E. Varini and R. Rotondi - Copernicus.org · 2020. 5. 1. · E. Varini and R. Rotondi Istituto di...

12
Probabilistic damage scenarios from uncertain macroseismic data E. Varini and R. Rotondi Istituto di Matematica Applicata e Tecnologie Informatiche Consiglio Nazionale delle Ricerche, Milano – Italy EGU General Assembly: Sharing Geoscience Online 4-8 May 2020

Transcript of E. Varini and R. Rotondi - Copernicus.org · 2020. 5. 1. · E. Varini and R. Rotondi Istituto di...

  • Probabilistic damage scenarios from uncertainmacroseismic data

    E. Varini and R. Rotondi

    Istituto di Matematica Applicata e Tecnologie InformaticheConsiglio Nazionale delle Ricerche, Milano – Italy

    EGU General Assembly: Sharing Geoscience Online4-8 May 2020

  • Motivations

    We consider the beta-binomial model for macroseismic attenuation (Rotondi et al.,BSSA, 2009; Rotondi et al., Bull. Earthquake Eng, 2016), which:

    • respects as far as possible the ordinal nature of the intensity scale,• allows for the assumption of spatial isotropy or anisotropy,• allows for the Bayesian treatment of uncertainties,• is a probabilistic tool to produce macroseismic scenarios.

    Critical point:

    The application of the beta-binomial model typically requires rounding-up or -down theobserved intensities to the nearest integer values (e.g. intensity VIII-IX must be setequal to VIII or IX).

    Solution:

    We propose an extension of the beta-binomial model in order to include in thestochastic modelling the uncertainty in the assignment of the intensities.

    E.Varini, R.Rotondi 2 / 12

  • Original beta-binomial model of the intensity Is at site

    J circular bins are drawn around the epicenter (isotropy)E

    r_1

    r_2

    r_3

    r_4

    ••

    ••

    At a given bin j :

    • Is = I0 −∆I follows the binomial distribution Binom(Is | I0, pj):

    Pr {Is = i | I0 = i0, pj} = Binom {i | i0, pj} =

    =

    (i0i

    )pij (1− pj)i0−i i ∈ {0, 1, . . . , I0}

    • random variable pj ∼ Beta distribution

    Beta(pj ; αj , βj) =Γ(αj + βj)

    Γ(αj)Γ(βj)

    ∫ pj0

    xαj−1(1− x)βj−1dx

    to account for the variability in ground shaking

    The prior hyperparameters αj , βj are assigned on the basis of the macroseismic fieldsbelonging to the same class, but of different I0.

    E.Varini, R.Rotondi 3 / 12

  • New beta-binomial model of the intensity Is at site

    J circular bins are drawn around the epicenter (isotropy)E

    r_1

    r_2

    r_3

    r_4

    ••

    ••

    At a given bin j :

    • Is = I0 −∆I follows the binomial distribution Binom(2Is | 2I0, pj):

    Pr {Is = i | I0 = i0, pj} = Binom {2i | 2i0, pj} =

    =

    (2i02i

    )p2ij (1− pj)2i0−2i i ∈ {0, 0.5, 1, 1.5 . . . , I0}

    • random variable pj ∼ Beta distribution

    Beta(pj ; αj , βj) =Γ(αj + βj)

    Γ(αj)Γ(βj)

    ∫ pj0

    xαj−1(1− x)βj−1dx

    to account for the variability in ground shaking

    The prior hyperparameters αj , βj are assigned on the basis of the macroseismic fieldsbelonging to the same class, but of different I0.

    E.Varini, R.Rotondi 4 / 12

  • Updating parameters in the Bayesian framework(Fortran software)Given all the earthquakes with epicentral intensity I0 in a class,

    let Nj be the number of felt intensities Dj in the j-th bin

    Original beta-binomial model: αj = αj,0 +

    Nj∑n=1

    i (n)s βj = βj,0 +

    Nj∑n=1

    (I0 − i (n)s )

    New beta-binomial model: αj = αj,0 +

    Nj∑n=1

    2i (n)s βj = βj,0 +

    Nj∑n=1

    (2I0 − 2i (n)s )

    I0 VIII, class B

    0 100 200

    Distance [km]

    0

    0.2

    0.4

    0.6

    0.8

    1

    Pa

    ram

    ete

    r p

    B We estimate the parameter pj through its posterior mean

    p̂j = E (pj | Dj) =αj

    αj + βjj = 1, . . . , J

    E.Varini, R.Rotondi 5 / 12

  • Beta-binomial model with smoothed p = p(d)The estimates p̂j are smoothed by the inverse power function of the distance throughthe least squares method:

    p(d) =

    (c1

    c1 + d

    )c2Smoothed binomial distribution at any distance d

    Pr(Is = i |I0 = i0, p(d)) =(

    i0i

    )p(d)i [1− p(d)](i0−i)

    Pr(Is = i |I0 = i0, p(d)) =(

    2i02i

    )p(d)2i [1− p(d)](2i0−2i)

    I0 VIII, class B

    0 100 200

    Distance [km]

    0

    0.2

    0.4

    0.6

    0.8

    1

    Pa

    ram

    ete

    r p

    B

    0 1 2 3 4 5 6 7 8

    Is

    pro

    ba

    bili

    ty

    0.0

    0.1

    0.2

    0.3

    0.4

    Io VIII

    p(d) = 0.9 at d = 10Km

    0 1 2 3 4 5 6 7 8

    Is

    pro

    ba

    bili

    ty

    0.0

    0.1

    0.2

    0.3

    0.4

    Io VIII

    p(d) = 0.7 at d = 50Km

    The mode ismooth of the smoothed binomial distribution is the predicted value of Is

    E.Varini, R.Rotondi 6 / 12

  • Learning set

    Analysis of 441 macroseismic fields (MFs) of “good quality” from the ItalianDBMI15 database:

    − occurred since 1500,

    − at least epicentral intensity V ,

    − at least 40 felt reports.

    Database DBMI15

    Distribution of maximum macroseismic intensity

    E.Varini, R.Rotondi 7 / 12

  • Hierarchical agglomerative clustering (R package cluster)

    The learning set is first analyzed by the Ward’s hierarchical agglomerative clusteringmethod.

    Four attenuation classes are identified.

    class A class B class C class D132 MFs 192 MFs 82 MFs 35 MFs

    10.69°E 10.99°E 11.28°E 11.57°E 11.87°E 12.16°E 12.45°E

    43.29°N

    43.5°N

    43.72°N

    43.93°N

    44.14°N

    44.35°N

    44.56°N

    1919/06/29, Io X: observed

    Is

    IIIIIIIVVVIVIIVIIIIXX

    15.1°E 15.39°E 15.69°E 15.98°E 16.27°E 16.57°E 16.86°E

    37.65°N

    37.87°N

    38.1°N

    38.33°N

    38.56°N

    38.79°N

    39.02°N

    1907/10/23, Io VIII−IX: observed

    Is

    IIIIIIIVVVIVIIVIIIIX

    10.72°E 11.9°E 13.07°E 14.24°E 15.41°E 16.58°E 17.76°E

    43.77°N

    44.58°N

    45.39°N

    46.2°N

    47.01°N

    47.82°N

    48.63°N

    1895/04/14, Io VIII−IX: observed

    Is

    IIIIIIIVVVIVIIVIII

    7.73°E 8.91°E 10.08°E 11.25°E 12.42°E 13.59°E 14.77°E

    42.58°N

    43.41°N

    44.23°N

    45.06°N

    45.89°N

    46.71°N

    47.54°N

    1914/10/27, Io VII: observed

    Is

    IIIIIIIVVVIVII

    0 50 100 150 200 250

    0

    2

    4

    6

    8

    10

    12

    0 50 100 150 200 250

    0

    2

    4

    6

    8

    10

    12

    0 50 100 150 200 250

    0

    2

    4

    6

    8

    10

    12

    0 50 100 150 200 250

    0

    2

    4

    6

    8

    10

    12

    E.Varini, R.Rotondi 8 / 12

  • Smoothed posterior distribution of intensity Is for class A

    Pr {Is = i | I0 = i0, pi0 (d)} = Binom {2i | 2i0, pi0 (d)} where pi0 (d) =(

    c1c1 + d

    )c2

    I0 n.MFs c1 c2V 22 13846.42 219.98

    V-VI 17 - -VI 21 113.96 2.16

    VI-VII 3 - -VII 17 1989.44 29.01

    VII-VIII 10 - -VIII 8 9674.80 126.72

    VIII-IX 0 - -IX 14 3573.55 37.52

    IX-X 4 - -X 10 27752.59 254.40

    X-XI 2 - -XI 4 36102.69 332.45

    The number of MFs having uncertain epi-central intensity I0 is sometimes very smallor even null; it follows that the correspond-ing estimated coefficients c1 and c2 mightbe quite unrealiable.

    In order to obtain more reliable and stableestimates for uncertain epicentral intensityI0 = i0, its parameter pi0 (d) is chosen asfollows:

    pi0 (d) =pdi0e(d) + pbi0c(d)

    2

    E.Varini, R.Rotondi 9 / 12

  • Probability of the intensity attenuation versus distance

    Original model New model New model

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250I

    II

    III

    IV

    V

    Italy: Io V , class A

    Km

    Is

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250

    I

    II

    III

    IV

    V

    Italy: Io V , class A

    Km

    Is

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250

    I

    II

    III

    IV

    V Italy: Io V−VI , class A

    Km

    Is

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250I

    II

    III

    IV

    V

    VI

    Italy: Io VI , class A

    Km

    Is

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250

    I

    II

    III

    IV

    V

    VI

    Italy: Io VI , class A

    Km

    Is

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250

    I

    II

    III

    IV

    V

    VI Italy: Io VI−VII , class A

    Km

    Is

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250I

    II

    III

    IV

    V

    VI

    VII

    Italy: Io VII , class A

    Km

    Is

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250

    I

    II

    III

    IV

    V

    VI

    VII

    Italy: Io VII , class A

    Km

    Is

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250

    I

    II

    III

    IV

    V

    VI

    VII Italy: Io VII−VIII , class A

    Km

    Is

    E.Varini, R.Rotondi 10 / 12

  • Probability of the intensity attenuation versus distance

    Original model New model New model

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250I

    II

    III

    IV

    V

    VI

    VII

    VIII

    Italy: Io VIII , class A

    Km

    Is

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250

    I

    II

    III

    IV

    V

    VI

    VII

    VIII

    Italy: Io VIII , class A

    Km

    Is

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250

    I

    II

    III

    IV

    V

    VI

    VII

    VIII Italy: Io VIII−IX , class A

    Km

    Is

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250I

    II

    III

    IV

    V

    VI

    VII

    VIII

    IX

    Italy: Io IX , class A

    Km

    Is

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250

    I

    II

    III

    IV

    V

    VI

    VII

    VIII

    IXItaly: Io IX , class A

    Km

    Is

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250

    I

    II

    III

    IV

    V

    VI

    VII

    VIII

    IX Italy: Io IX−X , class A

    Km

    Is

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250I

    II

    III

    IV

    V

    VI

    VII

    VIII

    IX

    X

    Italy: Io X , class A

    Km

    Is

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250

    I

    II

    III

    IV

    V

    VI

    VII

    VIII

    IX

    XItaly: Io X , class A

    Km

    Is

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250

    I

    II

    III

    IV

    V

    VI

    VII

    VIII

    IX

    X Italy: Io X−XI , class A

    Km

    Is

    E.Varini, R.Rotondi 11 / 12

  • Probability of the intensity attenuation versus distance

    Original model New model

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250I

    II

    III

    IV

    V

    VI

    VII

    VIII

    IX

    X

    XI

    Italy: Io XI , class A

    Km

    Is

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 50 100 150 200 250

    I

    II

    III

    IV

    V

    VI

    VII

    VIII

    IX

    X

    XIItaly: Io XI , class A

    Km

    Is

    References

    Rotondi R., Zonno G. (2004), Bayesian analysis of a probability distribution for local intensityattenuation, Ann. Geophys., 47 (5), 1521-1540

    Zonno G., Rotondi R., and Brambilla C. (2009), Mining macroseismic fields to estimate theprobability distribution of the intensity at site, BSSA, 99 (5), 2876-2892

    Azzaro R., D’Amico S., Rotondi R., Tuvè T., ZonnoG. (2013), Forecasting seismic scenarios onEtna volcano (Italy) through probabilistic intensity attenuation models: A Bayesianapproach, J. Volcanol. Geotherm. Res., 125, 149-157

    Special issue Bull. Earthq. Eng. (2016) 14, 7

    E.Varini, R.Rotondi 12 / 12

    MotivationsClustering