ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith...

37
ECE 453 – Jose SchuttAine 1 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected] ECE 453 Wireless Communication Systems Oscillators

Transcript of ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith...

Page 1: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 1

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

ECE 453Wireless Communication Systems

Oscillators

Page 2: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 2

Feedback – Basic Concept

Page 3: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 3

1. The closed-loop transfer function is a function of frequency

2. The manner in which the loop gain varies with frequency determines the stability or instability of the feedback amplifier

3. The frequency at which the phase of the transfer function is equal to 180o will be unstable if the magnitude is greater than unity

Feedback and Frequency Dependence

Page 4: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 4

1 ( )f

A sA s

A s s

Feedback and Stability

When loop gain A(j)(j) has 180o phase, we have positive feedback

1 ( )f

A jA j

A j j

Page 5: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 5

Nyquist Plot

- Radial distance is |A|- Angle is phase of - Intersects negative real axis at 180

Page 6: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 6

Stability and Pole Location ( ) 2 coso ot tj t j t

nv t e e e e t

Page 7: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 7

Oscillator

• Closed‐Loop Transfer function:

• Barkhausen’s criteria for oscillation:––

• = oscillation‐frequency. 

Page 8: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 8

Oscillator Topologies• Common‐base topology is usually preferred becauseFeedback within transistor is minimized (low Miller)External feedback is dominantCurrent gain has little phase shift and is constant with f

• Oscillator built around 2 major requirements:Oscillation frequency foPower Po that must be delivered to a load

• Other criteriaEfficiencySpectral purityFrequency stability

Page 9: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 9

BJT – High-Frequency Model

Page 10: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 10

Common-Collector Colpitts

• Minimize circuit dependence on transistor internal parameters

• Choose

1C C

2 oC C

Page 11: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 11

rightZ

leftZ

For Oscillation, we want Zleft = ‐Zright

Incremental Model

Page 12: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 12

2 2 2 2 4 2 2 21 2 1 2 1 2

1 1 1 1 0me e e

r gC r C R C C r R C C R

2 2 2 2 21 2 1 2

1 0m m

e

g grC C R C C

2 11 2

2

2

1

1e

ms

CC C rC Rg C

C

Oscillation Criteria

Term in ‐4 can be neglected. This gives

Gives transconductance to set net resistance to zero 

Condition gives

Page 13: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 13

2 11 2

2

1ms

e

Cg C C rC R

1 2 1

2

1oms

L e

C C CgQ C R

Oscillation Conditions

If gm << C1and assuming that  is large

In terms of the inductor quality factor QL

gms is the trans-conductance needed to support steady-state oscillations

Page 14: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 14

CC-Colpitts - Observation• To implement tunable oscillatorUse variable capacitor in parallel or is series with inductor

• To extract power from oscillatorPlace resistance in shunt with inductorAccount for loading effect in analysis and design

1. Oscillation amplitude builds up and vbe increases

2. Transistor moves out of linear range and operation becomes nonlinear.  Transconductance decreases.

3. When transconductance reaches gms, steady state operation is achieved.

Page 15: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 15

L pt L p

L p

R RR R R

R R

i e eR R r

Common-Base Colpitts

Cf: tuning capacitorC1 & C2: feedback ratioRFC: RF choke to prevent power dissipation in RE

1/i ig R

1/t tg R

DEFINITIONS

Page 16: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 16

1 2 1

1 11

0

iiS

i t o f ot

g s C C sCVI

g sC g s C C C VsL

Setting the determinant to zero provides the criterion for the onset of oscillation.

CB-Colpitts - Incremental Model

Page 17: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 17

21

3 21 0

i t t i a t i b t t a t i

t a b t

s g s L g g C s L g C L g C L C g

s L C C L C

1 2aC C C 1b o fC C C C

21Re 0i t b i a t ij g L C g C g C g

CB-Colpitts - Oscillation ConditionsSetting the determinant to zero gives.

Defining and

we get a complex conjugate pair of roots. This leads to 2 equations for real and imaginary parts that must be equal to zero separately

2 21Im 0t t i a t a bj L g g C L C C C

Page 18: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 18

22

/t i a to

a b t

g g s C LC C C

2

1 2 1 2 1 2 1 2

1 1/o

t o f t i f o

LC tank circuit transistor and load

L C C C C C C R R C C C C C C

CB-Colpitts - Oscillation ConditionsFrom the equation for the imaginary part, we get

or

First term should predominate

Page 19: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 19

1 2t t iL R R C C

2

1 2 1 2

1/o

t o fL C C C C C C

CB-Colpitts - Oscillation Conditions

In that case

which leads to

Circuit oscillates at frequency determined by Ltand equivalent capacitance.

Page 20: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 20

2min 2

1 1 1

11 1f o i

t o t

C C R CC R C L C

2 2 2

min1 2 1 2 1 1

11 1 11 /

i i

t t

C R C R CC C R C C C R C

CB-Colpitts - Oscillation Conditions

The solution of the real part using gives

For oscillations to start, of the transistor should be greater than min.

Page 21: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 21

Crystal Oscillator

• Quartz exhibits piezoelectric effectReciprocal relationship between mechanical deformation and appearance of electrical potentialDeforming crystal produces voltageApplying voltage produces deformation

• When applied voltage is sinusoidalMechanical oscillations that exhibit resonances at multiple frequenciesExtremely high Q that can reach 105 and 106

Do not work above 250 MHz

Page 22: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 22

Crystal Resonator - Circuit Model Rq, Lq and Cq describe mechanical resonance behavior C0 is capacitance due to external contacting

- Cq/C0 can be as high as 1000- Lq ranges from 0.1 mH to 100H

Page 23: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 23

01

1 /q q q

Y j C G jBR j L C

0 00 22

1 /0

1 /

q qo

q q q

L CC

R L C

Crystal Resonance FrequenciesAdmittance from terminals is

Resonance condition is expressed by

Page 24: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 24

20

0 0 12q

S Sq

R CL

20

0 0 12q

P Pq

R CL

0 1 /S q qL C 0 0 0/P q q qC C L C C

Crystal Resonance FrequenciesSeries resonance frequency

Parallel resonance frequency

where

Page 25: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 25

Crystal is characterized by Lq = 0.1H, Rq = 25, Cq

= 0.3pF, and C0 = 1 pF. Find series and parallel resonance frequencies and compare them against the susceptance formula.

Crystal Oscillator - Example

2 20 0

011 1 0.919

2 22q q

S Sq qq q

R RC Cf f MHzL LL C

2 200 0

00

11 1 1.0482 2 2q q q

P Pq q q q

R C C RC Cf f MHzL L C C L

Page 26: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 26

Voltage Controlled Oscillator

Page 27: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 27

1 2 1 2 0IN IN C IN C B C B Cv i X i X i X i X

11 1 1 0B B C IN Ch i i X i X

Voltage Controlled Oscillator

Page 28: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 28

11 1 2 1 211 1

1 1IN C C C CC

Z h X X X Xh X

21 2 11 1 2

1 1 1 1INZ

j C C h C C

21 2

mIN

gRC C

1

ININ

Xj C

Voltage Controlled OscillatorFinding input impedance

Re-write as (assuming h11>>XC1)

Using gm = /h11

Page 29: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 29

0 30 3 0 1 2

1 1 1 1 0j LC j C C

03 3 2 1

1 1 1 1 12

fL C C C

1 2

1 2IN

C CCC C

Resonance frequency follows from condition:

1 2 3 0X X X

which gives

and

VCO – Resonance Frequency

Page 30: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 30

• Most important performance characteristicFrequency‐domain equivalent of jitterOriginates from thermal, shot and 1/f noiseRandom variation in phase angle of oscillatorAffects frequency stability

• Phase noise quantificationCompare phase noise power to carrier powerDetermine phase noise spectral densityCan be characterized in time or frequency domain

Oscillator Phase Noise

Page 31: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 31

Phase Jitter in Time Domain

If the phase varies, the waveform V(t) shifts back and forth along the time axis and this creates phase jitter

Page 32: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 32

( ) cos 2 ( )o oV t V f t t

(t) is a random noise process. The instantaneous frequency is

1 ( )2inst o

d tf fdt

1 ( )( )2

d tf tdt

( ) 1 ( )( )2o o

f t d ty tf f dt

Oscillator Phase NoiseOscillator operates as

Instantaneous frequency variation is

Fractional deviation in instantaneous frequency is

Page 33: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 33

Phase, Period and CTC Jitter

Page 34: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 34

Phase Noise in Spectral Domain

Phase noise appears as sidebands centered around the carrier frequency

Page 35: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 35

Phase Noise Specification

( )( ) n

o

P fL fP f

: phase noise power (in watts) ( )nP f: carrier’s power (in watts) oP

: phase noise bandwidth (in hertz) f

1( ) ( )2

L f S f

Phase noise magnitude is specified relative to the carrier’s power on a per-hertz basis

: PSD of phase noise( )S f

10( )( ) 10log2

S fL f

or

Page 36: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 36

Phase Noise to Phase Jitter

From the phase noise PSD, random jitter and deterministic jitter can be identified

Need: convert phase noise measured in the frequency domain to phase jitter for PLLs, clocks and oscillators

Page 37: ECE 453 Wireless Communication Systems Oscillatorsemlab.uiuc.edu/ece453/Oscillators.pdfwith frequency determines the stability or instability of the feedback amplifier 3. The frequency

ECE 453 – Jose Schutt‐Aine 37

Phase Noise Impact on PLL

Phase noise is the key metric for evaluating the performance of a PLL system