ECE 453 Wireless Communication Systems Oscillatorsemlab.illinois.edu/ece453/Oscillators.pdf ·...

37
ECE 453 – Jose Schutt‐Aine 1 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected] ECE 453 Wireless Communication Systems Oscillators

Transcript of ECE 453 Wireless Communication Systems Oscillatorsemlab.illinois.edu/ece453/Oscillators.pdf ·...

  • ECE 453 – Jose Schutt‐Aine 1

    Jose E. Schutt-AineElectrical & Computer Engineering

    University of [email protected]

    ECE 453Wireless Communication Systems

    Oscillators

  • ECE 453 – Jose Schutt‐Aine 2

    Feedback – Basic Concept

  • ECE 453 – Jose Schutt‐Aine 3

    1. The closed-loop transfer function is a function of frequency

    2. The manner in which the loop gain varies with frequency determines the stability or instability of the feedback amplifier

    3. The frequency at which the phase of the transfer function is equal to 180o will be unstable if the magnitude is greater than unity

    Feedback and Frequency Dependence

  • ECE 453 – Jose Schutt‐Aine 4

    1 ( )fA s

    A sA s s

    Feedback and Stability

    When loop gain A(j)(j) has 180o phase, we have positive feedback

    1 ( )fA j

    A jA j j

  • ECE 453 – Jose Schutt‐Aine 5

    Nyquist Plot

    - Radial distance is |A|- Angle is phase of - Intersects negative real axis at 180

  • ECE 453 – Jose Schutt‐Aine 6

    Stability and Pole Location ( ) 2 coso ot tj t j t nv t e e e e t

  • ECE 453 – Jose Schutt‐Aine 7

    Oscillator

    • Closed‐Loop Transfer function:

    • Barkhausen’s criteria for oscillation:

    • 𝜔 = oscillation‐frequency. 

  • ECE 453 – Jose Schutt‐Aine 8

    Oscillator Topologies• Common‐base topology is usually preferred becauseFeedback within transistor is minimized (low Miller)External feedback is dominantCurrent gain has little phase shift and is constant with f

    • Oscillator built around 2 major requirements:Oscillation frequency foPower Po that must be delivered to a load

    • Other criteriaEfficiencySpectral purityFrequency stability

  • ECE 453 – Jose Schutt‐Aine 9

    BJT – High-Frequency Model

  • ECE 453 – Jose Schutt‐Aine 10

    Common-Collector Colpitts

    • Minimize circuit dependence on transistor internal parameters

    • Choose1C C

    2 oC C

  • ECE 453 – Jose Schutt‐Aine 11

    rightZ

    leftZ

    For Oscillation, we want Zleft = ‐Zright

    Incremental Model

  • ECE 453 – Jose Schutt‐Aine 12

    2 2 2 2 4 2 2 21 2 1 2 1 2

    1 1 1 1 0me e e

    r gC r C R C C r R C C R

    2 2 2 2 21 2 1 2

    1 0m me

    g grC C R C C

    2 11 2

    2

    2

    1

    1e

    ms

    CC C rC Rg C

    C

    Oscillation Criteria

    Term in ‐4 can be neglected. This gives

    Gives transconductance to set net resistance to zero 

    Condition gives

  • ECE 453 – Jose Schutt‐Aine 13

    2 11 2

    2

    1ms

    e

    Cg C C rC R

    1 2 12

    1oms

    L e

    C C CgQ C R

    Oscillation Conditions

    If gm

  • ECE 453 – Jose Schutt‐Aine 14

    CC-Colpitts - Observation• To implement tunable oscillatorUse variable capacitor in parallel or is series with inductor

    • To extract power from oscillatorPlace resistance in shunt with inductorAccount for loading effect in analysis and design

    1. Oscillation amplitude builds up and vbe increases

    2. Transistor moves out of linear range and operation becomes nonlinear.  Transconductance decreases.

    3. When transconductance reaches gms, steady state operation is achieved.

  • ECE 453 – Jose Schutt‐Aine 15

    L pt L p

    L p

    R RR R R

    R R

    i e eR R r

    Common-Base ColpittsCf: tuning capacitorC1 & C2: feedback ratioRFC: RF choke to prevent power dissipation in RERP is equivalent resistance of coil Lt. 

    1/i ig R

    1/t tg R

    DEFINITIONS

  • ECE 453 – Jose Schutt‐Aine 16

    1 2 1

    1 11

    0

    iiS

    i t o f ot

    g s C C sCVI

    g sC g s C C C VsL

    Setting the determinant to zero provides the criterion for the onset of oscillation.

    CB-Colpitts - Incremental Model

  • ECE 453 – Jose Schutt‐Aine 17

    21

    3 21 0

    i t t i a t i b t t a t i

    t a b t

    s g s L g g C s L g C L g C L C g

    s L C C L C

    1 2aC C C 1b o fC C C C

    2 1Re 0i t b i a t ij g L C g C g C g

    CB-Colpitts - Oscillation ConditionsSetting the determinant to zero gives.

    Defining and

    we get a complex conjugate pair of roots. This leads to 2 equations for real and imaginary parts that must be equal to zero separately

    2 21Im 0t t i a t a bj L g g C L C C C

  • ECE 453 – Jose Schutt‐Aine 18

    22

    /t i a to

    a b t

    g g s C LC C C

    2

    1 2 1 2 1 2 1 2

    1 1/o t o f t i f o

    LC tank circuit transistor and load

    L C C C C C C R R C C C C C C

    CB-Colpitts - Oscillation ConditionsFrom the equation for the imaginary part, we get

    or

    First term should predominate

  • ECE 453 – Jose Schutt‐Aine 19

    1 2t t iL R R C C

    2

    1 2 1 2

    1/o t o fL C C C C C C

    CB-Colpitts - Oscillation Conditions

    In that case

    which leads to

    Circuit oscillates at frequency determined by Ltand equivalent capacitance.

  • ECE 453 – Jose Schutt‐Aine 20

    2min 2

    1 1 1

    11 1f o it o t

    C C R CC R C L C

    2 2 2

    min1 2 1 2 1 1

    11 1 11 /

    i i

    t t

    C R C R CC C R C C C R C

    CB-Colpitts - Oscillation Conditions

    The solution of the real part using gives

    For oscillations to start, of the transistor should be greater than min.

  • ECE 453 – Jose Schutt‐Aine 21

    Crystal Oscillator

    • Quartz exhibits piezoelectric effectReciprocal relationship between mechanical deformation and appearance of electrical potentialDeforming crystal produces voltageApplying voltage produces deformation

    • When applied voltage is sinusoidalMechanical oscillations that exhibit resonances at multiple frequenciesExtremely high Q that can reach 105 and 106

    Do not work above 250 MHz

  • ECE 453 – Jose Schutt‐Aine 22

    Crystal Resonator - Circuit Model Rq, Lq and Cq describe mechanical resonance behavior C0 is capacitance due to external contacting

    - Cq/C0 can be as high as 1000- Lq ranges from 0.1 mH to 100H

  • ECE 453 – Jose Schutt‐Aine 23

    01

    1 /q q qY j C G jB

    R j L C

    0 00 22

    0 0

    1 /0

    1 /

    q qo

    q q q

    L CC

    R L C

    Crystal Resonance FrequenciesAdmittance from terminals is

    Resonance condition is expressed by

  • ECE 453 – Jose Schutt‐Aine 24

    20

    0 0 1 2q

    S Sq

    R CL

    20

    0 0 1 2q

    P Pq

    R CL

    0 1 /S q qL C 0 0 0/P q q qC C L C C

    Crystal Resonance FrequenciesSeries resonance frequency

    Parallel resonance frequency

    where

  • ECE 453 – Jose Schutt‐Aine 25

    Crystal is characterized by Lq = 0.1H, Rq = 25, Cq= 0.3pF, and C0 = 1 pF. Find series and parallel resonance frequencies and compare them against the susceptance formula.

    Crystal Oscillator - Example

    2 20 0

    011 1 0.919

    2 22q q

    S Sq qq q

    R RC Cf f MHzL LL C

    2 200 0

    00

    11 1 1.0482 2 2q q q

    P Pq q q q

    R C C RC Cf f MHzL L C C L

  • ECE 453 – Jose Schutt‐Aine 26

    Voltage Controlled Oscillator

    Varactor diode exhibits large change in capacitance in response to an applied bias voltage

    Varactordiode

  • ECE 453 – Jose Schutt‐Aine 27

    1 2 1 2 0IN IN C IN C B C B Cv i X i X i X i X

    11 1 1 0B B C IN Ch i i X i X

    Voltage Controlled OscillatorINv

  • ECE 453 – Jose Schutt‐Aine 28

    11 1 2 1 211 1

    1 1IN C C C CC

    Z h X X X Xh X

    21 2 11 1 2

    1 1 1 1INZ j C C h C C

    21 2

    mIN

    gRC C

    1

    ININ

    Xj C

    Voltage Controlled OscillatorFinding input impedance

    Re-write as (assuming h11>>XC1 and ~ )

    Using gm = /h11

    Negative resistance

  • ECE 453 – Jose Schutt‐Aine 29

    0 30 3 0 1 2

    1 1 1 1 0j LC j C C

    03 3 2 1

    1 1 1 1 12

    fL C C C

    1 2

    1 2IN

    C CCC C

    Resonance frequency follows from condition:

    IN VARACTORX X

    which gives

    and

    VCO – Resonance Frequency

    Combined resistance of varactor diode must be equal to or less than |RIN| to create sustained oscillations

    where 0 30 3

    1VARACTORX j L C

  • ECE 453 – Jose Schutt‐Aine 30

    • Most important performance characteristicFrequency‐domain equivalent of jitterOriginates from thermal, shot and 1/f noiseRandom variation in phase angle of oscillatorAffects frequency stability

    • Phase noise quantificationCompare phase noise power to carrier powerDetermine phase noise spectral densityCan be characterized in time or frequency domain

    Oscillator Phase Noise

  • ECE 453 – Jose Schutt‐Aine 31

    Phase Jitter in Time Domain

    If the phase varies, the waveform V(t) shifts back and forth along the time axis and this creates phase jitter

  • ECE 453 – Jose Schutt‐Aine 32

    ( ) cos 2 ( )o oV t V f t t (t) is a random noise process. The instantaneous frequency is

    1 ( )2inst o

    d tf fdt

    1 ( )( )2

    d tf tdt

    ( ) 1 ( )( )2o o

    f t d ty tf f dt

    Oscillator Phase NoiseOscillator operates as

    Instantaneous frequency variation is

    Fractional deviation in instantaneous frequency is

  • ECE 453 – Jose Schutt‐Aine 33

    Phase, Period and CTC Jitter

  • ECE 453 – Jose Schutt‐Aine 34

    Phase Noise in Spectral Domain

    Phase noise appears as sidebands centered around the carrier frequency

  • ECE 453 – Jose Schutt‐Aine 35

    Phase Noise Specification

    ( )( ) no

    P fL fP f

    : phase noise power (in watts) ( )nP f: carrier’s power (in watts) oP

    : phase noise bandwidth (in hertz) f

    1( ) ( )2

    L f S f

    Phase noise magnitude is specified relative to the carrier’s power on a per-hertz basis

    : PSD of phase noise( )S f

    10( )( ) 10log2

    S fL f

    or

  • ECE 453 – Jose Schutt‐Aine 36

    Phase Noise to Phase Jitter

    From the phase noise PSD, random jitter and deterministic jitter can be identified

    Need: convert phase noise measured in the frequency domain to phase jitter for PLLs, clocks and oscillators

  • ECE 453 – Jose Schutt‐Aine 37

    Phase Noise Impact on PLL

    Phase noise is the key metric for evaluating the performance of a PLL system