Ensayo de metalografía.docx

36
UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECÁNICA “INFORME DE ENSAYO DE METALOGRAFÍA” PROFESOR: ING. Jose Luis Sosa ESTUDIANTES: Cruz Soto Diego Joel 20132169G Samame Romero Anderson 20132132F Villachica Carranza Herberth 20130284C Vega López Jesús Alexis 20130114K CarhutantaChilcónWolfran 20130112H SECCION:I CIENCIA DE LOS MATERIALES

Transcript of Ensayo de metalografía.docx

Page 1: Ensayo de metalografía.docx

UNIVERSIDAD NACIONAL DE INGENIERIA

FACULTAD DE INGENIERIA MECÁNICA

“INFORME DE ENSAYO DE METALOGRAFÍA”

PROFESOR: ING. Jose Luis Sosa

ESTUDIANTES: Cruz Soto Diego Joel 20132169G

Samame Romero Anderson 20132132F

Villachica Carranza Herberth 20130284C

Vega López Jesús Alexis 20130114K

CarhutantaChilcónWolfran 20130112H

SECCION:I

FECHA DE PRESENTACIÓN: 18/11/2013

Lima – Perú

2013

CIENCIA DE LOS MATERIALES

Page 2: Ensayo de metalografía.docx

1

ÍNDICE

1.- OBJETIVOS…………………………………………………………………….

2.- MARCO TEORICO

3.- EQUIPOS Y MATERIALES UTILIZADOS……………………………………

4.- PROCEDIMIENTO………...........................................................................

5.- OBSERVACIÓN DE LAS PROBETAS ATACADAS……………………….

6.- CONCLUSIONES…………………………………………………...................

7.- CUESTIONARIO DE ENSAYO METALOGRÁFICO………………………..

8.- BIBLIOGRAFÍA………………………………………………………………….

Page 3: Ensayo de metalografía.docx

2

OBJETIVOS

Estimar, en base a las fotografías captadas en el laboratorio,

el contenido decarbono de los materiales estudiados.

Reconocer los equipos utilizados en el ensayo de metalografía

Relacionar las características estructurales de un metal o aleación con sus

propiedades físicas o mecánicas.

Analizar las muestras ensayadas por medio de la observación en un

microscopio metalográfico

Adquirir algunas nociones acerca de las propiedades de las fases presentes en

las aleaciones hierro-carbono

Aplicar y conocer los tipos de químicos en el ataque a la superficie de nuestro

material

Determinar los factores de los cuales depende el tamaño de grano de un

material y conocer su influencia sobre las propiedades mecánicas de este.

Identificar los pasos que se deben seguir para realizar un análisis

metalográfico.

Page 4: Ensayo de metalografía.docx

3

MARCO TEÓRICO

4.1 Metalografía

La metalografía es una disciplina de la ciencia que se encarga de examinar y determinar los componentes en una muestra de metal, haciendo uso de varios niveles de magnificación que pueden ir desde 20x hasta 1 000 000x. También se conoce como el proceso entre la preparación de una muestra de metal y la evaluación de su microestructura.

Es la parte de la metalurgia que estudia las características estructurales o de constitución de los metales y aleaciones, para relacionarlas con las propiedades físicas, mecánicas y químicas de los mismos.

La importancia del examen metalográfico radica en que, aunque con ciertas limitaciones, es capaz de revelar la historia del tratamiento mecánico y térmico que ha sufrido el material.

A través de este estudio se pueden determinar características como el tamaño de grano, distribución de las fases que componen la aleación, inclusiones no metálicas como sopladuras, microcavidades de contracción, escorias, etc., que pueden modificar las propiedades mecánicas del metal.

El examen metalográfico puede realizarse antes de que la pieza sea destinada a un fin, a los efectos de prevenir inconvenientes durante su funcionamiento, o bien puede ser practicado sobre piezas que han fallado en su servicio, es decir, piezas que se han deformado, roto o gastado. En este caso la finalidad del examen es la determinación de la causa que produjo la anormalidad.

Básicamente, el procedimiento que se realiza en un ensayo metalográfico incluye la extracción, preparación y ataque químico de la muestra, para terminar en la observación microscópica. Si bien la fase más importante de la metalografía es la observación microscópica, la experiencia demuestra que poco se puede hacer si alguna de las operaciones previas se realiza deficientemente.

Si la etapa de preparación no se realiza cuidadosamente es posible que se obtenga una superficie poco representativa del metal y sus características. Una preparación incorrecta puede arrancar inclusiones no metálicas, barrer las laminas de grafito en una muestra de fundición, o modificar la distribución de fases si la muestra ha sufrido un sobrecalentamiento excesivo.

Page 5: Ensayo de metalografía.docx

4

Análisis Macroscópico

El análisis macroscópico es aquel que se puede realizar a simple vista, es decir sin necesidad de microscopio. El rango de tamaño inicia en 10-3m en adelante. El análisis macroscópico se puede usar en:

Líneas de flujo en materiales forjados.

Capas en herramientas endurecidas por medio de tratamiento térmico.

Zonas resultado del proceso de soldadura.

Granos en algunos materiales con tamaño de grano visible.

Marcas de maquinado.

Grietas y ralladuras.

Orientación de la fractura en fallas.

Análisis Microscópico

Aquel tipo de análisis que no se puede realizar a simple vista, (menor a 10-3m).

Observar las estructuras microscópicas en materiales ayuda a comprender el comportamiento de los mismos. El microscópico se puede usar en:

Tamaño de grano.

Límites de grano y dislocaciones.

Análisis microestructural.

Distribución de fases en aleaciones.

Para comprender el análisis microscópico es necesario tener claridad sobre el concepto de grano y el funcionamiento del microscopio metalográfico.

A. GRANOS

Los metales son materiales de estructura policristalina, este tipo de materiales están compuestos por una serie de pequeños cristales los cuales se conocen convencionalmente como granos. Cada tipo de grano desde su concepción obtiene diferentes características físicas, por ejemplo, la orientación del mismo y la rugosidad en la superficie.

Page 6: Ensayo de metalografía.docx

5

Determinacion de tamaño de grano

Al considerar las propiedades de un material policristalino generalmente se determina el tamaño de grano. En este sentido existen técnicas que especifican el tamaño de grano en función del promedio del volumen de grano, del diámetro o del área. Probablemete el mátodo más usado es el desarrollado por la American SocietyforTesting and Materials (ASTM). ASTM tiene preparadas 10 cartas normalizadas, con granos de diferente tamaño medio de grano. Se ha asignado un índice a cada una de estar cartas, del 1 al 10, denominado índice de tamaño de grano; el mayor índice tiene el menor tamaño de grano. Las probetas se deben preparar cuidadosamente para revelar a estructura granular, que se fotografía a 100 aumentos. El tamaño de grano se asigna por comparación con el índice del tamaño de grano de la carta mas parecida a la microfotografía. Asi, una relativamente sencilla cómoda determinación se utiliza profusamente en siderurgia.

La asignación del índice del tamano de grano mediante las diferentes cartas se realiza como sigue. El indice de tamaño de grano se designa por n y el número medio de granos por pulgada cuadrada a 100 aumentos por N. Ambos parámetros relacionados por a siguiente expresión:

N=2n−1

Cuando el aumento a es diferente de 100:

( a100 )

2

N=2n−1

Page 7: Ensayo de metalografía.docx

6

Figura 2:Funcionamiento de un microscopio óptico reflexivo. Los microscopios ópticos funcionan básicamente por medio de lacombinación entre el sistema óptico y la iluminación.

B. MICROSCOPIO

Como se puede ver en la parte (a) de la figura 2 se muestran 3 granos, todos de diferente color, lo que indica que poseen una microestructura diferente. En la parte (b) se muestran

Page 8: Ensayo de metalografía.docx

7

los mismos tres granos que como se nota, poseen superficies dirigidas en diferentes ángulos; la diferencia entre la dirección que toman los haces de luz proyectados sobre dichas superficies, refleja contrastes sobre la lente creando la imagen que podemos observar en el microscopio, parte (c). Adicionalmente los átomos en los límites de grano son más reactivos durante el ataque químico y se disuelven en mayor cantidad que el grano mismo, por ello la reflexividad cambia y se acrecienta su visibilidad.

PROCEDIMIENTO DE ENSAYO METALOGRÁFICO

A. SECCIÓN Y EXTRACCIÓN

Hay veces que una vez recibido el material es necesario seccionarlo o cortarlo en una forma determinada. Se trata de lograr superficies planas con la menor deformación posible. En general, los mejores resultados se obtienen con corte por abrasivo húmedo. Los materiales blandos se cortan con discos duros y viceversa. Un factor a tener en cuenta es la temperatura generada por rozamiento en el corte, el cual debe realizarse con un liquidolubrirefrigerante, (en el caso del disco abrasivo y/o serrucho mecánico o manual), de lo contrario se estaría modificando la estructura original. Si se corta con soplete se debe eliminar la zona afectada por el calor mediante algún método mecánico.

Es necesario determinar la parte de la pieza a la que se le desea realizar el análisis. El tamaño de la muestra debe ser tal, que no sea mayor que el volumen de un cilindro imaginario que tiene las siguientes dimensiones diámetro de 20 mm y altura de 15 mm.Cuando el material a examinar es blando (acero al carbono recocido, aleaciones blandas de Al o de Cu), el corte se realizará con una sierra a mano y de diente grande (mientras más blando sea el material, más grande debe ser el diente de la sierra a utilizar, con el objeto de que la viruta sea fácilmente extraída de la zona de corte, evitando que al agruparse se adhiera a la superficie a estudiar, falseando la observación posterior). Los materiales duros (aceros aleados, templados, no ferrosos endurecidos) deben cortarse con discos abrasivos muy delgados de carbundum a altas velocidades y gran refrigeración. Los metales frágiles como fundición blanca, aceros templados, bronces ricos en estaño, etc, pueden romperse con golpe de martillo para extraer la probeta. En el caso del acero (y de algunas otras aleaciones), es necesario evitar el calentamiento de la muestra al hacer el corte.

B. LIJADO (O DESBASTE) Y PULIDO

Page 9: Ensayo de metalografía.docx

8

Desbaste grueso

Este se logra mejor en un esmeril húmedo de banco usando lijas de 180, 300 y 600. El objetivo del lijado es obtener una superficie plana, libre de toda huella de marcas de herramientas, y en la que todas las marcas del lijado sigan la misma dirección. Se puede lijar en seco a condición de no producir cambios estructurales por el calentamiento de la muestra. También se deben evitar presiones excesivas que calienten o distorsionen la superficie a observar. Luego, la muestra se lava y se seca antes de pasar a la próxima etapa del lijado.

Desbaste fino

Este proceso se efectúa utilizando granos cada vez mas finos de lija metalográfica para lijar. Se utilizan lijas de 800 en adelante. La lija se sostiene sobre una superficie plana y dura, que puede ser acero o vidrio, y la muestra se pasa sobre el papel de lija sin seguir un movimiento rotatorio. Cuando se termina de esmerilar con un papel de lija, las marcas deben estar todas en la misma dirección.

Antes de proseguir con la siguiente lija mas fina, deben lavarse la muestra como las manos del operario.

Ahora la muestra debe desplazarse en forma tal que las rayas hechas por las distintas lijas formen ángulos rectos con las del inmediatamente anterior. Así, puede verse con claridad si se han eliminado las rayas más gruesas que se hicieron en la operación anterior. El desbaste se da por terminado cuando se obtiene una cara perfectamente plana, con rayas muy finas en toda la superficie, producidas en un solo sentido, por el papel de esmeril de mayor finura. Cuando más blando es el material, mayor es la finura del grano del papel de esmeril utilizado en ultimo término.

Pulido

Se procede a hacer el pulido solo después de lavar con sumo cuidado tanto las manos como la muestra, a fin de evitar cualquier contaminación en el plato de pulido. Este procedimiento se basa en el uso de un plato cubierto con una tela (o paño), cargada con una suspensión de alúmina (Al2O3). Al principio, la muestra se sostiene en una posición sobre la rueda, sin girar la muestra, hasta que se hayan eliminado la mayoría de las rayas anteriores producidas en el desbaste. Luego puede hacerse girar con lentitud en sentido contrario al de rotación de la rueda, hasta que solo puedan verse las marcas de alúmina. La rotación de la muestra reduce a un mínimo el peligro de formación de ranuras. La muestra se hace girar con lentitud en sentido contrario al de giro de la rueda tendiendo a obtener una superficie especular. Si los pasos descriptos se realizan debidamente, este

Page 10: Ensayo de metalografía.docx

9

pulido no debe requerir más de dos minutos. Los resultados del pulido pueden mejorarse si esta última etapa de pulido se realiza sobre la rueda girando a baja velocidad. El aspecto de la superficie debe ser igual al de un espejo; donde se observa una superficie brillante con algunos puntos oscuros producto de las inclusiones no metálicas (ej. impuresas de óxidos).

Para pulir aceros dulces (blandos), casi siempre es conveniente usar una alúmina de grano 600. En otros metales y aleaciones pueden lograrse mejores resultados si se acaba con alúmina rebajada, óxido de magnesio, diamante en polvo o cualquier otro tipo de compuesto pulidor que se disponga. El electropulido es adecuado para el acabado de gran numero de muestras idénticas, puesto que requieren ajustes y control cuidadoso. Por otro lado alguno de los mejores electrolitos constituyen un peligro de explosión.

C. ATAQUE QUÍMICO

Este permite poner en evidencia la estructura del metal o aleación. Existen diversos métodos de ataque pero el más utilizado es el ataque químico. El ataque químico puede hacerse sumergiendo la muestra en un reactivo adecuado, o pasar sobre la cara pulida un algodón embebido en dicho reactivo. Luego se lava la probeta con agua, se enjuaga con alcohol o éter y se seca en corriente de aire. El fundamento se basa en que el constituyente metalográfico de mayor velocidad de reacción se ataca más rápido y se verá mas oscuro al microscopio, y el menos atacable permanecerá más brillante, reflejará más luz y se verá más brillante en el microscopio. Por otro lado, en los metales con un solo constituyente metalográfico, los límites de grano están sujetos a ataques selectivos, puesto que representan zonas de imperfección cristalina e impurezas que aceleran el ataque local. Además los granos con orientaciones distintas son atacados con diferente intensidad, dado que esta diferencia en la orientación provoca velocidades de ataque diferentes. Se debe evitar el sobreataque, dado que la superficie se puede manchar y tapar la estructura o producirse manchas de corrosión. En caso de que esto sucediera se deberá proceder a un nuevo desbaste y pulido (dependiendo del grado de sobreataque). Un reactivo común utilizado para atacar hierros y aceros al carbono en general es el nital, que consiste en 5% de ácido nítrico concentrado en alcohol etílico ( en 100 cm3 de alcohol etílico 95% agregar 5 cm3 de NO3H concentrado).

Para su aplicación, se toma la muestra con unas pinzas con la cara pulida hacia arriba, se vierte unas gotas de nital sobre la muestra (lavada y secada previamente) asegurándose que el nital cubra toda la cara (con algunos movimientos de la pinza).

Por lo común es adecuado de 3 a 5 segundos para que el ataque químico sea adecuado. El nital oscurece la perlita y pone de manifiesto los bordes de la ferrita. Ferrita y cementita blancos y perlita mas oscura (laminas claras y oscuras semejante a una impronta digital).

Page 11: Ensayo de metalografía.docx

10

Inmediatamente después se lava la muestra con elevada agua corriente, se enjuaga con alcohol y se seca mediante un golpe de aire.

Otro método de ataque muy utilizado en aleaciones no ferrosas y que actualmente se esta introduciendo en el campo de las ferrosas, especialmente en los aceros inoxidables es el ataque electrolítico. Se hace generalmente a continuación del pulido electrolítico pero con un voltaje mucho menor. La diferencia con el pulido es que en el pulido la disolución anódica es indiferenciada y ahora es selectiva.

EQUIPOS Y MATERIALES UTILIZADOS

Page 12: Ensayo de metalografía.docx

11

A. PROBETAS

ACERO BAJO CARBONO 100X

ACERO BAJO CARBONO 500X

ACERO MEDIO CARBONO 100X

Page 13: Ensayo de metalografía.docx

12

ACERO MEDIO CARBONO 500X

BRONCE 100X

Page 14: Ensayo de metalografía.docx

13

BRONCE 500X

COBRE 100X

COBRE 500X

B. LIJAS

Page 15: Ensayo de metalografía.docx

14

C. PAÑO DE BILLAR

D. DISCO GIRATORIO (PULIDORA)

E. Componentes químicos.

Numero

c

360

600

800

1000

1500

Page 16: Ensayo de metalografía.docx

15

Nital 3% Solución de HNO3

Alcohol

F. Microscopio óptico.

Page 17: Ensayo de metalografía.docx

16

PROCEDIMIENTO

Marcar en la cara de la probeta que no va ser pulida dos rectas perpendiculares que se crucen en el centro de la superficie.

Empezar a trabajar con la lija de 180 en la cara que será pulida, realizando el esfuerzo en una misma dirección (se debe seguir la dirección de una de las rectas trazadas).

Repetir el paso anterior con las lijas de 360, 600, 800, 1000 y 1500 cambiando de dirección a seguir cuando se cambia de lija.

Una vez terminado de lijar la probeta, se empieza a pulir con alúmina sobre el paño de billar haciendo un movimiento radial.

Se ataca químicamente con el compuesto indicado para cada tipo de probeta.

Se seca luego de haber sido atacada por un tiempo de 20 a 25 segundos.

Page 18: Ensayo de metalografía.docx

17

Se observa el área trabajada con ayuda del microscopio.

OBSERVACIÓN DE LAS PROBETAS ATACADAS

CÁLCULO DEL ÍNDICE DE GRANO DEL COBRE

En la imagen anterior mostramos el proceso de conteo de granos de cobre. Cada circunferencia representa un grano completo y cada cuadrado medio grano. El área de la circunferencia es de 4plg2

Se sabe que:

Page 19: Ensayo de metalografía.docx

18

( a100 )N=2n−1

Donde:

N : número de granos por pulgada cuadrada a : factor de ampliación en el microscopio metalográfico n : índice de grano

N=20+16 /24

=7

a=100

Aplicando la formula

n=3.8073

Ahora calculamos el diámetro promedio de grano usando la siguiente tabla

Grain Size No.G

NA Grains/Unit Area A A Average Grain Area d Average DiameterNo./in.2 at 100X No./mm2 at 1X mm2 µm2 mm µm

00 0.25 3.88 0.2581 258064 0.5080 508.00 0.50 7.75 0.1290 129032 0.3592 359.2

0.5 0.71 10.96 0.0912 91239 0.3021 302.11.0 1.00 15.50 0.0645 64516 0.2540 254.01.5 1.41 21.92 0.0456 45620 0.2136 213.62.0 2.00 31.00 0.0323 32258 0.1796 179.62.5 2.83 43.84 0.0228 22810 0.1510 151.03.0 4.00 62.00 0.0161 16129 0.1270 127.03.5 5.66 87.68 0.0114 11405 0.1068 106.84.0 8.00 124.00 0.00806 8065 0.0898 89.84.5 11.31 175.36 0.00570 5703 0.0755 75.55.0 16.00 248.00 0.00403 4032 0.0635 63.55.5 22.63 350.73 0.00285 2851 0.0534 53.46.0 32.00 496.00 0.00202 2016 0.0449 44.96.5 45.25 701.45 0.00143 1426 0.0378 37.87.0 64.00 992.00 0.00101 1008 0.0318 31.87.5 90.51 1402.9 0.00071 713 0.0267 26.78.0 128.00 1984.0 0.00050 504 0.0225 22.58.5 181.02 2805.8 0.00036 356 0.0189 18.99.0 256.00 3968.0 0.00025 252 0.0159 15.99.5 362.04 5611.6 0.00018 178 0.0133 13.3

10.0 512.00 7936.0 0.00013 126 0.0112 11.210.5 724.08 11223.2 0.000089 89.1 0.0094 9.411.0 1024.00 15872.0 0.000063 63.0 0.0079 7.911.5 1448.15 22446.4 0.000045 44.6 0.0067 6.712.0 2048.00 31744.1 0.000032 31.5 0.0056 5.612.5 2896.31 44892.9 0.000022 22.3 0.0047 4.713.0 4096.00 63488.1 0.000016 15.8 0.0040 4.013.5 5792.62 89785.8 0.000011 11.1 0.0033 3.314.0 8192.00 126976.3 0.000008 7.9 0.0028 2.8

TABLE 4 Grain Size Relationships Computed for Uniform, Randomly Oriented, Equiaxed Grains

Para el índice encontrado (3.8) lo aproximamos como un promedio entre los valores de 3.5- 4

Page 20: Ensayo de metalografía.docx

19

d p (cu)=d3.5+d42

=98.3

¿de cuadrados analizados :64¿de cuadradosnegros :22¿de cuadradosblancos : 42

%C=0.008%ferrita+0.8%perlita

%C=0.008% ¿decuadrados negros¿ decuadrados analizados

+0.8% ¿de cuadradosblancos¿de cuadrados analizados

%C=0.008% 2264

+0.8% 4264

%C=0.00275+0.525%C=0.52775%

Page 21: Ensayo de metalografía.docx

20

Ferrita90HRBPerlita200HRB

Dureza=90 ¿de cuadradosnegros¿decuadrados analizados

+200 ¿de cuadradosblancos¿de cuadradosanalizados

Dureza=30.9375+131.25Dureza=162.1875HRB

σ máx ferrita=28Kg

mm2σ máx perlita=80 Kg

mm2

σ máx=28¿de cuadradosnegros

¿de cuadradosanalizados+80 ¿de cuadradosblancos

¿de cuadrados analizadosσ máx=9.625+52.5

σ máx=62.125Kg

mm2

Probeta de cobre a 100X.

Calculando el tamaño del grano.

Comparando con las imágenes esta probeta tiene la similitud con la imagen 4.

Page 22: Ensayo de metalografía.docx

21

Cada cuadrado tiene una dimensión de 5.9 cm • 3.8 cm

Número de granos enteros = 19Número de granos parciales = 24

Total = 19 + 24/2 = 31 granos

Área ocupada = 5.9 cm • 3.8 cm = 22.42 cm2

Page 23: Ensayo de metalografía.docx

22

31 granos

22 .42 cm2⋅

(2,5 cm )2

1 pu lgada2=3 .45674 granos

( in)2

2G-1 =NAE(Número de granos por pulgada cuadrada a 100X)

G (ASTM tamaño de grano); (G-1) ·ln 2 = ln · NAE

De donde:

G =

ln NAEln 2

+1=ln 3 ,45674ln 2

+1=1 .240330 ,693

+1=2,7898

Tamaño del grano G=2.7898

Page 24: Ensayo de metalografía.docx

23

CONCLUSIONES

Al realizar el ensayo nos podemos dar cuenta que el resultados de lijar

depende mucho de la persona que lo realiza, si no se tiene una adecuada

precisión no se obtendrá una adecuada probeta y tendría que realizar de nuevo

los pasos.

En la observación nos damos cuenta que los granos de las caras de nuestras

probetas mostraban unos granos no muy pequeños o finos, que al observar su

tamaño de granos en las tablas de los libros concuerda con el tipo de grano

ensayado

Nos podemos dar cuenta que el grano de muestra de bronce es menor que la

de cobre

El tamaño de grano de la muestra de acero de construcción es mayor que el

acero liso, esto se debe a la mayor concentración de carbono en el primero en

comparación con el segundo

Al observar la probeta de bronce nos damos cuenta que es la más clara, en

donde muestra algunas partes oscuras producidas por la variación de los

parámetros cristalinos debido al reactivo Nital

Con respecto a la resistencia de las probetas de acero, bronce y cobre la de

acero resulta mayor ante el ataque químico, esto se observa cuando se incide

la luz mostrándose sombras que hacen visibles sus contornos

Page 25: Ensayo de metalografía.docx

24

CUESTIONARIO DE ENSAYO METALOGRÁFICO

1.- ¿Qué es el Ensayo Metalográfico?

El ensayo metalográfico es el estudio microscópico de las características

estructurales de un metal o aleación. Es posible determinar el tamaño de grano, y

el tamaño, forma y distribución de varias fases e inclusiones que tienen efecto

sobre las propiedades mecánicas del metal.

2.- ¿En qué casos se hace necesario el Examen Metalográfico?

El examen metalográfico puede realizarse antes de que la pieza sea destinada a

un fin, a los efectos de prevenir inconvenientes durante su funcionamiento, o bien

puede ser practicado sobre piezas que han fallado en su servicio, es decir, piezas

que se han deformado, roto o gastado. En este caso la finalidad del examen es la

determinación de la causa que produjo la anormalidad.

3.-¿Qué lijas han sido utilizados para el desbaste de la superficie?

Se utilizaron: 180,360, 600, 800, 1000 y 1500.

4.- ¿Qué tipo de polvo abrasivo se ha utilizado durante el pulido mecánico de

las probetas?

Se ha utilizado ALUMINA.

5.- ¿Qué reactivo se ha empleado en el ataque químico de las probetas?

Indique la forma de aplicación.

Se han empleado:

Nital 3% Solución de HNO3

Alcohol

Se aplicó Ácido Nítrico para los aceros y Nital para el bronce y cobre. Además se

utilizo el alcohol en algodón para retirar las impurezas de la cara ensayada.

6.- ¿Que constituyentes se observan en los aceros al carbono?

Page 26: Ensayo de metalografía.docx

25

los constituyentes son: austerita, ferrita, perlita, cementita, bainita, sorbita y

martensita.

7.- ¿Cómo se realiza la determinación del tamaño del grano?

Hay varios métodos para determinar el tamaño de grano de un metal.

Los principales métodos para la determinación del tamaño de grano

recomendados por la ASTM (American SocietyforTesting and Materials) son:

método de comparación, método planimtrico y método de intercepción.

Método de comparación:

Mediante el método de prueba y error se encuentra un patrón que coincide con la

muestra en estudio y entonces se designa el tamaño de grano del metal por el

número correspondiente al número índice del patrón mixto; se tratan de manera

semejante, en cuyo caso se acostumbra especificar el tamaño de granos en

términos de dos números que denota el porcentaje aproximado de cada tamaño

presente. El método de comparación es más conveniente y bastante preciso en

muestras de granos de ejes iguales.

El número de tamaño de grano “n” puede obtenerse con la siguiente relación:

N=2 n -1

Método Planimétrico:

Es el más antiguo procedimiento para medir el tamaño de grano de los metales. El

cual consiste en que un circulo de tamaño conocido (generalmente 19.8 mm f,

5000 mm2 de área) es extendido sobre una rnicrofotografía o usado como un

patán sobre una pantalla de proyección. Se cuenta el número de granos' que

están completamente dentro del círculo n1 y el número de granos que interceptan

el circulo n2 para un conteo exacto los granos deben ser marcados cuando son

contados lo que hace lento este método.

Método de intercepción:

Page 27: Ensayo de metalografía.docx

26

El método de intercepción es más rápido que el método planimétrico debido a que

la microfotografía o patrón no requiere marcas para obtener un conteo exacto. El

tamaño de grano se estima contando por medio de una pantalla dividida de vidrio,

o por fotomicrografía o sobre la propia muestra, el número de granos

interceptados por una o más líneas restas. Los granos tocados por el extremo de

una línea se cuentan solo como medios granos. Las cuentas se hacen por lo

menos entre posiciones distintas para lograr un promedio razonable. La longitud

de líneas en milímetro, dividida entre el número promedio de granos interceptados

por ella da la longitud de intersección promedio o diámetro de grano. El método de

intersección se recomienda especialmente para granos que no sean de

ejesiguales.

8.- ¿En qué casos se emplea el ensayo macrogràfico? Muestre ejemplos del uso del

ensayo macrográfico, incluir fotos de estructuras.

El ensayo macrografico consiste en obtener información sobre algunas características de

la pieza a estudiar, por medio de la simple inspección, esto es, sin preparación especial.

Por medio de este método se pueden obtener los siguientes datos: tratamientos

mecanicos sufridos por el material, comprobar la distribución de defectos como grietas

superficiales, de forja, rechupes, partes soldadas.

En la imagen se muestra la formación de burbujas producto de una mala soldadura

Page 28: Ensayo de metalografía.docx

27

En la imagen se muestra algunos defectos obtenidos durante el maquinado

BIBLIOGRAFÍA

Page 29: Ensayo de metalografía.docx

28

Askeland, D. (2004). Ciencia e Ingeniería de los Materiales, cuarta edición,

Editorial Thompson, Madrid, España.

Smith W. Fundamentosde Ciencia e Ingeniería de Materiales, Ed. Mc Graw-

Hill, Madrid España.

Shackelford J. Ciencia de Materiales para Ingenieros, tercera edición.

Prentice Hall. México1995.

Keiser Carl. Técnicas de Laboratorios para pruebas de Materiales, Ed.

Limusa – Wiley.

Zolotorovski, V. Pruebas Mecánicas y Propiedades de los Metales.Ed. Mir.

Laceras.Tecnología de los Materiales Industriales.

Apraiz, J. Tratamiento Térmico de los aceros.