EE241 - Spring 2013bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s13/... · Circuits, vol. 25, no....

13
1 EE241 - Spring 2013 Advanced Digital Integrated Circuits Lecture 2: Scaling Trends and Features of Modern Technologies 2 Announcements Sign up for Piazza if you haven’t already

Transcript of EE241 - Spring 2013bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s13/... · Circuits, vol. 25, no....

Page 1: EE241 - Spring 2013bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s13/... · Circuits, vol. 25, no. 2, pp. 584 - 594, April 1990. 4 Outline Scaling issues Technology scaling trends

1

EE241 - Spring 2013Advanced Digital Integrated Circuits

Lecture 2: Scaling Trends and Features of Modern Technologies

2

Announcements

Sign up for Piazza if you haven’t already

Page 2: EE241 - Spring 2013bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s13/... · Circuits, vol. 25, no. 2, pp. 584 - 594, April 1990. 4 Outline Scaling issues Technology scaling trends

2

3

Assigned Reading

R.H. Dennard et al, “Design of ion-implanted MOSFET's with very small physical dimensions” IEEE Journal of Solid-State Circuits, April 1974.

Just the scaling principles

C.G. Sodini, P.-K. Ko, J.L. Moll, "The effect of high fields on MOS device and circuit performance," IEEE Trans. on Electron Devices, vol. 31, no. 10, pp. 1386 - 1393, Oct. 1984.

K.-Y. Toh, P.-K. Ko, R.G. Meyer, "An engineering model for short-channel MOS devices" IEEE Journal of Solid-State Circuits, vol. 23, no. 4, pp. 950-958, Aug. 1988.

T. Sakurai, A.R. Newton, "Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas," IEEE Journal of Solid-State Circuits, vol. 25, no. 2, pp. 584 - 594, April 1990.

4

Outline

Scaling issues

Technology scaling trends

Features of modern technologiesLithography

Process technologies

Page 3: EE241 - Spring 2013bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s13/... · Circuits, vol. 25, no. 2, pp. 584 - 594, April 1990. 4 Outline Scaling issues Technology scaling trends

3

Part 1:Technology

A. Scaling Trends

Page 4: EE241 - Spring 2013bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s13/... · Circuits, vol. 25, no. 2, pp. 584 - 594, April 1990. 4 Outline Scaling issues Technology scaling trends

4

7

Transistor Counts

Doubles every 2 years

8

0.1

1

10

100

1000

10000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Fre

qu

ency

[MH

z]

Frequency Trends in Intel's Microprocessors

4004

8008

8080

8086

8088

80286

386DX

486DX486DX4

Pentium

Pentium Pro Pentium II

Pentium MMX

Pentium III

Pentium 4

ItaniumItanium II

Core2

i7

Frequency

Has been doublingevery 2 years

Nearly flat

Page 5: EE241 - Spring 2013bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s13/... · Circuits, vol. 25, no. 2, pp. 584 - 594, April 1990. 4 Outline Scaling issues Technology scaling trends

5

9

0.1

1

10

100

1000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Po

wer

[W

]

Power Trends in Intel's Microprocessors

4004

80088080

8086

8088

80286

386DX

486DX

Pentium

Pentium Pro

Pentium II

Pentium III Pentium 4

ItaniumItanium II Core 2

i7

Power Dissipation

Has been > doublingevery 2 years

Has to stay ~constant

B. Scaling Issues

Page 6: EE241 - Spring 2013bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s13/... · Circuits, vol. 25, no. 2, pp. 584 - 594, April 1990. 4 Outline Scaling issues Technology scaling trends

6

11

p substrate, doping *NA

L/xd/

GATE

n+ source

n+ drain

WIRINGVoltage, V /

W/tox/

CMOS Scaling Rules

SCALING:Voltage: V/Oxide: tox /Wire width: W/Gate width: L/Diffusion: xd /Substrate: * NA

RESULTS:Higher Density:

~2

Higher Speed: ~Power/ckt: ~1/2

Power Density:~Constant

R. H. Dennard et al., IEEE J. Solid State Circuits, (1974).

11Å

12

CMOS Scaling

Two 30nm transistors (then and now)

Page 7: EE241 - Spring 2013bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s13/... · Circuits, vol. 25, no. 2, pp. 584 - 594, April 1990. 4 Outline Scaling issues Technology scaling trends

7

13

Transistor ScalingShrink by 30%

“Contacted gate pitch”Shrink by 30%

28nmC. Auth, VLSI’12

Gate pitch scales 0.7x every nodeIntel 22nm: contacted gate pitch 90nm

14

0.1

1

10

100

1000

10000

10 100 1000Lg [nm]

V DD

I DSAT

T inv

V Th

Ideal I DSAT

Ideal V DD

Ideal T inv

Ideal V Th

Ideal vs. Real Scaling

Leakage slows down VTh, VDD scaling

[µA/µm]

[x10V]

[ps]

[V]

Page 8: EE241 - Spring 2013bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s13/... · Circuits, vol. 25, no. 2, pp. 584 - 594, April 1990. 4 Outline Scaling issues Technology scaling trends

8

15

Technology Flavors

LP keeps drain leakage constant

16

32nm Technology Flavors (Intel)

Page 9: EE241 - Spring 2013bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s13/... · Circuits, vol. 25, no. 2, pp. 584 - 594, April 1990. 4 Outline Scaling issues Technology scaling trends

9

17

Lg, R, C scaling

With scaling L, need to scale up doping - scale junction depth (control leakage) – S/D resistance goes up

External resistance limits current

m

10000

1000

100

10

10

1

0.1

0.01

nm130nm

90nm

70nm

50nm

Gate Length65nm

35nm

1970 1980 1990 2000 2010 2020

45nm

32nm

22nm

~30nm

0.7X every 2 years

Nominal feature size

180nm

250nm

/D DS channel extI V R R

18

Parasitic Capacitance Scaling

S. Thompson, Materials Today, 2006.

Reality: Overlap + fringe can be 50% of Cchannel in 32nm

Page 10: EE241 - Spring 2013bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s13/... · Circuits, vol. 25, no. 2, pp. 584 - 594, April 1990. 4 Outline Scaling issues Technology scaling trends

10

C. 32/28nm Technology Features

20

Technology Features

Lithography implications (this lecture)Restrictions on design

Implications on design variability

FEOL features (next lecture)

Models

Page 11: EE241 - Spring 2013bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s13/... · Circuits, vol. 25, no. 2, pp. 584 - 594, April 1990. 4 Outline Scaling issues Technology scaling trends

11

21

EE 141 Technology vs. 32/28nmFEOL

0.25m featuresLg ~ 240nm248nm lithographyNo OPC, liberal design rulesSiO2 oxide, 3.5nm106 dopant atomsLOCOSNobody knew what ‘strain’ isVelocity saturatedNo SD leakageNo gate leakageOne transistor flavor

BEOLAl interconnectSiO2 ILD4-5 M layersNo CMP, no density rules

FEOL32nm technologyLg = 30-35nm193nm immersion lithographyOPC, restricted design rulesHf-based dielectric~102 dopant atomsSTIStrained silicon in channelVelocity saturatedIDS,off ~ 100nA/µmLow gate leakageMany transistor flavors

BEOLCu interconnectLo-k ILD8-11 M layersCMP, density rules

22

Step-and-Scan Lithography

Page 12: EE241 - Spring 2013bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s13/... · Circuits, vol. 25, no. 2, pp. 584 - 594, April 1990. 4 Outline Scaling issues Technology scaling trends

12

23

Lithography Scaling

m

10000

1000

100

10

10

1

0.1

0.01

nm

130nm90nm

65nm

1970 1980 1990 2000 2010 2020

45nm32nm

22nm

Nominal feature size scaling

180nm250nm

365nm248nm

193nm

EUV 13nm

EUV – Technology of the future (forever)?

24

Sub-Wavelength Lithography

Light projected through a gap

Mask

193nm light

Lightintensity

Lightintensity

Page 13: EE241 - Spring 2013bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s13/... · Circuits, vol. 25, no. 2, pp. 584 - 594, April 1990. 4 Outline Scaling issues Technology scaling trends

13

25

Sub-Wavelength Lithography

Decrease Presently: 193 nm (ArF excimer laser)(Distant?) future: EUV

Increase NA = nsinαMaximum n is 1 in airPresently: ~0.92-1.35Immersion

Result: Shrinking k1Presently: 0.35 – 0.4Theoretical limit: 0.25

1CD k

NA

min 1

1930.25 50

0.92nm

CD k nmNA

45nm technology beyond resolution limit