Experimental validation of FENDL-3 nuclear data library Paola Batistoni

30
Experimental validation of FENDL-3 nuclear data library Paola Batistoni ENEA - Fusion and Nuclear Technology Dept. Frascati - ITALY FENDL-3 1 st Research Co-ordination Meeting IAEA Hq, Vienna, 2-5 December 2008 Associazione Euratom-ENEA sulla fusione

description

Associazione Euratom-ENEA sulla fusione. Experimental validation of FENDL-3 nuclear data library Paola Batistoni ENEA - Fusion and Nuclear Technology Dept. Frascati - ITALY FENDL-3 1 st Research Co-ordination Meeting IAEA Hq, Vienna, 2-5 December 2008. - PowerPoint PPT Presentation

Transcript of Experimental validation of FENDL-3 nuclear data library Paola Batistoni

Page 1: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Experimental validation of FENDL-3 nuclear data

library

Paola BatistoniENEA - Fusion and Nuclear Technology Dept.

Frascati - ITALY

FENDL-3 1st Research Co-ordination MeetingIAEA Hq, Vienna, 2-5 December 2008

Associazione Euratom-ENEA sulla fusione

Page 2: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Machine operation, protection, maintenance & Safety

• Nuclear heating (e.g.: < 14 KW in TFC)

• Fast neutron fluence (e.g.: <1023 n/m2 Nb3Sn, <5•1021 n/m2

insulators) < 1(3) appm He-production thick (thin) < 1 dpa for re-welding• Integrated dose (e.g. <10 MGy to insulators) • Activation (short and long term, dust and ACP estimate, waste estimate)• Shutdown dose rates (repair, replacement maintenance)• Decay heat (heat removal capabilities after accident) • Shielding properties of inner components (streaming paths)

• Tritium breeding Calculations validated by experiments (nuclear data &

codes) with assessment of uncertainties

Radiation loads in fusion devices (e.g. ITER)

(e.g. ITER: 500 MW fusion power, 1.78 x 1020 n/s)

Page 3: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Neutronic calculations and analyses shall conform to the ITER Management and Quality Program.

ITER Project Management and Quality Program: Quality Assurance in Neutronic Analyses (ITER_D_23H9A4, May 2006)

• Computer software & data must be verified and validated prior to use

• …………. • The FENDL-2.1 library is the reference nuclear data library for

nuclear analyses for ITER• ……

QA in ITER Neutronics Analyses

FENDL-2.1 has been verified and validated for neutronic calculations using available fusion benchmark experiments performed during the ITER R&D activities

Same procedure for FENDL-3

Page 4: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Frascati 14-MeV Neutron Generator (FNG)

• ENEA, Frascati Research Centre (Italy)

• Accelerator based T(d, n) Ed =300 keV

• European facility for fusion neutronics

Shielding activation development of detectors

• Operating since 1992

• MAIN PARAMETERS 

14-MeV neutron intensity 1011 n/s14-MeV neutron flux 1010 n/(cm2s)D+ beam energy / current 260 keV / 1 mATarget tritium content 370 GBq

Generatore di neutroni FNG

Page 5: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Benchmark experiments performed at FNG and used for FENDL-2.1 /MC validation :

• Stainless steel experiment

• Bulk shield experiment (inboard shield, stainless steel & water)

• Streaming experiment (shield with streaming channel, stainless steel & water)

• Silicon Carbide (SiC) block

• Tungsten block

• HCPB Breeder blanket (Be / Li2CO3) experiment

• HCLL Breeder blanket (LiPb) experiment in progress

• Shutdown dose rate

Fusion neutronics experiments at FNG

All experiments available in SINBAD Fusion benchmarks database (NEA/OECD)

Page 6: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Main materials in FNG experiments

ENDF/B-VI.8ENDF/B-VI.8

ENDF/B-VIENDF/B-VI

ENDF/B-VI ENDF/B-VI

Li-6Li-7

JENDL-FFJENDL-FFENDF/B-VI (C-nat)C-12

ENDF/B-VI.8JENDL-FFENDF/B-VIO-16

Pb

JENDL-FFJENDL-FFENDF/B-VIBe-9

ENDF/B-VI.8ENDF/B-VIENDF/B-VICr-50,52,53,54

ENDF/B-VI.8JENDL-FF (W-nat)ENDF/B-VIW-182,3,4,6

JEFF-3.0 (EFF-3.0)

ENDF/B-VI.8ENDF/B-VIENDF/B-VI

ENDF/B-VIENDF/B-VI

Ni-58,60Ni61,62,64

JEFF-3.0 (EFF-3.1)EFF-3.0

ENDF/B-VI

Fe-56

FENDL-2.1FENDL-2.0FENDL-1.0Materials

Si-28 BROND-2 ENDF/B-VI.8 ENDF/B-VI.8

Fe-54,57,58,59

ENDF/B-VI

ENDF/B-VI ENDF/B-VI

ENDF/B-VI ENDF/B-VI.8

Page 7: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Mock-up of the ITER inboard first wall/shielding blanket/vacuum vessel/toroidal magnet

Measurements of the neutron flux as a function of depth by activation foils

Bulk Shield experiment

Page 8: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Neutron energyE> 10 MeV

Nb-93(n,2n)

Ni-58(n,2n)

Bulk Shield experiment

Page 9: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Neutron energyE> 3 MeV

Fe-56(n,p)

Al-27(n,a)

Bulk Shield experiment

Page 10: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Neutron energyE> 0.8 MeV

Ni-58(n,p)

In-115(n,n’)

Bulk Shield experiment

Page 11: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Neutron energyE eV

Mn-55(n,)

Au-197(n,)

Bulk Shield experiment

Page 12: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Nuclear heating well predicted within 15% uncertainty in FW, SB and VV 30% in TF coils (underestimation)

Neutron and gamma fluxes (He-production, radiation damage) well predicted within 15% uncertainty at the VV and 30% at the TF coil (underestimation)

Bulk Shield experimentNuclear heating in steel and copper

Conclusions :

Page 13: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Mock-up of the ITER inboard first wall/shielding blanket /vacuum vessel/toroidal magnet with a streaming channel (3 cm diam)

Measurements of the neutron flux as a function of depth by activation foils

in the channel in the box in the shield behind

Streaming experiments

Page 14: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Nb-93(n,2n)E > 10 MeV

Al-27(n,a)E > 5 MeV

Streaming experiment

Page 15: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Ni-58(n,p)E > 1.5 MeV

Au-197(n,g)E 5 eV

Streaming experiment

Page 16: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Activation measutrements in the cavity Similar results are obtained with the other activation reactions

Streaming experiment

Results & uncertainties similar to those obtained in bulk shield

The presence of penetrations does not deteriorate C/E values

Conclusions :

Page 17: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Measurements of the neutron flux in four positions at different depths by activation foils

Silicon Carbide block (SiC, advanced low-activation structural material)

Siicon Carbide (SiC) experiments

Page 18: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 10 20 30 40 50 60

Depth (cm)

C/E

Nb-EFF-2.4

Nb-FEN-2

Nb-EFF-3

Nb-FEN-2.1Nb-93(n,2n)

Al-27(n,a)

Ni-58(n,p)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0 10 20 30 40 50 60

Depth (cm)

C/E

Al-EFF-2.4

Al-FEN-2

Al-EFF.3

Al-FEN-2.1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0 10 20 30 40 50 60

Depth (cm)

C/E

Ni-EFF-2.4

Ni-FEN-2

Ni-EFF.3

Ni-FEN-2.1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Depth (cm)

C/E

Au-197(n,g)-EFF-2.4

Au-197(n,g)-FEN-2.0

Au-197(n,g)-EFF-3.0

Au-197(n,g)-FEN-2.1Au-197(n,g)

E > 3 MeV

E > 1 MeV

E eV

E > 10 MeV

Conclusions: Significant underestimation of the fast neutron flux

Page 19: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

DENSIMET-176 (93.2%w W, 2.6%w Fe, 4.2%w Ni, 17.70 g/cm3). DENSIMET-180 (95.0%w W, 1.6%w Fe, 3.4%w Ni, 18.075 g/cm3)

Measurements of the neutron flux in four positions at different depths by activation foils

Tungsten block (armour material for plasma facing components)

Tungsten (W) experiments

Page 20: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 5 10 15 20 25 30 35 40

Depth (cm)

C/E

Nb-93(n,2n) / EFF-2Nb-93(n,2n) / FEN-2Nb-93(n,2n) / JEN-3.2Nb-93(n,2n) / FEN-2.1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 5 10 15 20 25 30 35 40

Depth (cm)

C/E

Zr-90(n,2n) / EFF-2Zr-90(n,2n) / FEN-2Zr-90(n,2n) / JEN-3.2Zr-90(n,2n) / FEN-2.1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 5 10 15 20 25 30

Depth (cm)

C/E

Ni-58(n,2n) / EFF-2Ni-58(n,2n) / FEN-2Ni-58(n,2n) / JEN-3.2Ni-58(n,2n) / FEN-2.1

E > 10 MeV

Nb-93(n,2n)

Zr-90(n,2n) Ni-58(n,2n)

W experiment

Page 21: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0 5 10 15 20 25 30 35 40

Depth (cm)

C/E

Ni-58(n,p) / EFF-2Ni-58(n,p) / FEN-2Ni-58(n,p) / JEN-3.2Ni-58(n,p) / FEN-2.1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 5 10 15 20 25 30 35 40

Depth (cm)

C/E

Al-27(n,a) / EFF2Al-27(n,a) / FEN-2Al-27(n,a) / JEN-3.2Al-27(n,a) / FEN-2.1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 5 10 15 20 25 30 35 40

Depth (cm)

C/E

Fe-56(n,p) / EFF-2Fe-56(n,p) / FEN-2Fe-56(n,p) / JEN-3.2Fe-56(n,p) / FEN-2.1

E > 3 MeV

Ni-58(n,p)

Fe-56(n,p)Al-27(n,a)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

0 5 10 15 20 25 30 35 40

Depth (cm)

C/E

Au-197(n,g) / EFF-2Au-197(n,g) / FEN-2Au-197(n,g) / JEN-3.2Au-197(n,g) / FEN-2.1

Au-197(n,g)

E > 1 MeV E eV

E > 3 MeV

W experiment

Conclusion: Significant improvement from FENDL-2.0 to FENDL-2.1

Page 22: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Dose rate experiments

gamma spectrometer (NE 213 liquid scintillator)

tissue-equivalent dose rate meter(NE 105 plastic scintillator)

Mock-up of the ITER vacuum vessel

Measurement of the shutdown dose rate after long irradiation with 14 MeV neutrons

Page 23: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

• Numerical tools developed combining transport & activation codes (MCNP,FISPACT)

• Validation of different approaches of combination: D1S, R2S

Conclusions:

Shut down dose rate at the vacuum vessel level can be predicted within 25% uncertainty up to 4 months decay time

Page 24: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Measurements of tritium production in 4 positions P.2 – P.8 by Li2CO3 pellets (nat. Li)(12 pellet/position) and of the neutron flux in the central Be layer by activation foils

Mock-up of the EU breeder blanket Helium Cooled Pebble Bed (HCPB)

HCPB Breeder blanket experiments

Page 25: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Total uncertainty on C/E comparison ~9% (2 ) C/E sligthly underestimated by 5-15%, generally within total uncertainty

Conclusions:

C/E Comparison for T measurementsAnalysis performed with EFF-3Very similar results obtained with FENDL-2.1

Page 26: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Cross section sensitivity/uncertainty analysis (FZK, NEA-DB)

Sensitivities (%/%) of calculated T- production vs cross sections

Total uncertainties (2) on total T- production vs cross sections

 cross

section

Li-6(n,t) Li-7(n,n't)

TUD 1 TUD 3 TUD 5 TUD 7 TUD 1 TUD 3 TUD 5 TUD 7

Be-9elastic 1.999 2.091 1.784 1.672 0.048 -0.001 -0.053 -0.130

(n,2n) 0.716 0.710 0.664 0.611 -0.016 -0.191 -0.398 -0.619

Li-6 (n,t) 0.326 0.248 0.179 0.152 0.000 0.000 0.000 0.000

Li-7 (n,n't) 0.001 0.001 0.000 0.000 0.990 0.982 0.972 0.960C-12,O-

16   < 0.1

Be9 Li6 Li7 O16 C12 total

TUD 1 3.5% 0.30% 0.60% 0.30% 0.10% 3.58%

TUD 3 4.3% 0.20% 0.40% 0.30% 0.03% 4.33%

TUD 5 4.0% 0.20% 0.30% 0.40% 0.03% 4.04%

TUD 7 3.5% 0.10% 0.20% 0.40% 0.03% 3.53%

Page 27: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

0.80

0.90

1.00

1.10

1.20

1.30

0 5 10 15 20 25

Depth (cm)

C/E

Au(n,g) IRDF02 Nb(n,2n) IRDF02

Al(n,a) IRDF02 Ni(n,p) IRDF02

case c) EFF2.4/Be-9 from FENDL2.0

0.80

0.90

1.00

1.10

1.20

1.30

1.40

0 5 10 15 20 25

Depth (cm)

C/E

Au(n,g) IRDF02 Nb(n,2n) IRDF02

Al(n,a) IRDF02 Ni(n,p) IRDF02

case d) JEFF-3.1

0.80

0.90

1.00

1.10

1.20

1.30

0 5 10 15 20 25

Depth (cm)

C/E

Au(n,g) Nb(n,2n)

Al(n,a) Ni(n,p)

case e) FENDL-2.1

Analysis of activation measurements in Beryllium

Conclusions

Neutron flux well predicted in Be within 5-10% uncertainty (shielding properties)

Page 28: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

HCLL Breeder blanket experiments (2008-2009)

Mock-up of the EU breeder blanket Helium Cooled Pebble Bed (HCPB)

Measurements of tritium production in 15 positions by• Li2CO3 pellets (nat. Li & Li-6

enr.)• TLDs (TLD-600,TLD-700)and of the neutron flux in LiPb by activation foils

(started on 26/11, in progress)

LiPb (15.7 at% nat-Li) 630 kg

Eurofer 11 plates, 9 mm thick

Polyethylene

Page 29: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

0

20

40

60

80

100

120

140

160

180

0 10 20 30Depth (cm)

T-S

peci

fic A

ctiv

ity (

Bq/g

) . Natural Li

Li-6 enriched 95%

The use of two types of Li2CO3 pellets (nat. Li and 95% Li-6 enriched) will allow to separate contribution from Li-6 and L-7 tritium producing reactions.

Page 30: Experimental validation  of FENDL-3 nuclear data library Paola Batistoni

Conclusions

• Shielding, activation and dose rate calculations for ITER validated for many materials / components using FENDL- 2.1 reference library

• Neutron fluxes predicted in stainless steel/water shield assemblies within 30% uncertainty at 1 m depth. Underestimation of fast neutron flux observed

• Significant underestimation of the fast neutron flux is found in SiC with FENDL-2.1 (20% at 50 cm)

• Significant improvement from FENDL-2.0 to FENDL-2.1 in tungsten

• Very good prediction of neutron flux in HCPB blanket mock-up (Be/ Li2CO3) Tritium production underestimated by 5-15%, generally within total uncertainty ( 9%, 2)•HCLL blanket experiment in progress

•Only main structural in vessel materials investigated so far