Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power...

25
Fall 06, Sep 14 Fall 06, Sep 14 ELEC5270-001/6270-001 Lectu ELEC5270-001/6270-001 Lectu re 5 re 5 1 ELEC 5270-001/6270-001 (Fall 2006) ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003) (Formerly ELEC 5970-003/6970-003) Dual-Threshold Low-Power Devices Dual-Threshold Low-Power Devices Vishwani D. Agrawal Vishwani D. Agrawal James J. Danaher Professor James J. Danaher Professor Department of Electrical and Computer Department of Electrical and Computer Engineering Engineering Auburn University, Auburn, AL 36849 Auburn University, Auburn, AL 36849 http://www.eng.auburn.edu/~vagrawal http://www.eng.auburn.edu/~vagrawal [email protected] [email protected]
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    214
  • download

    0

Transcript of Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power...

Page 1: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 11

ELEC 5270-001/6270-001 (Fall 2006)ELEC 5270-001/6270-001 (Fall 2006)Low-Power Design of Electronic CircuitsLow-Power Design of Electronic Circuits

(Formerly ELEC 5970-003/6970-003)(Formerly ELEC 5970-003/6970-003)

Dual-Threshold Low-Power DevicesDual-Threshold Low-Power Devices

Vishwani D. AgrawalVishwani D. AgrawalJames J. Danaher ProfessorJames J. Danaher Professor

Department of Electrical and Computer Department of Electrical and Computer EngineeringEngineering

Auburn University, Auburn, AL 36849Auburn University, Auburn, AL 36849http://www.eng.auburn.edu/~vagrawalhttp://www.eng.auburn.edu/~vagrawal

[email protected]@eng.auburn.edu

Page 2: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 22

Subthreshold ConductionSubthreshold ConductionVgs – Vth -Vds

Ids = I0 exp( ───── ) × (1– exp ── ) nVT VT

Sunthreshold slope

0 0.3 0.6 0.9 1.2 1.5 1.8 V Vgs

Ids

1mA100μA10μA1μA

100nA10nA1nA

100pA10pA

Vth

Sub

thre

shol

dre

gion

Saturation region

Page 3: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 33

Thermal Voltage, Thermal Voltage, vvTT

VT = kT/q = 26 mV, at room temperature.

When Vds is several times greater than VT

Vgs – Vth Ids = I0 exp( ───── )

nVT

Page 4: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 44

Leakage CurrentLeakage Current Leakage current equals Leakage current equals IIdsds when when VVgsgs= 0= 0 Leakage current, Leakage current, IIdsds = = II00 exp(exp(-V-Vthth/nV/nVTT)) At cutoff, At cutoff, VVgsgs = = VVth th , and , and IIdsds = = II00

Lowering leakage to 10Lowering leakage to 10--bbII00

VVthth = = bnVbnVT T ln 10 = 1.5ln 10 = 1.5b b × 26 ln 10 = 90× 26 ln 10 = 90bb mVmV

Example: To lower leakage to Example: To lower leakage to II00/1,000/1,000

VVthth = 270 mV = 270 mV

Page 5: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 55

Threshold VoltageThreshold Voltage VVthth = = VVt0t0 + + γγ[([(ΦΦss++VVsbsb))½½- - ΦΦss

½½]] VVt0t0 is threshold voltage when source is at is threshold voltage when source is at

body potential (body potential (0.4 V for0.4 V for 180nm process180nm process)) ΦΦs s = = 22VVTT ln(ln(NNA A /n/ni i )) is surface potentialis surface potential γγ = (2 = (2qqεεsi si NNAA))½½ttox ox //εεoxox is body effect is body effect

coefficient (0.4 to 1.0)coefficient (0.4 to 1.0) NNAA is doping level = is doping level = 8×108×101717 cm cm-3-3

nnii = = 1.45×101.45×101010 cm cm-3-3

Page 6: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 66

Threshold Voltage, Threshold Voltage, VVsbsb=1.1V=1.1V Thermal voltage, Thermal voltage, VVTT = = kT/qkT/q = 26 mV = 26 mV ΦΦss = 0.93 V = 0.93 V εεoxox = 3.9×8.85×10 = 3.9×8.85×10-14-14 F/cm F/cm εεsisi = 11.7×8.85×10 = 11.7×8.85×10-14-14 F/cm F/cm ttoxox = 40 A = 40 Aoo

γγ = 0.6 V = 0.6 V½½

VVthth = = VVt0t0 + + γγ[([(ΦΦss++VVsbsb))½½- - ΦΦss½½] = 0.68 V] = 0.68 V

Page 7: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 77

A Sample CalculationA Sample Calculation

VVDDDD = 1.2V, 100nm CMOS process = 1.2V, 100nm CMOS process Transistor width, W = 0.5Transistor width, W = 0.5μμmm OFF device (OFF device (VVgsgs = = VVthth) leakage) leakage

II00 = 20nA/ = 20nA/μμm, for low threshold transistorm, for low threshold transistor II00 = 3nA/ = 3nA/μμm, for high threshold transistorm, for high threshold transistor

100M transistor chip100M transistor chip Power = (100×10Power = (100×1066/2)(0.5×20×10/2)(0.5×20×10-9-9A)(1.2V) = A)(1.2V) =

600mW 600mW for all low-threshold transistorsfor all low-threshold transistors Power = (100×10Power = (100×1066/2)(0.5×3×10/2)(0.5×3×10-9-9A)(1.2V) = A)(1.2V) =

90mW 90mW for all high-threshold transistorsfor all high-threshold transistors

Page 8: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 88

Dual-Threshold ChipDual-Threshold Chip

Low-threshold only for 20% Low-threshold only for 20% transistors on critical path.transistors on critical path.

Leakage power Leakage power = 600×0.2 + = 600×0.2 + 90×0.890×0.8

= 120 + 72= 120 + 72

= 192 mW= 192 mW

Page 9: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 99

Dual-Threshold CMOS Dual-Threshold CMOS CircuitCircuit

Page 10: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 1010

Dual-Threshold DesignDual-Threshold Design To maintain performance, all gates on To maintain performance, all gates on

the critical path are assigned low the critical path are assigned low VVth th .. Most of the other gates are assigned Most of the other gates are assigned

high high VVth th . But,. But, Some gates on non-critical paths may Some gates on non-critical paths may

also be assigned low also be assigned low VVthth to prevent to prevent those paths from becoming critical.those paths from becoming critical.

Page 11: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 1111

Integer Linear Programming (ILP) Integer Linear Programming (ILP) to Minimize Leakage Powerto Minimize Leakage Power

Use dual-threshold CMOS processUse dual-threshold CMOS process First, assign all gates low First, assign all gates low VVthth

Use an ILP model to find the delay (Use an ILP model to find the delay (TTcc) of the ) of the critical pathcritical path

Use another ILP model to find the optimal Use another ILP model to find the optimal VVthth assignment as well as the reduced leakage assignment as well as the reduced leakage power for all gates without increasing power for all gates without increasing TTcc

Further reduction of leakage power possible by Further reduction of leakage power possible by letting letting TTcc increase increase

Page 12: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 1212

ILP -ILP -VariablesVariables For each gate For each gate ii define two variables. define two variables. TTi i : : the longest time at which the the longest time at which the

output of gate output of gate ii can produce an event can produce an event after the occurrence of an input event after the occurrence of an input event at a primary input of the circuit. at a primary input of the circuit.

XXi i :: a variable specifyinga variable specifying low or high low or high VVthth for gate for gate i i ;; X Xii is an integer [0, 1], is an integer [0, 1],

1 1 gate gate ii is assigned low is assigned low VVth th ,,

0 0 gate gate ii is assigned high is assigned high VVth th ..

Page 13: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 1313

ILP - ILP - objective functionobjective function

minimize the sum of all gate leakage currents, minimize the sum of all gate leakage currents, given by given by

IILi Li is the leakage current of gate is the leakage current of gate ii with low with low VVthth IIHiHi is the leakage current of gate is the leakage current of gate ii with high with high VVthth Using SPICE simulation results, construct a Using SPICE simulation results, construct a

leakage current look up table, which is indexed leakage current look up table, which is indexed by the gate type and the input vectorby the gate type and the input vector . .

i

leakiddleak IVP

i

HiiLii IXIXMin 1

Leakage power:

Page 14: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 1414

ILP - ILP - ConstraintsConstraints For each gateFor each gate

(1)(1)

output of gate output of gate jj is fanin of gate is fanin of gate ii

(2) (2)

Max delay constraints for primary outputs Max delay constraints for primary outputs (PO)(PO)

(3) (3)

TTmaxmax is the maximum delay of the critical path is the maximum delay of the critical path

HiiLiiji DXDXTT 1

10 iX

maxTTi

Gate j

Gate i

Tj

Ti

Page 15: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 1515

ILP Constraint ExampleILP Constraint Example

Assume all primary input (PI) signals on the left arrive at Assume all primary input (PI) signals on the left arrive at the same time. the same time.

For gate 2, constraints areFor gate 2, constraints are

0

3

1

2

222202 1 HL DXDXTT

22222 10 HL DXDXT

HiiLiiji DXDXTT 1

Page 16: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 1616

ILP – Constraints (cont.)ILP – Constraints (cont.)

DDHi Hi is the delay of gateis the delay of gate i i with highwith high V Vthth

DDLi Li is the delay of gateis the delay of gate i i with lowwith low V Vthth

A second look-up table is constructed A second look-up table is constructed and specifies the delay for given gate and specifies the delay for given gate type and fanout number. type and fanout number.

Page 17: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 1717

ILP – Finding Critical DelayILP – Finding Critical Delay

TTmaxmax can be specified or be the delay of longest path can be specified or be the delay of longest path ((TTcc).).

To find To find TTc c , we change constraints (2) to an equation, , we change constraints (2) to an equation, assigning all gates low assigning all gates low VVthth

Maximum Maximum TTii in the ILP solution is in the ILP solution is TTcc.. If we replace If we replace TTmaxmax with with TTc c , the objective function , the objective function

minimizes leakage power without sacrificing minimizes leakage power without sacrificing performance.performance.

10 iX

maxTTi

1iX

Page 18: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 1818

Power-Delay TradeoffPower-Delay Tradeoff If we gradually increase If we gradually increase TTmaxmax from from TTc c , ,

leakage power is further reduced, because leakage power is further reduced, because more gates can be assigned high more gates can be assigned high VVth th ..

But, the reduction trends to become But, the reduction trends to become slower.slower.

When When TTmax max = = (130%)(130%) T Tcc , the reduction , the reduction about levels off because almost all gates about levels off because almost all gates are assigned high are assigned high VVth th . .

Maximum leakage reduction can be 98%. Maximum leakage reduction can be 98%.

Page 19: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 1919

Power-Delay TradeoffPower-Delay Tradeoff

1 1.1 1.2 1.3 1.4 1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Critical Path Delay

Nor

mal

ized

Lea

kage

Pow

er

C432

C880

C1908

Page 20: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 2020

Leakage ReductionLeakage Reduction

CircuitCircuitNumbeNumbe

r of r of gates gates

TTcc

(ns) (ns)

UnUnoptimizeoptimize

ddIIleakleak (μA) (μA)

OptimizeOptimized d

IIleakleak (μA) (μA)

((TTmaxmax=T=Tcc))

LeakageLeakageReductioReductio

nn%%

Sun Sun OS 5.7 OS 5.7 CPU s CPU s

OptimizedOptimizedIIleakleak (μA) (μA)

((TTmaxmax==1.251.25TTcc

))

Leakage Leakage Reduction Reduction

%%

SunSunOS 5.7 OS 5.7 CPU s CPU s

C432C432 160160 0.750.75 2.6202.620 1.0221.022 61.061.0 0.250.25 0.1320.132 95.095.0 0.250.25

C499C499 182182 0.390.39 4.2934.293 3.4643.464 19.319.3 0.310.31 0.2250.225 94.894.8 0.300.30

C880C880 328328 0.670.67 4.4064.406 0.5240.524 88.188.1 0.540.54 0.1530.153 96.596.5 0.530.53

C1355C1355 214214 0.400.40 4.3884.388 3.2903.290 25.025.0 0.330.33 0.2940.294 93.393.3 0.360.36

C1908C1908 319319 0.570.57 6.0236.023 2.0232.023 66.466.4 0.570.57 0.2040.204 96.696.6 0.560.56

C2670C2670 362362 1.261.26 5.9255.925 0.6590.659 90.490.4 0.680.68 0.1250.125 97.997.9 0.530.53

C3540C3540 10971097 1.751.75 15.62215.622 0.9720.972 93.893.8 1.711.71 0.3190.319 98.098.0 1.701.70

C5315C5315 11651165 1.591.59 19.33219.332 2.5052.505 87.187.1 1.821.82 0.3950.395 98.098.0 1.831.83

C6288C6288 11771177 2.182.18 23.14223.142 6.0756.075 73.873.8 2.072.07 0.6780.678 97.197.1 2.002.00

C7552C7552 10461046 1.921.92 22.04322.043 0.8720.872 96.096.0 1.591.59 0.4450.445 98.098.0 1.681.68

Page 21: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 2121

Dynamic & Leakage Power Dynamic & Leakage Power ComparisonComparison

VVTT (thermal voltage, (thermal voltage, kT/qkT/q) and ) and VVthth (threshold voltage) (threshold voltage) both depend on the temperature; leakage current also both depend on the temperature; leakage current also strongly depends on temperature.strongly depends on temperature.

Spice simulation shows that for a 2-input NAND gate Spice simulation shows that for a 2-input NAND gate

- with low - with low VVth th , , IIsubsub @ 90ºC = 10 × @ 90ºC = 10 × IIsubsub @ 27ºC @ 27ºC

- with high - with high VVth th , , IIsubsub @ 90ºC = 20 × @ 90ºC = 20 × IIsubsub @ 27ºC @ 27ºC To manifest the projected contribution of leakage to the To manifest the projected contribution of leakage to the

total power, we compare dynamic and leakage power @ total power, we compare dynamic and leakage power @ 90ºC.90ºC.

t

ds

th

gsth

eff

effoxsub V

V

nv

VVev

L

WCuI

t

exp1exp8.120

Page 22: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 2222

Dynamic & Leakage Power Dynamic & Leakage Power Comparison (cont.)Comparison (cont.)

Without considering glitches, the Without considering glitches, the dynamic power is estimated by an dynamic power is estimated by an event driven simulator, and is given byevent driven simulator, and is given by

We apply 1000 random test vectors at We apply 1000 random test vectors at PIs with a vector period of 120% PIs with a vector period of 120% TTc c , , and calculate the total number of and calculate the total number of weighted (by node capacitance) weighted (by node capacitance) transitions in the circuit. transitions in the circuit.

c

ii

iddinvdyn

dyn T

FOTVC

T

EP

2.11000

5.0 2

Page 23: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 2323

Dynamic & Leakage Power Dynamic & Leakage Power @90@90ooCC

CircuiCircuitt

PPdyndyn

(μW)(μW)PPleak1leak1

(μW)(μW)

PPleak1leak1/ /

PPdyn dyn %%PPleak2leak2

(μW)(μW)PPleak2leak2/ /

PPdyn dyn %%

C432C432 71.1771.17 26.2026.20 36.836.8 10.2210.22 14.314.3

C499C499 149.81149.81 42.9342.93 28.728.7 34.6434.64 23.123.1

C880C880 135.19135.19 44.0644.06 32.632.6 5.245.24 3.83.8

C135C13555

162.39162.39 43.8843.88 27.027.0 32.9032.90 20.320.3

C190C19088

185.60185.60 60.2360.23 33.433.4 20.2320.23 10.910.9

C267C26700

92.6492.64 59.2559.25 64.064.0 6.596.59 7.17.1

C354C35400

218.41218.41 156.22156.22 71.571.5 9.729.72 4.44.4

C531C53155

299.61299.61 193.32193.32 64.664.6 25.0525.05 8.48.4

C628C62888

215.12215.12 231.42231.42 108.0108.0 60.7560.75 28.228.2

C755C75522

229.13229.13 220.43220.43 96.296.2 8.728.72 3.83.8

Page 24: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 2424

Dynamic & Leakage Power Dynamic & Leakage Power @90@90ooCC

Pow

er

in μ

W

Page 25: Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Fall 06, Sep 14Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5ELEC5270-001/6270-001 Lecture 5 2525

SummarySummary Leakage power is a significant fraction of Leakage power is a significant fraction of

the total power in nanometer CMOS devices.the total power in nanometer CMOS devices. Leakage power increases with temperature; Leakage power increases with temperature;

can be as much as dynamic power.can be as much as dynamic power. Dual threshold design can reduce leakage.Dual threshold design can reduce leakage.

Reference: Y. Lu and V. D. Agrawal, “Leakage Reference: Y. Lu and V. D. Agrawal, “Leakage and Dynamic Glitch Power Minimization Using and Dynamic Glitch Power Minimization Using Integer Linear Programming for Integer Linear Programming for VVthth Assignment Assignment and Path Balancing,” and Path Balancing,” Proc. PATMOSProc. PATMOS, 2005, pp. , 2005, pp. 217-226, access paper at217-226, access paper at http://www.eng.auburn.edu/~vagrawal/TALKS/PATMOS-13http://www.eng.auburn.edu/~vagrawal/TALKS/PATMOS-134.pdf4.pdf