nor

mal

ized

Flu

x/Le

thar

gy

LWR (EPRI NP-3787)

SFR (ufg MC2 -2 metal)

Typical Neutron Spectrum of SFR

§  No  neutrons  below  1  keV    and  energy  tail  dependent  on  composi,ons    §  Reac,ons  with  ac,nides  beyond  resolved  resonance  range  (>20  keV);  unresolved  resonance  is  important  §  Most  probably  neutron  energy  of  ~400keV  and  lots  of  peaks  due  to  resonances  of  intermediate  weight  

nuclides:  resonance  treatment  of  structural  materials  is  important;  neutron  slowing-­‐down  model  is  important;  number  of  neutron  groups  and  group  boundaries  affect  neutronic  calcula,ons          

27  4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

Fe-56 Cross Sections

4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

28  

Red – total Green – elastic scattering Blue - capture

§  Many  resonances  of  intermediate  weight  nuclides  affects  fast  neutron  spectrum    

Where Neutrons Go - Neutron Balance

§  Neutrons  are  either  absorbed  or  leak  in  Fast  Reactors  –  A  long  diffusion  length  increases  neutron  leakage  more  than  20%,  while  ~4%  in  PWR  (reflector  effects  

are  important)  –  U-­‐238  capture  is  significant  (needs  more  fissile  to  achieve  criKcality  and  increases  fissile  breeding)  –  Fission  product  poison  is  small    –  Excess  reacKvity  is  small  in  breeder  or  break-­‐even,  but  high  in  burner      

PWR  SFR  

CR=1.0   CR=0.5  U-­‐235  or  TRU  mass  fracKon   4.2  %  LEU   13.9%  TRU/HM   33.3%  TRU/HM  

Source  fission   100.0%   99.8%   99.9%  (n,2n)   -­‐      0.2%      0.1%  

Loss  

leakage          3.5%   22.9%   28.7%  radial   3.0%   12.3%   16.6%  axial   0.4%   10.6%   12.1%  

absorpKon      96.5%   77.1%   71.3%  fuel   76.7%   71.8%   62.2%  (U-­‐238  capture)   (27.2%)   (31.6%)   (17.1%)  coolant   3.4%   0.1%   0.1%  structure   0.6%   3.7%   3.7%  fission  product   6.8%   1.5%   2.4%  control   9.0%   0.0%   2.9%  

29  4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

Comparison of One-Group Cross Sections

§  One-­‐group  XS  are  significantly  reduced  in  fast  systems,  but  possible  to  achieve  same  power  compared  with  thermal  reactors  (see  M.  Salvatores’  presentaKon)  

§  High  ra,o  of  U-­‐238  capture-­‐to-­‐Pu-­‐239  fission  –  U-­‐238  is  a  good  neutron  absorber  in  FRs  –  IniKal  core  requires  high  fissile  enrichment  to  achieve  criKcality  (  >  10%  LEU  for  U-­‐fuel)  –  High  internal  conversion    

§  Parasi,c  capture  is  smaller  compared  to  thermal  systems  –  ReacKvity  penalty  of  fission  products  is  small      

ReacKon  Thermal  systems   Fast  systems  

PWR   VHTR   SCWR   SFR   LFR   GFR  

U-­‐238  capture   0.91   4.80   0.95   0.20   0.26   0.32  

Pu-­‐239  fission   89.2   164.5   138.8   1.65   1.69   1.90  

Fe  capture   0.4   0.007  

FP  capture   90   0.2  

U-­‐238  capture  to  Pu-­‐239  fission  raKo   0.01   0.03   0.01   0.12   0.15   0.17  

ParasiKc  capture  to  Pu-­‐239  fission  raKo   1.0   0.13  

30  4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

Possible w/ Low Fission Cross Section in FR presented by M. Salvatores at ANL, May 2009

4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

31  

Fermi saw it right: neutron spectrum should stay „close“ to fission spectrum to get an excellent neutron balance The average cross sections in a spectrum close to the fission spectrum (i.e. in presence of „weak“ moderators) are much lower than in „thermalized“ spectra (factor ~100) So, to reach the same power Nfast~10xNtherm (i.e. higher power density) and !fast~10x!therm (i.e. higher neutron doses and material damage) Moreover, longer neutron mean free path: Excellent neutron balance: neutron excess to be used for breeding (or burning")!

!"=!#÷ ff NP

t!÷ /1"

Historical introduction

Extra Neutrons in Fast Reactors

4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

32  

SFR    (U/Pu  Fuel)  Oxide   Carbide   Metal  

ProducKon  

η  of  fissile  isotopes   2.283   2.353   2.450  

FerKle  fission  bonus  (ε)   0.356   0.429   0.509  

Available  extra  neutrons  (η–1+ε)   1.539   1.782   1.959  

Loss  

AbsorpKon  loss   0.231   0.199   0.218  

Leakage  Loss   0.046   0.051   0.082  

Fissile  decay  loss   0.031   0.029   0.032  

Net  extra  neutrons  for  breeding   1.331   1.503   1.627  

§  High  neutron  yield  (η  &  ε)  and  low  loss  are  favorable  for  breeding    §  η  and  ε  increase  as  spectrum  hardens  due  to  η  of  Pu-­‐239  and  U-­‐238  fission  threshold    –  See  Breeding  raKo  per  SFR  fuels  in  the  later  presentaKon  

Neutron  balance  (normalized  to  neutron  absorp4on  in  fission  isotopes)  

Fast Spectrum Physics Distinctions

§  Combina,on  of  increased  fission-­‐to-­‐absorp,on  ra,o  and  increased  number  of  neutrons  per  fission  in  U/Pu  fuel  yields  more  extra  neutrons    –  Enables  “breeding”  of  fissile  material  

§  In  fast  spectrum,  U-­‐238  capture  is  more  prominent  –  Higher  fissile  content  is  required  –  Enhances  internal  conversion  

§  Reduced  parasi,c  capture  and  improved  neutron  balance  –  Allows  the  use  of  convenKonal  stainless  steel  structures  –  Slow  loss  of  reacKvity  with  burnup  

§  Much  longer  neutron  diffusion  length  (10-­‐20  cm,  as  compared  to  2  cm  in  LWR)  –  Neutron  leakage  is  increased  (>20%  in  typical  designs,  reacKvity  coefficient)  –  Reflector  effects  are  more  important  –  Heterogeneity  effects  are  relaKvely  unimportant  

33  4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

Two Faces of Fast Reactors – Breeder & Burner

§  Fast  Reactors  have  been  developed  as  breeder  and/or  burner    –  Conversion  raKo  is  flexible  in  fast  reactors  (see  CR  vs.  TRU  mass  fracKon)    –  In  ABR-­‐1000  scoping  study,  flexible  CRs  (0.2  –  1.1)  was  achieved  without  significant  

impacts  on  safety  features      •  Intra-­‐assembly  design  parameters  were  changed,  while  number  of  assemblies  and  control  rods  are  

retained        

§  Breeder  –  Vision  of  closed  fuel  cycle  –  UKlize  extra  neutrons  for  conversion  to  Plutonium  –  High  number  of  neutrons  per  absorpKon  (η)  and  ferKle  fission  bonus  (ε)  are  favorable  –  Low  parasiKc  absorpKon  is  favorable  –  EffecKve  usage  of  extra  neutrons  for  high  conversion  (heterogeneous  core,  etc.)  

§  Burner  –  MA  management  –  High  fission-­‐to-­‐capture  raKo  of  ferKle  isotopes  is  favorable  for  MA  management  

4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

34  

Breeding Ratio per SFR Fuel

§  Hardened  neutron  spectrum  plays  an  important  role  for  high  breeding  raKo  in  U/Pu  fuel  cycle  

§  Metallic  fuel  has  hardest  spectrum  with  low  slowing  down  power  

§  Metallic  fuel  is  favorable  for  breeding  due  to  its  high  fuel  density  and  harder  neutron  spectrum  

§  Heterogeneous  core  configuraKon  uKlizes  neutrons  effecKvely,  which  increases  breeding  raKo    

4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

35  

C.E.  Till,  et  al,  “Fast  Breeder  Reactor  Studies,”  ANL-­‐80-­‐40,  ANL  (1980)  

ScaMering    XSs  (barn)  

Atomic  density  (#/barn-­‐cm)  

Slowing  down  powers  (cm-­‐1)  

TRU   4.0   3.2E-­‐03   1.1E-­‐04  U   5.6   5.6E-­‐03   2.7E-­‐04  Zr   8.1   2.6E-­‐03   4.6E-­‐04  

O   3.6   1.4E-­‐02   5.8E-­‐03  

C   3.9   1.6E-­‐02   1.0E-­‐02  

K-infinite of Depleted Uranium in Fast Reactors

4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

36  

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

!,&"

!,("

!,*"

#,!"

#,$"

#,&"

#,("

!" '" #!" #'" $!" $'" %!" %'" &!" &'"

!"#$#%

&'()

*""(+,*'-#.

($#($#

$*/(0

12(3

((

45&.6.

&$7(

89,.9%(:3;(

-./01"-./01"234"56"7.$%*"68.$%+"

§  K-­‐infinite  increases  iniKally  as  Pu  is  bred,  but  decreases  as  fission  products  are    accumulated  

§  Possible  to  maintain  cri,cality  w/o  external  fissile  feed  if  FPs  are  removed    –  Reprocessing  (historical  approaches)  –  remove  FPs  occasionally    –  Moving  depleKon  zone  (traveling  wave/CANDLE  concept)  –  escape  from  fission  product  dominant  zone  

Fission-to-Capture Ratios

§  Fissile  isotopes  are  likely  to  fission  in  both  thermal/fast  spectrum  §  Significant  Pu  fer,le  isotopes  are  destroyed  by  fission  in  FRs  

–  Minor  AcKnide  (MA)  generaKon  rate  is  reduced  in    FRs      

0.000.100.200.300.400.500.600.700.800.901.00

U235

U238

Np237

Pu238

Pu239

Pu240

Pu241

Pu242

Am241

Am243

Cm244

Fission/Absorption

PWRSFR

37  4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

Sequential Transmutation Rate from U-238

4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

38  

§  Fission-­‐to-­‐capture  ra,o  of  fer,le  isotopes  (Pu-­‐240,  Pu-­‐242)  plays  an  important  role  to  minimize  MA  genera,on  

Nn+1 ! ! cn

! cn +! f

n Nn = 1

1+! fn

! cn

N n

!"#$"!!

!$#""!!

%&'(! )*&'+! )*&,"! )*&,$! )*&,&! -.!

!"#$#%

&'()*+',#-

(%.*(/.+',#-

(0*#1

(2-&$(2

3456(

/012345!678913!

:489!678913!

TRU Compositions

§  Genera,on  of  Pu-­‐241  (key  waste  decay  chain)  is  suppressed  due  to  high  fission-­‐to-­‐capture  ra,o  of  Pu-­‐240  

§  MA  content  much  lower  in  fast  spectrum  system    

39  4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

PWR  50GWd/t  

U-­‐238  repeated  recycles   CORAIL-­‐TRU  Eq.  state  

ABR-­‐100  Eq.  state  thermal     fast  

Np-­‐237   4.9   0.2   0.8   1.8   1.6  Pu-­‐238   2.3   4.6   1.4   10.2   2.7  Pu-­‐239   46.5   38.8   66.6   24.4   47.7  Pu-­‐240   22.4   19.7   24.3   21.7   29.1  Pu-­‐241   13.7   11.1   2.1   7.1   4.5  Pu-­‐242   6.7   8.5   1.8   16.9   6.8  Am-­‐241   0.5   1.9   2.1   5.9   3.1  Am-­‐242m   0.01   0.1   0.1   0.1   0.2  Am-­‐243   1.5   3.3   0.5   4.6   2.2  Cm-­‐244   0.7   5.5   0.2   3.9   1.3  Cm-­‐245   0.04   1.8   ~0.0   1.1   0.4  Cm-­‐246   ~0.0   3.1   1.7   0.2  Cm-­‐247   0.4   0.2   0.02  Cm-­‐248   0.6   0.3   0.03  Cf-­‐252   9.4E-­‐4  

Typical Volume Fractions

§  For  SFR,  fuel  volume  frac,on  is  maximized    –  Fuel  pins  are  Kghtly  packed  in  hex-­‐can  with  wire-­‐wrap,  

which  increases  structure  volume  fracKon    –  High  blanket  fuel  volume  fracKon  for  addiKonal  

loading  of  U-­‐238  –  Lower  fuel  volume  fracKon  of  burner      

§  For  LFR,  high  coolant  volume  frac,on  is  required  to  reduce  coolant  velocity  

§  For  GFR,  high  coolant  volume  frac,on  is  required  due  to  inferior  heat  transfer  

4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

40  

PWR  

Fast  reactors  

SFR-­‐Breeder  SFR-­‐Burner   LFR   GFR  

Driver   Blanket  

Fuel   30   40   55   30   34   30  

Coolant   59   40   17   44   55   57  

Structure   11   20   28   26   11   13  

H

Fuel Pinand Wire

CornerSubchannel

EdgeSubchannel

InteriorSubchannel

Duct Wall

Fuel Pin D

P

Wire Wrap

Typical SFR Core Layouts

4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

41  

26NRC Topical Seminar on SFR, May 3, 2007

Conventional 1000 MWt SuperPRISM (Metal Core)

! Internal and external blankets allocated

– Result in conversion ratio of ~1

! Only 12 control rod locations with very low burnup reactivity losses

! Blanket, two row reflector, and boron carbide for radial shielding

!

!

"

!

!

!

"

!

"

!

!

!

#$%&'$()*+,-

./0'$/12(321/4'0()56-

718%12(321/4'0()5,-

7'92':0;$()*<=-

">%'28()?<-

@AB)=-

" "':;/81$C(D;/0$;2()+-

! !$%E1$C(:;/0$;2()6-

F;012()5G*-

26NRC Topical Seminar on SFR, May 3, 2007

Conventional 1000 MWt SuperPRISM (Metal Core)

! Internal and external blankets allocated

– Result in conversion ratio of ~1

! Only 12 control rod locations with very low burnup reactivity losses

! Blanket, two row reflector, and boron carbide for radial shielding

!

!

"

!

!

!

"

!

"

!

!

!

#$%&'$()*+,-

./0'$/12(321/4'0()56-

718%12(321/4'0()5,-

7'92':0;$()*<=-

">%'28()?<-

@AB)=-

" "':;/81$C(D;/0$;2()+-

! !$%E1$C(:;/0$;2()6-

F;012()5G*-

P

P

P

P

S

P

P

P

P

S

S

P

P

S

P

P

P

P

P

Outer core (102)

Reflector (114)

Shield (66)

P Primary control (15)

S Secondary control (4)

Inner core (78)

§  Breeder  has  blankets,  while  burner  does  not  §  Breeder  has  12  control  rods  with  low  reac,vity  swing,  while  burner  has  20  §  High  neutron  leakage  rate  requires  thick  radial  reflector,  and  radial  shield      

1000MWt  S-­‐Prism  (metallic)   1000  MWt  –  ABR  (metallic)  

42  

Homogeneous representation of fuel assembly or core

Heterogeneous fuel assembly

Whole core

Homogeneous representation of fuel assembly or core

Heterogeneous fuel assembly

Whole core

Conventional Approximations §  Detailed  space-­‐energy-­‐direc,on  analysis  performed  for  a  repeated  por,on  of  the  geometric  domain  (lajce  physics)  –  Lower  order  approximaKon  of  Boltzmann  equaKon  for  whole-­‐core  analysis  –  Assumed/approximate  boundary  condiKons  –  Condensed  space/energy  cross  secKons  –  Detailed  informaKon  recovered  by    de-­‐homogenizaKon  methods  

§  Nuclide  deple,on  and  buildup    using  quasi-­‐steady  model  

§  Faster  transients  modeled  with    condensed  (oken  single  point)    model  for  ,me-­‐dependent    amplitude  –  Accuracy  depends  on    frequency  of  kineKc-­‐parameter    and  space-­‐energy-­‐direcKon  flux    shape  recalculaKon  

4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

ENDF/B

Assembly, core design parameters

Operating Conditions

Fuel management

scheme

Transient scenario

Plant information

T/H, structural data Eqs. of state

RCT (Intra-assembly reconstruction)

VARI3D (Perturbation theory

code)

Kinetics and reactivity feedback

coefficients

System dynamics behaviors

Pin-wise information

Multi-group XS

Power, burnup, atomic density, etc.

ETOE2/MC2-3 (Slowing down Eq. Solver)

SASSYS/SAS4A (Coupled neutron kinetics, T/H and

Structural mechanics)

Flow and Temperature Distributions

SE2-ANL (Steady-state T/H Analysis)

ANL Fast Reactor Code Suite

43  4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

DIF3D/VARIANT/REBUS-3 (Whole-core fuel cycle analysis)

Neutronics Analysis

4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

44  

Thermal   Fast  Lawce  calculaKo

ns  

Example  Code   WIMS-­‐9     MC2-­‐3  

Geometry   Single  assembly  or  2x2  color  set  assemblies  

Homogeneous  medium  or  simple  1-­‐D  unit  cell    

EquaKon   Transport  equaKon   Slowing  down  equaKon  

Neutron  Groups   172   2082  

Major  outputs  

Assembly  homogenized,  burnup-­‐and  temperature  dependent  few-­‐

group  XS  and  Intra-­‐assembly  informaKon  

Assembly  homogenized,  temperature  dependent  broad-­‐

group  XS  

Who

le  core  de

pleK

on   Example  Code   Many  opKons   DIF3D/REBUS-­‐3  

Geometry   Whole  core  with  homogenized  node  

Whole  core  with  homogenized  node  

EquaKon   Diffusion  (Transport)  equaKon   Diffusion  (Transport)  equaKon  

Neutron  Groups   2  -­‐  4   9  -­‐  230  

Major  outputs   Power,  isotopic  distribuKon,  etc.   Power,  isotopic  distribuKon,  etc.  

v  There  have  been  recent  acKviKes  to  solve  whole-­‐core  transport/depleKon  equaKons  directly  without  group  condensaKon    process  (lawce  calculaKons).            

Roles of SFR in Fuel Cycle Options (Examples)

4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

45  

!Fuel Cycle Data Package (FCDP) System Datasheet PWR-UOX/PWR-MOX/SFR PWR-UOX to PWR-MOX and to SFR Burner for Full Recycling

!

FCDP Template Rev 0.1: December-15-2011 "!

NU FT-1.1 LEU Oxide driver fuel

LEU Co-extraction (Pu/RU)

DF Pu, RU

MA

FP

To ST-2 To ST-3

!RU

!"#$%&'!(!)*'+!

DU

From ST-1 FT-2.1 Mixed Oxide driver fuel

MOX Aqueous separation (TRU)

DF TRU/RU

FP

To ST-3

!

!"#$%&,!(!)*,+!

Pu, RU

From ST-1 FT-3.1 Metallic driver

fuel

Metal Electro-chemical separation (TRU)

DF RU, TRU

FP

To ST-3

!

!"#$%&-!(!)*-+!

RU, MA

From ST-2,3 RU, TRU

./"%#!!$%&'$()(*!+,-.(!/$$+0!&1**!2(!34%567(5!18!3(49%4:18;!),41%6-!96(*!7<7*(!9687.1%8-=! !

$(;(85#!>!!!!!!?!@,.64,*!>4,816:! AB!!!!!?!A1-7C,4;(5!B6(*! D+E!?!D4(--641F(5!+,.(4!E(,7.%4! ?!@67*(,4!+,-.(!A1-3%-,*!G(7C8%*%;1(-!!A>!!!?!A(3*(.(5!>4,816:! BD!!!!!!?!B1--1%8!D4%567.-! BE!!!!!?!B,-.'-3(7.46:!E(,7.%4! ?!@67*(,4!H,.(41,*!I.%4,;(!G(7C8%*%;1(-!$J>!?!$%&'(8417C(5!>4,816:! GE>!!?!G4,8-64,817-! HKL!?!H1M(5!KM15(! ?!@67*(,4!H,.(41,*!G4,8-3%4.!G(7C8%*%;1(-!E>!!!?!E(7%)(4(5!>4,816:! HN!!!!?!H18%4!N7.1815(-! >O!!!!!?!>'"OO!/341:,41*<0!>P!!!!?!341:,41*<!>'"OQ!6-(5!,-!9(4.1*(!:,.(41,*!/:,<!187*65(R!A>R!E>R!@>R!%4!2*(85!%9!.C(-(0=!

!

!

SFR

!

PWR

!

PWR

RU !

Material Flow Diagram

!! !

!Fuel Cycle Data Package (FCDP) System Datasheet PWR-UOX PWR-UOX Once Through

!

FCDP Template Rev 0.1: December-15-2011 "!

NU FT-1.1 LEU Oxide driver fuel

LEU

DF

!"#$%&'!(!)*'+!

DU

,-"%#!!$%&'$()(*!+,-.(!/$$+0!&1**!2(!34%567(5!18!3(49%4:18;!),41%6-!96(*!7<7*(!9687.1%8-=! !

$(;(85#!>?!!!!!@!>,.64,*!?4,816:! AB!!!!!@!A1-7C,4;(5!B6(*! D+E!@!D4(--641F(5!+,.(4!E(,7.%4! @!>67*(,4!+,-.(!A1-3%-,*!G(7C8%*%;1(-!!A?!!!@!A(3*(.(5!?4,816:! $H?!@!$%&'(8417C(5!?4,816:!! ! @!>67*(,4!I,.(41,*!J.%4,;(!G(7C8%*%;1(-!! ! ! @!>67*(,4!I,.(41,*!G4,8-3%4.!G(7C8%*%;1(-!!

!

!

PWR

Material Flow Diagram

!! !

!Fuel Cycle Data Package (FCDP) System Datasheet SFR – continuous recycling SFR - Continuous Recycling

!

FCDP Template Rev 0.1: December-15-2011 "!

NU FT-1.1 Metallic driver

fuel

Metal Electro-chemical separation (TRU)

DF RU, TRU

FP

To ST-1

!

!"#$%&'!(!)*'+!

From ST-1 RU, TRU

,-"%#!!$%&'$()(*!+,-.(!/$$+0!&1**!2(!34%567(5!18!3(49%4:18;!),41%6-!96(*!7<7*(!9687.1%8-=! !

$(;(85#!>?!!!!@!>,.64,*!?4,816:! AB!!!!!@!A1-7C,4;(5!B6(*! DBE!@!D%516:'7%%*(5!9,-.!4(,7.%4! @!>67*(,4!+,-.(!A1-3%-,*!F(7C8%*%;1(-!!E?!!!@!E(7%)(4(5!?4,816:! BG!!!!!!@!B1--1%8!G4%567.-! FE?!!@!F4,8-64,817-! @!>67*(,4!H,.(41,*!D.%4,;(!F(7C8%*%;1(-!! ! ! @!>67*(,4!H,.(41,*!F4,8-3%4.!F(7C8%*%;1(-!!

!

!

SFR

Material Flow Diagram

!! !

§  Once-­‐through  fuel  cycle    –  PWR(UOX)  

§  3  stage  con,nuous  recycle  –  PWR(UOX)  –  PWR(MOX)  –  SFR  (Burner)  

§  Con,nuous  recycle    –  SFR(Break-­‐even)  

Mass Flow Rates

4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

46  

Once  through   ConKnuous   ConKnuous  

PWR  PWR(UOX)    PWR(MOX)  SFR-­‐burner  

Break-­‐even  SFR  

Required  natural  resource   Natural  uranium   18825.0   7163.2   100.3  Products  from  fuel  fab.   Depleted  uranium   16633.5   6322.1  Products  from  reactor   Discharge  fuel   2191.5  

Products  from  separaKon  Recovered  uranium   727.4  Recovered  FPs   105.5   99.1  Others  (loss,  etc.)   8.2   1.2  

Uranium  uKlizaKon,  %   0.6   1.5   98.8  

§  Once-­‐through  fuel  cycle    –  Require  18,825  t  of  natural  uranium  (NU)  and  produce  2,192  t  of  used  nuclear  fuel  

§  3  stage  con,nuous  recycle    –  SFR  burns  Transuranics  (TRU)  generated  in  PWRs.  Required  NU  decreases  to  7,163  t  and  106  t  of  FPs  is  

sent  to  disposal  

§  Con,nuous  recycle  with  Break-­‐even  SFR  –  Required  NU  is  100.3  t  and  99.1  t  of  FPs  is  sent  to  disposal.  –  About  99%  of  uranium  resource  is  uKlized  to  generate  energy  

Metric  ton  to  produce  100  GWe-­‐year  

TRU Recycling in PWR: CORAIL-TRU

4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

47  

!"#$!!!$%&'((

( ))

!"#$ %&'()*$(++,-./0$%123,45$

*+,-.,(/01(*2.(( 3043.5*( 267((30859.*.4.77:(

;2.(2.*.10<.4.0+7(=>?!@#(677.8A9B(-7(,.7-<4.,(/01(8+9*-1.3B39-4<(0/(59+*04-+8(CD+E(1.5963.( *207.(0*2( .41-32.,(?FE( /01( *2-7(( *2.( 4+39.61((67(F>&(/+.9:(<4(AB(9-8-*-4<(

4+8A.1( 0/( G>H( 5-47( -4( *2.( 677.8A9BI( *0( 1.*6-4(304J.4*-0469( 301.( 5.1/018643.:(!A0+*( K%L(0/( *2.( /+.9( 5-47( 61.(G>H(5-47I(M2-32( 61.(5963.,(6*(*2.(5.1-52.1B(0/(*2.(677.8A9B:(;2.(=>?!@#(677.8A9B(-7(,-7596B.,(-4(N-<:(O:):(!77.8A9B(,6*6(61.(51.7.4*.,(-4(!55.4,-P(!:(

(

(

(

(

(

(

(

(

(

;2.(59+*04-+8(01(;?F(-7(8+9*-1.3B39.,(-4(*2.(=>?!@#(3043.5*(M-*2(*2.(6-8(0/(7*6A-9-Q-4<( *2.( 86*.1-69:( R*6A-9-Q6*-04( -859-.7( *26*( *2.( 304*.4*( 0/( 59+*04-+8( 01( ;?F(-4-*-699B( 906,.,( -4*0( *2.( 677.8A9B( -7( 3047*64*( 0J.1( *2.( 1.3B39.( 7*6<.7:( ;2.( =>?!@#(677.8A9B(3043.5*(364(*2.1./01.(A.(.4J-7-04.,(67(6(S,.96B$9-4.T(/01(*2.(59+*04-+8(01(;?FI(

;2-7(M01U(/03+7.7(04(*2.(=>?!@#(677.8A9B(3043.5*(*26*(267(A..4(7!!!(V0M47.9.3*-04( R*+,-.7( W&IKIOX:(Y.36+7.( ,.*6-9.,( -4/0186*-04( 04( *2-7A..4(510J-,.,(-4(?./:(&(64,(KI(049B(6(A1-./(,.731-5*-04(0/(-*(-7(<-J.4(2.1.(/01

01( *1647+164-37( C;?FE( -4( 1.*10/-**6A9.( #Z?( 677.8A9-.7( *26*( 364( 1.6,-9B(3+11.4*9B( +7.,( -4( *2.( #Z?( -4,+7*1B:( ;2.( 677.8A9B( ,.7-<4( .8590B7( A+164-+8( 0P-,.( CF>&E( 5-47( 64,( 8-P.,( 0P-,.( CG>HE( 5-47( CM-*2( D+( 01( ;5+1507.:( ;2.( /+.9( *B5.7( 26J.( A..4( ,.J.905.,( 64,( +7.,( .P*.47-J.9B( -4-4,+7*1-.7(0J.1(*2.(M019,I(69*20+<2(*2.(+7.(0/(G>H(/+.9(-7(40*(67(.P*.47-J.;2.(.41-32.,(+164-+8(/+.9(-7(.8590B.,(/01(7+5501*-4<(*2.(1.3B39-4<(36856-A0*2( *2.( G>H$5-4( 50M.1( 64,( *2.(

(

(

( !"#$%&$'$%%(")%*+,-")#%(,../0)%+1%23456*%577/89:;%

!"#$%&'$

(")$%&'$

*+,'-$.+/-$!

!!

!

"

#!

#"

$!

$"

! # $ % & " ' ( ) * #! ## #$ #% #& #" #' #( #)

+,+-.

/01234567128

930:;/05928128<=

%!

%"

&!

&"

"!

""

>4??4@10420:;/<0=

/01234567128 :;/05928128 >4??4@10420:;/

5

!!!!!!!!!!!

!"#$%&'()*)'+,-./012-3'4$56"1%&7875"9#'"9'+:;&'*)'

!"#$%&'()<)'+,-./012-3'4$56"1%&7875"9#'"9'+:;&'<)'

!

"

#!

#"

$!

$"

! # $ % & " ' ( ) * #!

+A5@1

/01234567128

930:;/059281280<0=

%!

%"

&!

&"

"!

""

>4??4@10420:;/<0=

/01234567128 :;/05928128 >4??4@10420:;/

!!!!!!!!!!!!!!!!!

"#!

TRU Recycling in PWR: CORAIL-TRU

§  Con,nuous  recycling  of  TRU  in  PWR  is  difficult  because  recovered  fuel  is  gejng  homer  and  dir,er    –  High  acKnide  generaKon  (10X)    

§  Require  external  fissile  feed    –  As  long  as  the  fissile  support  is  needed,  

uranium  uKlizaKon  is  less  than  2%  

4/15/12  

Sodium  Cooled  Fast  Reactor  -­‐  PHYSOR2012    

48  

!"#$!!!$%&'((

)'(

(((

!"#$%&$'$%()*+,-".)/%)0%!123%4,/53"/#%6/5"72.%,8%!,9-"7,8")/%:8,#2%)0%%;<=%>138"-27?73"/#%@()*+,-25%8)%(A<B6CDE1F%

!

"

#

$

%&'

'

(

#

%

&!

! ( " ) # *!"#$%

&'()*$+,%-.-%#*"./%*0.

$"

!&'(*%

*&'&(&#

!!"%

&

&'

&''

&'''

&''''

! ( " ) # *

!"#$%

&'()*$+,%-.1%20('1.3'2(#%

#

%

&!

&"&#

&*

'

(

#

%

&!

&)

&$

! ( " ) # *!"#$%

&'()*$+,%-.4*))*.%1%(4".

%)+33+'1.(*0%.

Values  were  compared  to  Pu-­‐recycling  case