ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE...

57
ECE 342 – Jose SchuttAine ECE 342 SolidState Devices & Circuits 4. CMOS Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected] 1

Transcript of ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE...

Page 1: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

ECE 342Solid‐State Devices & Circuits

4. CMOS

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

1

Page 2: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

Digital Circuits

VIH: Input voltage at high state VIHminVIL: Input voltage at low state VILmaxVOH: Output voltage at high state VOHminVOL: Output voltage at low state VOLmin

Currents into input

IIH IIHmaxIIL IILmax

IOH IOHmaxIOL IOLmax

Likewise for current we can define

Currents into output

2

Page 3: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 3

NMHNML

Voltage Transfer Characteristics (VTC)The static operation of a logic circuit is determined by its VTC

• In low state: noise margin is NML

• In high state: noise margin is NMH

L IL OLNM V V

H OH IHNM V V VIL and VIH are the points where the slope of the VTC=-1

• An ideal VTC will maximize noise margins

/ 2 L H DDNM NM VOptimum:

Page 4: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

Switching Time & Propagation Delay

input

output

4

Page 5: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

tr=rise time (from 10% to 90%)tf=fall time (from 90% to 10%)tpLH=low-to-high propagation delaytpHL=high-to-low propagation delay

Inverter propagation delay: 12p pLH pHLt t t

Switching Time & Propagation Delay

5

Page 6: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 6

For a logic-circuit family employing a 3-V supply, suggest an ideal set of values for Vth, VIL, VIH, VOH, NML, NMH. Also, sketch the VTC. What value of voltage gain in the transition region does your ideal specification imply?

3.0 ; 0.0OH DD OLV V V V V

Ideal 3V logic implies:

/ 2 3.0 / 2 1.5 ;th DDV V V

/ 2 1.5 ; / 2 1.5IL DD IH DDV V V V V V

VTC and Noise Margins

Page 7: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 7

3.0 1.5 1.5H OH IHNM V V V

1.5 0.0 1.5L IL OLNM V V V

The gain in the transition region is:

/ 3.0 0.0 / 1.5 1.5OH OL IH ILV V V V

3 / 0 /V V

VTC and Noise Margins

Inverting transfer characteristics

Page 8: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

When inverter threshold is at VDD/2, the noise margin NMH and NML are equalized

3 28 3H L DD thNM NM V V

Noise margins are typically around 0.4 VDD; close to half power-supply voltage CMOS ideal from noise-immunity standpoint

: noise margin for high inputNML: noise margin for low inputVth: threshold voltage

CMOS Noise Margins

8

Page 9: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

Switching Circuit

9

Page 10: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

Nonideal Switch

1sc

lowsc L

RV VR R

1

sohigh

so L

RV VR R

10

Page 11: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

IV Characteristics of Switches

Ideal switch Non-ideal switch

11

Page 12: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

Complementary Switches

1sc

lowsc so

RV VR R

1

sohigh

so sc

RV VR R

12

Page 13: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

Problem

CC Sout

L S

V RVR R

6: 10 10 5S outOpen R V V

A switch has an open (off) resistance of 10M and close (on) resistance of 100 .Calculate the two voltage levels of Vout for the circuit shown. Assume RL=5 k

22 5 10: 10 0.098

5000 100S outShort R V V

13

Page 14: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

Problem

100 , 10S SR on R off M

If two switches are used as shown, calculate the two output voltage levels. Assume switches are complementary

2

1 2

CC Sout

S S

V RVR R

State 1: S1 off, S2 on RS1=10 M, RS2=100

6

5 100 5 010 10 100outV V V

State 2: S1 on, S2 off RS1=100 , RS2=10 M

6 7

6 7

5 10 10 5 10 510 10 100 10 100outV V

14

Page 15: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

MOSFET Switch

NMOS PMOS

• Characteristics of MOS Switch – MOS approximates switch better than BJT in off state– Resistance in on state can vary from 100 to 1 k

15

Page 16: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

NMOS Switch

16

Page 17: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

CMOS Switch

CMOS switch is called an inverter

17

The body of each device is connected to its source NO BODY EFFECT

Page 18: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

CMOS Switch – Off State

• OFF State (Vin: low)– nMOS transistor is off– Path from Vout to V1 is through PMOS Vout: high

18

Page 19: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

CMOS Switch – Input Low

19

Page 20: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

CMOS Switch – Input LowNMOS

GSN TNV V OFF

rdsn high

PMOS

'

1dsp

p DD TPp

rWk V VL

rdsp is low

20

Page 21: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

CMOS Switch – On State

• ON State (Vin: high)– pMOS transistor is off– Path from Vout to ground is through nMOSVout: low

21

Page 22: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

CMOS Switch – Input High

22

Page 23: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

PMOS

GSP TPV V OFF

rdsp high

CMOS Switch – Input HighNMOS

'

1dsn

n DD TNn

rWk V VL

rdsn is low

23

Page 24: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

CMOS Inverter

'

1dsn

N DD Tn

rWk V VL

'

1dsp

P DD Tp

rWk V VL

Short switching transient current low power

24

Page 25: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 25

Load driving capability of CMOS is high. Transistors can sink or source large load currents that can be used to charge and discharge load capacitances.

CMOS Inverter

Advantages of CMOS inverter Output voltage levels are 0 and VDDsignal swing is

maximum possible Static power dissipation is zero Low resistance paths to VDD and ground when needed High output driving capability increased speed Input resistance is infinite high fan-out

Page 26: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 26

CMOS Inverter VTC

QP and QN are matched

Page 27: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 27

Derivation Assume that transistors are matched Vertical segment of VTC is when both QN and QP are saturated No channel length modulation effect = 0 Vertical segment occurs at vi=VDD/2 VIL: maximum permitted logic-0 level of input (slope=-1) VIH: minimum permitted logic-1 level of input (slope=-1)

CMOS Inverter VTC

To determine VIH, assume QN in triode region and QP in saturation region

221 12 2I t o o DD I tv V v v V v V

Next, we differentiate both sides relative to vi

o oI t o o DD I t

I I

dv dvv V v v V v Vdv dv

Page 28: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 28

CMOS Inverter VTC

Substitute vi=VIH and dvo/dvi = -1

2DD

o IHVv V

After substitutions, we get

1 5 28IH DD tV V V

Same analysis can be repeated for VIL to get

1 3 28IL DD tV V V

Page 29: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 29

CMOS Inverter Noise Margins

1 5 28IH DD tV V V

1 3 28IL DD tV V V

1 3 28H DD tNM V V

1 3 28L DD tNM V V Symmetry in VTC equal

noise margins

Page 30: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine

Matched CMOS Inverter VTC

n

p np

W WL L

CMOS inverter can be made to switch at specific threshold voltage by appropriately sizing the transistors

Symmetrical transfer characteristics is obtained via matching equal current driving capabilities in both directions (pull-up and pull-down)

30

Page 31: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 31

VTC and Noise Margins - ProblemAn inverter is designed with equal-sized NMOS and PMOS transistors and fabricated in a 0.8-micron CMOS technology for which kn’ = 120 A/V2, kp’ = 60 A/V2, Vtn =|Vtp|=0.7 V, VDD= 3V, Ln=Lp = 0.8 m, Wn = Wp = 1.2 m, find VIL, VIH and the noise margins.

2' 2 '1 12 2n I t o o p DD I t

n p

W Wk V V V V k V V VL L

Equal sizes NMOS and PMOS, but kn’=2kp’

Vt = 0.7V

For VIH: QN in triode and QP in saturation

Page 32: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 32

224 2I t o o DD I tV V V V V V V

Differentiating both sides relative to VI results in:

: 4 4 4 2 ( 1)o oI t o o DD I t

I I I

V VV V V V V V VV V V

Substitute the values together with:

and 1oI IH

I

VV VV

VTC and Noise Margins – Problem (cont’)

(1)

Page 33: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 33

4 0.7 1 4 4 2 3 0.7IH o o IHV V V V

8 7.4 1.33 1.236

oIH o

VV V

22From (1) : 4 0.7 2 3 0.7IH o o IHV V V V

224 0.7 2 2.3IH o o IHV V V V

2solving (2) & (3) : 1.55 4.97 1.14 0o oV V

0.22oV V 1.52IHV V

VTC and Noise Margins – Problem (cont’)

(2)

(3)

Page 34: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 34

2 2' '1 12 2n I t p DD I t DD o DD o

n p

W Wk V V k V V V V V V VL L

For VIL: QN is in saturation and QP in triode

2 210.7 3 0.7 3 32I I o oV V V V

2 210.7 2.3 3 32I I o oV V V V

2 0.7 2.3 3 3o oI I o o

I I I

V VV V V VV V V

VTC and Noise Margins – Problem (cont’)

(1)

Page 35: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 35

and 1oI IL

I

VV VV

2 1.4 2.3 3 3IL IL o oV V V V

2 1.153IL oV V

2 21From (1) : 0.7 2.3 3 32IL IL o oV V V V

2 210.66 1.85 3.45 0.66 3 32o o o oV V V V

VTC and Noise Margins – Problem (cont’)

Page 36: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 36

2.96oV V 0.81ILV V

Noise Margins:

3 1.52 1.48HNM V

0.81 0 0.81LNM V

VTC and Noise Margins – Problem (cont’)

Since QN and QP are not matched, the VTC is not symmetric

Page 37: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 37

CMOS Dynamic Operation

Exact analysis is too tedious Replace all the capacitances in the circuit by a single

equivalent capacitance C connected between the output node of the inverter and ground

Analyze capacitively loaded inverter to determine propagation delay

Page 38: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 38

CMOS – Dynamic Operation

1 2 1 2 3 42 2gd gd db db g g wC C C C C C C C

Page 39: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 39

CMOS – Dynamic Operation

Page 40: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 40

CMOS Dynamic Operation

Need interval tPHL during which vo reduces from VDD to VDD/2

/ 2av PHL DD DDI t C V V

Which gives

Iav is given by2

DDPHL

av

CVtI

12av DN DNI i E i M

Page 41: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 41

CMOS Dynamic Operationwhere

2'12DN n DD tn

n

Wi E k V VL

and

' /n

PHLn DDn

Ctk W L V

2

' 12 2 2DD DD

DN n DD tnn

W V Vi M k V VL

this gives

Page 42: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 42

CMOS Dynamic OperationWhere a is given by

2

2

374

n

tn tn

DD DD

V VV V

Likewise, tPLH is given by

' /p

PLHp DDp

Ct

k W L V

with 2

237

4

ptp tp

DD DD

V VV V

Page 43: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 43

CMOS Dynamic OperationWhere a is given by

12P PHL PLHt t t

Components can be equalized by matching transistors tP is proportional to C reduce capacitance Larger VDD means lower tp Conflicting requirements exist

Page 44: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 44

CMOS – Propagation Delay

Page 45: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 45

CMOS – Propagation Delay

Capacitance C is the sum of:– Internal capacitances of QN and QP– Interconnect wire capacitance– Input of the other logic gate

'

1.6/PHL

n DDn

Ctk W L V

To lower propagation delay– Minimize C– Increase process transconductance k’– Increase W/L– Increase VDD

Page 46: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 46

A CMOS inverter for which kn=10 kp=100 A/V2 and Vt =0.5 V is connected as shown to a sinusoidal signal source having a Thevenin equivalent voltage of 0.1-V peak amplitude and resistance of 100 k. What signal voltage appears at node Awith vI = +1.5 V and vI = -1.5 V?

CMOS Inverter Problem

Page 47: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 47

For vI = 1.5 V, the NMOS operates in the triode region while the PMOS is off.

6

1 1 10100 10 1.5 0.5DSn

n I t

r kk v V

3 4

4 5

100 10 10 9.0910 10Av mV

CMOS Inverter Problem (cont’)

Page 48: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 48

For vI = -1.5 V, the PMOS operates with

5

61 1 10

100 10 1.5 0.510

DSPp I t

rk v V

3 5

5 5

100 10 10 5010 10Av mV

CMOS Inverter Problem (cont’)

Page 49: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 49

Propagation Delay - ExampleFind the propagation delay for a minimum-size inverter for which kn’=3kp’=180 A/V2 and (W/L)n = (W/L)p=0.75 m/0.5 m, VDD = 3.3 V, Vtn = -Vtp = 0.7 V, and the capacitance is roughly 2fF/mm of device width plus 1 fF/device. What does tpbecome if the design is changed to a matched one? Use the method of average current.

2 237 7 3 0.7 0.72 2 1.734 4 3.3 3.3

tn tnn

DD DD

V VV V

Solution

'6

1.73 2 0.75 10.75/ 180 10 3.30.5

nPHL

n DDn

fF fFCtk W L V

13.38

Page 50: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 50

4.85PHLt ps

Since , then 1.73tn tp n pV V

We also have , hencen p

W WL L

'

' 4.85 3 14.55nPLH PHL

n

kt t psk

1 1 4.85 14.55 9.72 2P PHL PLHt t t ps

Propagation Delay - Example

Page 51: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 51

If both devices are matched, then

' 'p nk k

PLH PHLt t

and

1 4.852p PHL PLH PHLt t t t ps

Propagation Delay - Example

Page 52: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 52

CMOS – Dynamic Power Dissipation

In every cycle– QN dissipate ½ CVDD

2 of energy– QP dissipate ½ CVDD

2 of energy – Total energy dissipation is CVDD

2

If inverter is switched at f cycles per second, dynamic power dissipation is: 2

D DDP fCV

Page 53: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 53

Power Dissipation - Example

In this problem, we estimate the inverter power dissipation resulting from the current pulse that flows in QN and QP when the input pulse has finite rise and fall times. Let Vtn=-Vtp=0.5 V, VDD = 1.8V, and kn=kp=450A/V2. Let the input rising and falling edges be linear ramps with the 0-to-VDD and VDD-to-0 transitions taking 1 ns each. Find Ipeak.13.44

Page 54: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 54

To determine the energy drawn from the supply per transition, assume that the current pulse can be approximated by a triangle with a base corresponding to the time for the rising or falling edge to go from Vt to VDD-Vt, and the height equal to Ipeak. Also, determine the power dissipation that results when the inverter is switched at 100 MHz.

Power Dissipation - Example

Page 55: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 55

212 2

DDPeak n ox tn

n

W VI C VL

2

2

1 1.8450 0.5 362 2Peak

AI AV

Power Dissipation - Example

Page 56: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 56

The time when the input reaches Vt is:

0.5 1 ns 0.28 ns1.8

The time when the input reaches VDD - Vt is:

1.8 0.5 1 ns 0.72 ns1.8

The base of the triangle is

0.72 0.28 0.44 ns widet

Power Dissipation - Example

Page 57: ECE 342 Solid State Devices Circuits 4. CMOSjsa.ece.illinois.edu/hcmut/ece342/notes/Lect_04.pdfECE 342 –Jose Schutt‐Aine ECE 342 Solid‐State Devices & Circuits 4. CMOS Jose E.

ECE 342 – Jose Schutt‐Aine 57

1 1 36 1.8 0.44 ns2 2Peak DDE I V t A

14.3E femtoJoules

6 15100 10 14.3 10 1.43P f E W

Power Dissipation - Example