Drive test.pdf

501

Click here to load reader

description

DT

Transcript of Drive test.pdf

Page 1: Drive test.pdf

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J i

GSM-100-423

GSM Software Release 5

Installation & ConfigurationBSS Optimization

� Motorola 1993–2001All Rights ReservedPrinted in the U.K.

Page 2: Drive test.pdf

GSM-100-423

31st Jul 01ii

Installation & Configuration: BSS Optimization

68P02901W43-J

Copyrights, notices and trademarks

CopyrightsThe Motorola products described in this document may include copyrighted Motorola computerprograms stored in semiconductor memories or other media. Laws in the United States and othercountries preserve for Motorola certain exclusive rights for copyright computer programs, including theexclusive right to copy or reproduce in any form the copyright computer program. Accordingly, anycopyright Motorola computer programs contained in the Motorola products described in this documentmay not be copied or reproduced in any manner without the express written permission of Motorola.Furthermore, the purchase of Motorola products shall not be deemed to grant either directly or byimplication, estoppel or otherwise, any license under the copyrights, patents or patent applications ofMotorola, except for the rights that arise by operation of law in the sale of a product.

RestrictionsThe software described in this document is the property of Motorola. It is furnished under a licenseagreement and may be used and/or disclosed only in accordance with the terms of the agreement.Software and documentation are copyright materials. Making unauthorized copies is prohibited bylaw. No part of the software or documentation may be reproduced, transmitted, transcribed, storedin a retrieval system, or translated into any language or computer language, in any form or by anymeans, without prior written permission of Motorola.

AccuracyWhile reasonable efforts have been made to assure the accuracy of this document, Motorolaassumes no liability resulting from any inaccuracies or omissions in this document, or from the useof the information obtained herein. Motorola reserves the right to make changes to any productsdescribed herein to improve reliability, function, or design, and reserves the right to revise thisdocument and to make changes from time to time in content hereof with no obligation to notify anyperson of revisions or changes. Motorola does not assume any liability arising out of the applicationor use of any product or circuit described herein; neither does it convey license under its patentrights of others.

Trademarks

and MOTOROLA are registered trademarks of Motorola Inc. M-Cell and Taskfinder are trademarks of Motorola Inc.All other brands and corporate names are trademarks of their respective owners.

Page 3: Drive test.pdf

GSM-100-423

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J iii

Issue status of this manual 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

General information 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First aid in case of electric shock 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reporting safety issues 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Warnings and cautions 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

General warnings 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Human exposure to radio frequency energy (PCS1900 only) 9. . . . . . . . . . . . . . . . . . . . . .

Beryllium health and safety precautions 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

General cautions 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Devices sensitive to static 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Motorola GSM manual set 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GMR amendment 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GMR amendment record 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 1Introduction to BSS optimization i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Guide to using this manual 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Purpose of this chapter 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Audience 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of the manual 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Prerequisites 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Structure 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Related documentation 1–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equipment supported 1–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Infrastructure sharing 1–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 2BTS4/5/6 ExCell TopCell & BSC optimization i. . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to BTS4/5/6, ExCell, TopCell & BSC optimization 2–1. . . . . . . . . . . . . . . . . . . . .

Purpose of this chapter 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Code download 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Test equipment, leads and plugs 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-way to 9-way cable 2–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-way to 25-way cable 2–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test plug A 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test plug B 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test plug C 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Testing the dc power supply 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit breakers 2–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Manually tuning the RTC 2–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 4: Drive test.pdf

GSM-100-423

31st Jul 01iv

Installation & Configuration: BSS Optimization

68P02901W43-J

Calibrating DRCUs Tx power and VSWR check 2–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating the DRCU, DRCUII and DRCU3 bay level offset tables 2–17. . . . . . . . . . . . . . . . Introduction 2–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating SCU Tx power and VSWR check 2–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating the SCU900/1800 bay level offset tables 2–31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setting up procedure 2–33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level calibration for branch1 RX1A 2–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for RX2A 2–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for RX3A 2–37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Branch completion 2–37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Branch 2 2–37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking calibration 2–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostic check of the SCU 2–39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Restoration 2–39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking the database for devices and functions 2–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking the E1/T1 link 2–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Command 2–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Verifying PIX connections 2–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Integrating the transcoder 2–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CIC checklist 2–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating the GCLK 2–51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GCLK calibration record form 2–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 5: Drive test.pdf

GSM-100-423

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J v

Verifying ExCell alarms 2–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Initial procedure 2–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The alarms 2–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Smoke alarm 2–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overtemperature alarm 2–57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Door open alarm 2–57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fan fail alarm 2–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mains fail alarm 2–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rectifier fail alarm 2–59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low dc voltage alarm 2–59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverter fail alarm 2–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MCB trip alarm 2–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Battery fault alarm 2–61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comms PSU fail alarm 2–61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External alarm 0 2–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External alarm 1 2–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External alarm 2 2–63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External alarm 3 2–63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Identifying DRCU faults on site 2–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symptoms during normal operation 2–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symptoms during commissioning 2–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure during normal operation 2–65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure during commissioning 2–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 3M-Cell2/6 optimization i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to M-Cell2/6 optimization 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Purpose of this chapter 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment, leads and plugs 3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Introduction 3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test lead calibration 3–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test leads 3–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating TCU output power and checking VSWR 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cell site offsite calibration (Tx only) 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test stages 3–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 3–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 3–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test all antennas 3–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for test 3–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 1 (automatic) 3–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2 (manual) 3–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibrating the transmit output power 3–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setting cellsite power M-Cell6 with CCB 3–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 3–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Restoring the site 3–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCU-B VSWR and cellsite offset information 3–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSWR and cellsite offsite information 3–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test stages 3–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 3–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 3–21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test all antennas 3–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for test 3–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 6: Drive test.pdf

GSM-100-423

31st Jul 01vi

Installation & Configuration: BSS Optimization

68P02901W43-J

Normal TCU-B VSWR and cellsite power calibration 3–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Normal VSWR information 3–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSWR Method 1 (automatic) 3–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSWR Method 2 (manual) 3–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibrating TCU-B transmit output power 3–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCU-B VSWR and cellsite power calibration for CCBs 3–29. . . . . . . . . . . . . . . . . . . . . . . . . . . CCB calibration information 3–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibration procedures 3–31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Restoring the site 3–35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables 3–37. . . . . . . . . . . . . . . . . . Introduction 3–37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 3–37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 3–37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Locking radio, dummy load and TCU reset 3–39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Silencing PLL_LK alarm 3–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setting up TCU for Bay Level 3–41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level calibration for branch1 RX1A 3–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for RX2A 3–49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for RX3A 3–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Branch completion 3–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Branch 2 3–51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking calibration 3–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostic check of TCU 3–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . End procedure restoring site 3–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating M-Cell2/6 TCU-B bay level offset tables 3–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 3–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 3–57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparation for bay level calibration 3–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level calibration for branch 1 RX1A 3–61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for RX2A 3–65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for RX3A 3–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Branch completion 3–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Branch 2 3–67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking calibration 3–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . End procedure restoring site 3–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TCU-B diagnostic check 3–71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking the database equipage 3–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 3–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 3–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for the test 3–73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking the database equipage 3–73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking the 2.048 Mbit/s link 3–75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 3–75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 3–75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for the test 3–75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking the 2.048 Mbit/s link 3–76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking serial connections and alarms 3–77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 3–77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 3–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for the test 3–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Testing the PIX connections 3–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 7: Drive test.pdf

GSM-100-423

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J vii

Calibrating the MCU (GCLK) 3–79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . When to calibrate the GCLK 3–79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment required 3–79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setting up for calibration 3–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Procedure 3–81. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 4Horizonmacro optimization i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Horizonmacro optimization overview 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to optimization 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Test equipment, leads and plugs 4–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 4–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 4–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test lead calibration 4–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test leads 4–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CTU VSWR and cellsite offset information 4–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSWR and cellsite offsite information 4–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test stages 4–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 4–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 4–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test all antennas 4–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for test 4–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Normal CTU VSWR and cellsite power calibration 4–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Normal VSWR information 4–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSWR Method 1 (automatic) 4–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSWR Method 2 (manual) 4–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibrating CTU transmit output power 4–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CTU VSWR and cellsite power calibration for CCBs 4–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . CCB calibration information 4–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibration procedures 4–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Restoring the site 4–23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating Horizonmacro CTU bay level offset tables 4–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 4–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 4–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 4–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparation for bay level calibration 4–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level calibration for branch 1 RX0A 4–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for RX1A 4–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for RX2A 4–33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for Rx1800 0A on 900 (Dualband) SURF 4–34. . . . . . . . . . . . . . . . . . Branch completion 4–35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Branch 2 4–35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking calibration 4–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . End procedure restoring site 4–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking the database equipage 4–39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 4–39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 4–39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 4–39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for the test 4–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking the database equipage 4–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 8: Drive test.pdf

GSM-100-423

31st Jul 01viii

Installation & Configuration: BSS Optimization

68P02901W43-J

Checking the 2.048 Mbit/s link 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for the test 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking the 2.048 Mbit/s link 4–43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking serial connections and alarms 4–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 4–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 4–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 4–45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for the test 4–45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Testing the PIX connections 4–45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating the MCUF (GCLK) 4–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 4–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . When to calibrate the GCLK 4–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment required 4–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setting up for calibration 4–47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Procedure 4–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 5Preserve calibration procedure i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preserve transceiver calibration feature 5–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Preserve calibration introduction 5–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibration data overview 5–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 5–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 5–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Activating the preserve feature at the OMC-R 5–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Activating the preserve feature at the BSC 5–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing a transceiver using preserved data 5–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Subsequent replacement of calibration data 5–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing a transceiver using new data 5–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Viewing the calibration data in CM database 5–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 6M-Cellcity/M-Cellcity+ optimization i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-Cellcity/M-Cellcity+ optimization 6–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Optimization overview 6–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Test equipment and test leads 6–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 6–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 6–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test cable 6–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Code download 6–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 6–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCMCIA card 6–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Code download from PCMCIA 6–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 6–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 6–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for test 6–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCMCIA download procedure 6–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking VSWR and output power 6–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 6–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking the transmit output power 6–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BCCH swap procedure 6–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 9: Drive test.pdf

GSM-100-423

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J ix

Download from BSC 6–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Download Procedure with example results 6–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Site status check procedure 6–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Battery check 6–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 6–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 6–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 6–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Battery test 6–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking the E1/T1 link 6–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 6–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 6–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 6–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for the test 6–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Running the test 6–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fitting chassis bottom cover 6–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating an MCU-m GCLK 6–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 6–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equipment 6–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 6–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 7M-Cellaccess and Horizonoffice optimization i. . . . . . . . . . . . . . . . . . . . . . . . . M-Cellaccess and Horizonoffice optimization 7–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Optimization overview 7–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Code download 7–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Test equipment, leads and plugs 7–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to test equipment, leads and plugs 7–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 7–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-way to 9-way cable (M-Cellaccess) 7–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-way to 25-way cable (M-Cellaccess and Horizonoffice) 7–4. . . . . . . . . . . . . . . . . . . Test plugs for M-Cellaccess and Horizonoffice 7–5. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Testing the dc power supply 7–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 7–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 7–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 7–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 7–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit breakers 7–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking the database for devices and functions 7–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 7–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 7–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 7–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 7–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking the E1 link 7–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 7–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 7–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Command 7–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 7–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Verifying PSM version 7–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 7–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 7–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 7–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 7–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 10: Drive test.pdf

GSM-100-423

31st Jul 01x

Installation & Configuration: BSS Optimization

68P02901W43-J

Integrating the transcoder 7–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 7–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 7–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 7–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 7–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CIC checklist 7–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating the M-Cellaccess or Horizonoffice GCLK 7–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 7–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 7–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 7–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 7–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GCLK calibration record form 7–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 8Base site integration i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Introduction to base site integration 8–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reason for base site integration 8–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . In this chapter 8–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Integrating the base site using logging software 8–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 8–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 8–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 8–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparation for integration 8–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtaining channel/timeslot information 8–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intra/inter-cell handover tests 8–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Integrating the base site without logging software 8–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 8–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 8–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 8–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparation for integration 8–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtaining channel/timeslot information 8–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intra/inter-cell handover tests 8–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Integrating the base site with no connection to the MSC 8–8. . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 8–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 8–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 8–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparation for integration 8–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtaining channel/timeslot information 8–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intra/inter-cell handover tests 8–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 9Channel numbers and frequencies i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Channels and frequencies 9–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 9–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PGSM channel numbers and frequencies 9–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Channels 9–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extended GSM channel numbers and frequencies 9–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Channels 9–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DCS1800 channel numbers and frequencies 9–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Channels 9–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 11: Drive test.pdf

GSM-100-423

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J xi

PCS1900 channel numbers and frequencies 9–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Channels 9–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 10Network optimization i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter overview 10–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Introduction 10–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Network optimization chapter topics 10–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Network optimization overview 10–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Optimization process overview 10–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stages in an optimization exercise 10–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Drive testing the system 10–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 10–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for the drive test 10–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equipment lists 10–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . optimizing for worst case interference 10–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drive test process 10–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data collection overview 10–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Personnel requirements 10–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data collection process 10–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FICS explained 10–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Classification of test calls 10–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Diagnosing drive test results 10–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 10–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analysis of data 10–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High handover failure rates 10–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High set-up failure rates 10–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High dropped call rate 10–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . No audio calls 10–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Noisy calls 10–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poor quality of service calls 10–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High blocking cells 10–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Audio call faults 10–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mean time between drops 10–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drive test report 10–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Implementation of a drive test recommendation 10–20. . . . . . . . . . . . . . . . . . . . . . . . . . . Effects of a recommendation implemented 10–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Residual defect investigation 10–21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 11Optimization results forms i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BTS/BSC optimization results forms 11–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Introduction 11–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The forms 11–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Personnel details 11–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC power supply tests 11–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Antenna reflected power tests 11–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PIX tests 11–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DRCU tests 11–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SCU/TCU900/ TCU-B/CTU900 tests 11–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SCU/TCU1800/ CTU1800 tests 11–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TCU1900 tests 11–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loopback and RTC checks 11–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 12: Drive test.pdf

GSM-100-423

31st Jul 01xii

Installation & Configuration: BSS Optimization

68P02901W43-J

BSC/RXCDR optimization results forms 11–41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 11–41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The forms 11–41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Personnel details 11–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC power supply tests 11–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PIX tests 11–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1/T1 loopback (BSC) 11–43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1/T1 loopback (RXCDR) 11–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Site documentation check 11–45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M-Cellaccess PCC optimization results forms 11–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 11–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The forms 11–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Personnel details 11–47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC power supply tests 11–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loopback checks 11–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Site documentation check 11–49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M-Cellaccess BSC/XCDR results forms 11–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 11–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The forms 11–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Personnel details 11–51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC power supply tests 11–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1 loopback (BSC) 11–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1 loopback (XCDR) 11–53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Site documentation check 11–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Drive testing optimization forms 11–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 11–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Forms in this section 11–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tick Sheet Proforma 11–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommendation Proforma 11–57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Feeder Information Proforma 11–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Drive testing optimization tables 11–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 11–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tables in this section 11–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Index I–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 13: Drive test.pdf

GSM-100-423 Issue status of this manual

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 1

Issue status of this manual

Introduction

The following shows the issue status of this manual since it was first released.

Versioninformation

The following lists the versions of this manual in order of manual issue:

Manualissue

Date ofissue

Remarks

O 3rd Oct 94 Original issue – Software release 1.2.2.x

A 30th Dec 94 Issue A – Software release 1.2.3.x

B 1st Sep 95 Issue B – Software release 1.3.0.x

C 31st May 96 Issue C – Software release 1.4.0.x

D 28th Mar 97 Issue D – Software release 1.4.1.x

E 29th Aug 97 Issue E – GSM Software Release 2

F 27th Apr 98 Issue F – GSM Software Release 3

G 12th Mar 99 Issue G – GSM Software Release 4

H 14th Jul 00 Issue H – GSM Software Release 4.1

J 31st Jul 01 Issue J – GSM Software Release 5

Resolution ofService Requests

The following Service Requests are now resolved in this manual:

ServiceRequest

GMRNumber

Remarks

SR 46112 Page 3-79 change to calibrating MCU (GCLK).

SR 47985 Chapter 2, Warning added to RCU/DRCU/SCU andChapter 3 TCU bay level calibration.

SR 48605 Chapter 4 adding dual band surf testing.

SR 49372 Chapter 2, 3 and 4 change to GCLK calibration.

Page 14: Drive test.pdf

GSM-100-423General information

31st Jul 012

Installation & Configuration: BSS Optimization

68P02901W43-J

General information

Important notice

If this manual was obtained when you attended a Motorola training course, it will not beupdated or amended by Motorola. It is intended for TRAINING PURPOSES ONLY. If itwas supplied under normal operational circumstances, to support a major softwarerelease, then corrections will be supplied automatically by Motorola in the form ofGeneral Manual Revisions (GMRs).

Purpose

Motorola Global System for Mobile Communications (GSM) manuals are intended toinstruct and assist personnel in the operation, installation and maintenance of theMotorola GSM equipment and ancillary devices. It is recommended that all personnelengaged in such activities be properly trained by Motorola.

Failure to comply with Motorola’s operation, installation and maintenanceinstructions may, in exceptional circumstances, lead to serious injury or death.

WARNING

These manuals are not intended to replace the system and equipment training offered byMotorola, although they can be used to supplement and enhance the knowledge gainedthrough such training.

About thismanual

The manual contains optimization, configuration and integration information.

This GSR5 document supports the following Motorola BSS equipment:

BTS4, BTS5, BTS6, BSSC, BSSC2, ExCell 4, ExCell 6, TopCell, M-Cell2, M-Cell6,M-Cellmicro, M-Cellcity, M-Cellcity+, M-Cellaccess, Horizonoffice and Horizonmacro.

The transceivers use, depending on capability, PGSM, EGSM, DCS1800 and PCS1900frequencies.

Page 15: Drive test.pdf

GSM-100-423 General information

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3

Cross references

Throughout this manual, cross references are made to the chapter numbers and sectionnames. The section name cross references are printed bold in text.

This manual is divided into uniquely identified and numbered chapters that, in turn, aredivided into sections. Sections are not numbered, but are individually named at the top ofeach page, and are listed in the table of contents.

Text conventions

The following conventions are used in the Motorola GSM manuals to represent keyboardinput text, screen output text and special key sequences.

Input

Characters typed in at the keyboard are shown like this.

Output

Messages, prompts, file listings, directories, utilities, and environmentalvariables that appear on the screen are shown like this.

Special key sequences

Special key sequences are represented as follows:

CTRL–c Press the Control and c keys at the same time.

ALT–f Press the Alt and f keys at the same time.

| Press the pipe symbol key.

CR or RETURN Press the Return (Enter) key. The Return key is identi-fied with the ↵ symbol on both the X terminal and theSPARCstation keyboards. The SPARCstation keyboardReturn key is also identified with the word Return.

Page 16: Drive test.pdf

GSM-100-423First aid in case of electric shock

31st Jul 014

Installation & Configuration: BSS Optimization

68P02901W43-J

First aid in case of electric shock

Warning

Do not touch the victim with your bare hands until the electric circuit isbroken.Switch off. If this is not possible, protect yourself with dry insulatingmaterial and pull or push the victim clear of the conductor.

WARNING

Artificialrespiration

In the event of an electric shock it may be necessary to carry out artificial respiration.Send for medical assistance immediately.

Burns treatment

If the patient is also suffering from burns, then, without hindrance to artificial respiration,carry out the following:

1. Do not attempt to remove clothing adhering to the burn.

2. If help is available, or as soon as artificial respiration is no longer required, coverthe wound with a dry dressing.

3. Do not apply oil or grease in any form.

Page 17: Drive test.pdf

GSM-100-423 Reporting safety issues

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 5

Reporting safety issues

Introduction

Whenever a safety issue arises, carry out the following procedure in all instances.Ensure that all site personnel are familiar with this procedure.

Procedure

Whenever a safety issue arises:

1. Make the equipment concerned safe, for example, by removing power.

2. Make no further attempt to tamper with the equipment.

3. Report the problem directly to GSM Customer Network Resolution Centre+44 (0)1793 565444 (telephone) and follow up with a written report by fax+44 (0)1793 430987 (fax).

4. Collect evidence from the equipment under the guidance of the Customer NetworkResolution Centre.

Page 18: Drive test.pdf

GSM-100-423Warnings and cautions

31st Jul 016

Installation & Configuration: BSS Optimization

68P02901W43-J

Warnings and cautions

Introduction

The following describes how warnings and cautions are used in this manual and in allmanuals of the Motorola GSM manual set.

Warnings

Definition

A warning is used to alert the reader to possible hazards that could cause loss of life,physical injury, or ill health. This includes hazards introduced during maintenance, forexample, the use of adhesives and solvents, as well as those inherent in the equipment.

Example and format

Do not look directly into fibre optic cables or optical data in/out connectors.Laser radiation can come from either the data in/out connectors orunterminated fibre optic cables connected to data in/out connectors.

WARNING

Cautions

Definition

A caution means that there is a possibility of damage to systems, or individual items ofequipment within a system. However, this presents no danger to personnel.

Example and format

Do not use test equipment that is beyond its calibration due date when testingMotorola base stations.

CAUTION

Page 19: Drive test.pdf

GSM-100-423 General warnings

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 7

General warnings

Introduction

Observe the following warnings during all phases of operation, installation andmaintenance of the equipment described in the Motorola GSM manuals. Failure tocomply with these warnings, or with specific warnings elsewhere in the Motorola GSMmanuals, violates safety standards of design, manufacture and intended use of theequipment. Motorola assumes no liability for the customer’s failure to comply with theserequirements.

Warning labelsPersonnel working with or operating Motorola equipment must comply with any warninglabels fitted to the equipment. Warning labels must not be removed, painted over orobscured in any way.

Specificwarnings

Warnings particularly applicable to the equipment are positioned on the equipment andwithin the text of this manual. These must be observed by all personnel at all times whenworking with the equipment, as must any other warnings given in text, on the illustrationsand on the equipment.

High voltageCertain Motorola equipment operates from a dangerous high voltage of 230 V ac singlephase or 415 V ac three phase supply which is potentially lethal. Therefore, the areaswhere the ac supply power is present must not be approached until the warnings andcautions in the text and on the equipment have been complied with.

To achieve isolation of the equipment from the ac supply, the ac input isolator must beset to off and locked.

Within the United Kingdom (UK) regard must be paid to the requirements of theElectricity at Work Regulations 1989. There may also be specific country legislationwhich need to be complied with, depending on where the equipment is used.

RF radiationHigh RF potentials and electromagnetic fields are present in the base station equipmentwhen in operation. Ensure that all transmitters are switched off when any antennaconnections have to be changed. Do not key transmitters connected to unterminatedcavities or feeders.

Refer to the following standards:

� ANSI IEEE C95.1-1991, IEEE Standard for Safety Levels with Respect to HumanExposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz.

� CENELEC 95 ENV 50166-2, Human Exposure to Electromagnetic Fields HighFrequency (10kHz to 300GHz).

Laser radiationDo not look directly into fibre optic cables or optical data in/out connectors. Laserradiation can come from either the data in/out connectors or unterminated fibre opticcables connected to data in/out connectors.

Page 20: Drive test.pdf

GSM-100-423General warnings

31st Jul 018

Installation & Configuration: BSS Optimization

68P02901W43-J

Liftingequipment

When dismantling heavy assemblies, or removing or replacing equipment, the competentresponsible person must ensure that adequate lifting facilities are available. Whereprovided, lifting frames must be used for these operations. When equipments have to bemanhandled, reference must be made to the Manual Handling of Loads Regulations1992 (UK) or to the relevant manual handling of loads legislation for the country in whichthe equipment is used.

Do not ...... substitute parts or modify equipment.

Because of the danger of introducing additional hazards, do not install substitute parts orperform any unauthorized modification of equipment. Contact Motorola if in doubt toensure that safety features are maintained.

Battery supplies

Do not wear earth straps when working with standby battery supplies.

Toxic material

Certain Motorola equipment incorporates components containing the highly toxic materialBeryllium or its oxide Beryllia or both. These materials are especially hazardous if:

� Beryllium materials are absorbed into the body tissues through the skin, mouth, ora wound.

� The dust created by breakage of Beryllia is inhaled.

� Toxic fumes are inhaled from Beryllium or Beryllia involved in a fire.

See the Beryllium health and safety precautions section for further information.

Page 21: Drive test.pdf

GSM-100-423 Human exposure to radio frequency energy (PCS1900 only)

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9

Human exposure to radio frequency energy (PCS1900 only)

IntroductionThis equipment is designed to generate and radiate radio frequency (RF) energy. Itshould be installed and maintained only by trained technicians. Licensees of the FederalCommunications Commission (FCC) using this equipment are responsible for insuringthat its installation and operation comply with FCC regulations designed to limit humanexposure to RF radiation in accordance with the American National Standards InstituteIEEE Standard C95.1-1991, IEEE Standard for Safety Levels with Respect to HumanExposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz.

DefinitionsThis standard establishes two sets of maximum permitted exposure limits, one forcontrolled environments and another, that allows less exposure, for uncontrolledenvironments. These terms are defined by the standard, as follows:

Uncontrolled environment

Uncontrolled environments are locations where there is the exposure of individuals whohave no knowledge or control of their exposure. The exposures may occur in livingquarters or workplaces where there are no expectations that the exposure levels mayexceed those shown for uncontrolled environments in the table of maximum permittedexposure ceilings.

Controlled environmentControlled environments are locations where there is exposure that may be incurred bypersons who are aware of the potential for exposure as a concomitant of employment, byother cognizant persons, or as the incidental result of transient passage through areaswhere analysis shows the exposure levels may be above those shown for uncontrolledenvironments but do not exceed the values shown for controlled environments in thetable of maximum permitted exposure ceilings.

Maximumpermittedexposures

The maximum permitted exposures prescribed by the standard are set in terms ofdifferent parameters of effects, depending on the frequency generated by the equipmentin question. At the frequency range of this Personal Communication System equipment,1930-1970MHz, the maximum permitted exposure levels are set in terms of powerdensity, whose definition and relationship to electric field and magnetic field strengths aredescribed by the standard as follows:

Power density (S)

Power per unit area normal to the direction of propagation, usually expressed in units ofwatts per square metre (W/m2) or, for convenience, units such as milliwatts per squarecentimetre (mW/cm2). For plane waves, power density, electric field strength (E) andmagnetic field strength (H) are related by the impedance of free space, 377 ohms. Inparticular,

� � ��

���� ���� ��

where E and H are expressed in units of V/m and A/m, respectively, and S in units ofW/m2. Although many survey instruments indicate power density units, the actualquantities measured are E or E2 or H or H2.

Page 22: Drive test.pdf

GSM-100-423Human exposure to radio frequency energy (PCS1900 only)

31st Jul 0110

Installation & Configuration: BSS Optimization

68P02901W43-J

Maximumpermittedexposureceilings

Within the frequency range, the maximum permitted exposure ceiling for uncontrolledenvironments is a power density (mW/cm2) that equals f/1500, where f is the frequencyexpressed in MHz, and measurements are averaged over a period of 30 minutes. Themaximum permitted exposure ceiling for controlled environments, also expressed inmW/cm2, is f/300 where measurements are averaged over 6 minutes. Applying theseprinciples to the minimum and maximum frequencies for which this equipment is intendedto be used yields the following maximum permitted exposure levels:

Uncontrolled Environment Controlled Environment

1930MHz 1970MHz 1930MHz 1970MHz

Ceiling 1.287mW/cm2 1.313mW/cm2 6.433mW/cm2 6.567mW/cm2

If you plan to operate the equipment at more than one frequency, compliance should beassured at the frequency which produces the lowest exposure ceiling (among thefrequencies at which operation will occur).

Licensees must be able to certify to the FCC that their facilities meet the above ceilings.Some lower power PCS devices, 100 milliwatts or less, are excluded from demonstratingcompliance, but this equipment operates at power levels orders of magnitude higher, andthe exclusion is not applicable.

Whether a given installation meets the maximum permitted exposure ceilings depends, inpart, upon antenna type, antenna placement and the output power to which thisequipment is adjusted. The following example sets forth the distances from the antennato which access should be prevented in order to comply with the uncontrolled andcontrolled environment exposure limits as set forth in the ANSI IEEE standards andcomputed above.

Page 23: Drive test.pdf

GSM-100-423 Human exposure to radio frequency energy (PCS1900 only)

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 11

Examplecalculation

For a base station with the following characteristics, what is the minimum distance fromthe antenna necessary to meet the requirements of an uncontrolled environment?

Transmit frequency: 1930 MHz

Base station cabinet output power, P: +39.0 dBm (8 watts)

Antenna feeder cable loss, CL: 2.0 dB

Antenna input power Pin: P–CL = +39.0–2.0 = +37.0 dB (5watts)

Antenna gain, G: 16.4 dBi (43.65)

Using the following relationship:

� � �����

��

Where W is the maximum permissible power density in W/m2 and r is the safe distancefrom the antenna in metres, the desired distance can be calculated as follows:

� � ���

���� � ������ �

��� ����� � ����

where W = 12.87 W/m2 was obtained from table listed above and converting frommW/cm2 to W/m2.

The above result applies only in the direction of maximum radiation of theantenna. Actual installations may employ antennas that have defined radiationpatterns and gains that differ from the example set forth above. The distancescalculated can vary depending on the actual antenna pattern and gain.

NOTE

Power densitymeasurements

While installation calculations such as the above are useful and essential in planning anddesign, validation that the operating facility using this equipment actually complies willrequire making power density measurements. For information on measuring RF fields fordetermining compliance with ANSI IEEE C95.1-1991, see IEEE Recommended Practicefor the Measure of Potentially Hazardous Electromagnetic Fields - RF and Microwave,IEEE Std C95.3-1991. Copies of IEEE C95.1-1991 and IEEE C95.3-1991 may bepurchased from the Institute of Electrical and Electronics Engineers, Inc., Attn:Publication Sales, 445 Hoes Lane, P.O. Box 1331, Piscattaway, NJ 08855-1331,(800) 678-IEEE or from ANSI, (212) 642-4900. Persons responsible for installation of thisequipment are urged to consult these standards in determining whether a giveninstallation complies with the applicable limits.

Other equipmentWhether a given installation meets ANSI standards for human exposure to radiofrequency radiation may depend not only on this equipment but also on whether theenvironments being assessed are being affected by radio frequency fields from otherequipment, the effects of which may add to the level of exposure. Accordingly, the overallexposure may be affected by radio frequency generating facilities that exist at the timethe licensee’s equipment is being installed or even by equipment installed later.Therefore, the effects of any such facilities must be considered in site selection and indetermining whether a particular installation meets the FCC requirements.

Page 24: Drive test.pdf

GSM-100-423Beryllium health and safety precautions

31st Jul 0112

Installation & Configuration: BSS Optimization

68P02901W43-J

Beryllium health and safety precautions

Introduction

Beryllium (Be), is a hard silver/white metal. It is stable in air, but burns brilliantly inOxygen.

With the exception of the naturally occurring Beryl ore (Beryllium Silicate), all Berylliumcompounds and Beryllium metal are potentially highly toxic.

Health issues

Beryllium Oxide is used within some components as an electrical insulator. Captive withinthe component it presents no health risk whatsoever. However, if the component shouldbe broken open and the Beryllium Oxide, which is in the form of dust, released, thereexists the potential for harm.

Inhalation

Inhalation of Beryllium Oxide can lead to a condition known as Berylliosis, the symptomsof Berylliosis are similar to Pneumonia and may be identified by all or any of thefollowing:

Mild poisoning causes fever, shortness of breath, and a cough that producesyellow/green sputum, or occasionally bloodstained sputum. Inflammation of the mucousmembranes of the nose, throat, and chest with discomfort, possibly pain, and difficultywith swallowing and breathing.

Severe poisoning causes chest pain and wheezing which may progress to severeshortness of breath due to congestion of the lungs. Incubation period for lung symptomsis 2-20 days.

Exposure to moderately high concentrations of Beryllium in air may produce a veryserious condition of the lungs. The injured person may become blue, feverish with rapidbreathing and raised pulse rate. Recovery is usual but may take several months. Therehave been deaths in the acute stage.

Chronic response. This condition is more truly a general one although the lungs aremainly affected. There may be lesions in the kidneys and the skin. Certain featuressupport the view that the condition is allergic. There is no relationship between thedegree of exposure and the severity of response and there is usually a time lag of up to10 years between exposure and the onset of the illness. Both sexes are equallysusceptible. The onset of the illness is insidious but only a small number of exposedpersons develop this reaction.

First aid

Seek immediate medical assistance. The casualty should be removed immediately fromthe exposure area and placed in a fresh air environment with breathing supported withOxygen where required. Any contaminated clothing should be removed. The casualtyshould be kept warm and at rest until medical aid arrives.

Page 25: Drive test.pdf

GSM-100-423 Beryllium health and safety precautions

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 13

Skin contact

Possible irritation and redness at the contact area. Persistent itching and blisterformations can occur which usually resolve on removal from exposure.

First aid

Wash area thoroughly with soap and water. If skin is broken seek immediate medicalassistance.

Eye contact

May cause severe irritation, redness and swelling of eyelid(s) and inflammation of themucous membranes of the eyes.

First aid

Flush eyes with running water for at least 15 minutes. Seek medical assistance as soonas possible.

Handlingprocedures

Removal of components from printed circuit boards (PCBs) is to take place only atMotorola approved repair centres.

The removal station will be equipped with extraction equipment and all other protectiveequipment necessary for the safe removal of components containing Beryllium Oxide.

If during removal a component is accidently opened, the Beryllium Oxide dust is to bewetted into a paste and put into a container with a spatula or similar tool. The spatula/toolused to collect the paste is also to be placed in the container. The container is then to besealed and labelled. A suitable respirator is to be worn at all times during this operation.

Components which are successfully removed are to be placed in a separate bag, sealedand labelled.

Disposalmethods

Beryllium Oxide or components containing Beryllium Oxide are to be treated ashazardous waste. All components must be removed where possible from boards and putinto sealed bags labelled Beryllium Oxide components. These bags must be given to thesafety and environmental adviser for disposal.

Under no circumstances are boards or components containing Beryllium Oxide to be putinto the general waste skips or incinerated.

Product life cycleimplications

Motorola GSM and analogue equipment includes components containing Beryllium Oxide(identified in text as appropriate and indicated by warning labels on the equipment).These components require specific disposal measures as indicated in the preceding(Disposal methods) paragraph. Motorola will arrange for the disposal of all suchhazardous waste as part of its Total Customer Satisfaction philosophy and will arrangefor the most environmentally ‘friendly’ disposal available at that time.

Page 26: Drive test.pdf

GSM-100-423General cautions

31st Jul 0114

Installation & Configuration: BSS Optimization

68P02901W43-J

General cautions

Introduction

Observe the following cautions during operation, installation and maintenance of theequipment described in the Motorola GSM manuals. Failure to comply with thesecautions or with specific cautions elsewhere in the Motorola GSM manuals may result indamage to the equipment. Motorola assumes no liability for the customer’s failure tocomply with these requirements.

Caution labels

Personnel working with or operating Motorola equipment must comply with any cautionlabels fitted to the equipment. Caution labels must not be removed, painted over orobscured in any way.

Specific cautions

Cautions particularly applicable to the equipment are positioned within the text of thismanual. These must be observed by all personnel at all times when working with theequipment, as must any other cautions given in text, on the illustrations and on theequipment.

Fibre optics

The bending radius of all fibre optic cables must not be less than 30 mm.

Static discharge

Motorola equipment contains CMOS devices that are vulnerable to static discharge.Although the damage caused by static discharge may not be immediately apparent,CMOS devices may be damaged in the long term due to static discharge caused bymishandling. Wear an approved earth strap when adjusting or handling digital boards.

See Devices sensitive to static for further information.

Page 27: Drive test.pdf

GSM-100-423 Devices sensitive to static

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 15

Devices sensitive to static

Introduction

Certain metal oxide semiconductor (MOS) devices embody in their design a thin layer ofinsulation that is susceptible to damage from electrostatic charge. Such a charge appliedto the leads of the device could cause irreparable damage.

These charges can be built up on nylon overalls, by friction, by pushing the hands intohigh insulation packing material or by use of unearthed soldering irons.

MOS devices are normally despatched from the manufacturers with the leads shortedtogether, for example, by metal foil eyelets, wire strapping, or by inserting the leads intoconductive plastic foam. Provided the leads are shorted it is safe to handle the device.

Special handlingtechniques

In the event of one of these devices having to be replaced observe the followingprecautions when handling the replacement:

� Always wear an earth strap which must be connected to the electrostatic point(ESP) on the equipment.

� Leave the short circuit on the leads until the last moment. It may be necessary toreplace the conductive foam by a piece of wire to enable the device to be fitted.

� Do not wear outer clothing made of nylon or similar man made material. A cottonoverall is preferable.

� If possible work on an earthed metal surface. Wipe insulated plastic work surfaceswith an anti-static cloth before starting the operation.

� All metal tools should be used and when not in use they should be placed on anearthed surface.

� Take care when removing components connected to electrostatic sensitivedevices. These components may be providing protection to the device.

When mounted onto printed circuit boards (PCBs), MOS devices are normally lesssusceptible to electrostatic damage. However PCBs should be handled with care,preferably by their edges and not by their tracks and pins, they should be transferreddirectly from their packing to the equipment (or the other way around) and never leftexposed on the workbench.

Page 28: Drive test.pdf

GSM-100-423Motorola GSM manual set

31st Jul 0116

Installation & Configuration: BSS Optimization

68P02901W43-J

Motorola GSM manual set

Introduction

The following manuals provide the information needed to operate, install and maintain theMotorola GSM and GSM Packet Radio Service (GPRS) equipment.

Generic GSMmanuals

The following are the generic manuals in the GSM manual set, these manuals arerelease dependent:

Classificationnumber Name Order number

GSM-100-101 System Information: General 68P02901W01. . . . . . . . . . . . . . . . . . . GSM-100-201 Operating Information: GSM System Operation 68P02901W14. . . GSM-100-202 Operating Information: OMC-R System

Administration 68P02901W19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GSM-100-311 Technical Description: OMC-R in a GSM System 68P02901W31. . GSM-100-313 Technical Description: OMC-R Database Schema 68P02901W34. GSM-100-320 Technical Description: BSS Implementation 68P02901W36. . . . . . . GSM-100-321 Technical Description: BSS Command Reference 68P02901W23. GSM-100-403 Installation & Configuration: GSM System

Configuration 68P02901W17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GSM-100-423 Installation & Configuration: BSS Optimization 68P02901W43. . . . GSM-100-413 Installation & Configuration: OMC-R Clean Install 68P02901W47. . GSM-100-501 Maintenance Information: Alarm Handling at

the OMC-R 68P02901W26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GSM-100-520 Maintenance Information: BSS Timers 68P02901W58. . . . . . . . . . . GSM-100-521 Maintenance Information: Device State Transitions 68P02901W57GSM-100-523 Maintenance Information: BSS Field

Troubleshooting 68P02901W51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GSM-100-503 Maintenance Information: GSM Statistics

Application 68P02901W56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GSM-100-721 Software Release Notes: BSS/RXCDR 68P02901W72. . . . . . . . . . GSM-100-712 Software Release Notes: OMC-R System 68P02901W74. . . . . . . .

Page 29: Drive test.pdf

GSM-100-423 Motorola GSM manual set

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 17

Related GSMmanuals

The following are related Motorola GSM manuals:

Classificationnumber Name Order number

GSM-001-103 System Information: BSS Equipment Planning 68P02900W21. . . . GSM-002-103 System Information: DataGen 68P02900W22. . . . . . . . . . . . . . . . . . GSM-002-703 Software Release Notes: DataGen 68P02900W76. . . . . . . . . . . . . . GSM-005-103 System Information: GSM Advance Operational

Impact 68P02900W25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GSM-008-403 Installation & Configuration: Network Health Analyst 68P02900W36GSM-008-703 Software Release Notes: Network Health Analyst 68P02900W77. GSM-TOOLS-001 System Information: Cell Optimization (COP) 68P02900W90. . . . . GSM-TOOLS-002 System Information: Motorola Analysis and

Reporting System (MARS) 68P02900W94. . . . . . . . . . . . . . . . . . . . . GSM-TOOLS-701 Software Release Notes: Cell Optimization (COP) 68P02900W69. GSM-TOOLS-702 Software Release Notes: Motorola Analysis and

Reporting System (MARS) 68P02900W68. . . . . . . . . . . . . . . . . . . . . GSM-006-202 Operating Information: OMC-R System

Administration (OSI) 68P02901W10. . . . . . . . . . . . . . . . . . . . . . . . . . GSM-006-413 Installation & Configuration: OSI Clean Install 68P02901W39. . . . . GSM-006-712 Software Release Notes: OMC-R OSI System 68P02901W70. . . .

Generic GPRSmanuals

The following are the generic manuals in the GPRS manual set, these manuals arerelease dependent:

Classificationnumber Name Order number

GPRS-300-101 System Information: GPRS Overview 68P02903W01. . . . . . . . . . . . GPRS-300-202 Operating Information: OMC-G System

Administration 68P02903W03. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GPRS-300-222 Operating Information: GSN System Administration 68P02903W37GPRS-300-311 Technical Description: OMC-G in a GPRS System 68P02903W29. GPRS-300-313 Technical Description: OMC-G Database Schema 68P02903W46. GPRS-300-321 Technical Description: GSN Command Reference 68P02903W18. GPRS-300-423 Installation & Configuration: GSN Clean Install 68P02903W47. . . . GPRS-300-413 Installation & Configuration: OMC-G Clean Install 68P02903W04. GPRS-300-501 Maintenance Information: Alarm Handling at

the OMC-G 68P02903W19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GPRS-300-503 Maintenance Information: GSN Statistics

Application 68P02903W20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GPRS-300-722 Software Release Notes: GSN System 68P02903W76. . . . . . . . . . GPRS-300-712 Software Release Notes: OMC-G System 68P02903W70. . . . . . . .

Related GPRSmanuals

The following are related Motorola GPRS manuals:

GPRS-001-103 System Information: GPRS Equipment Planning 68P02903W02. . GPRS-005-103 System Information: GSN Advance Operational

Impact 68P02903W38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 30: Drive test.pdf

GSM-100-423Motorola GSM manual set

31st Jul 0118

Installation & Configuration: BSS Optimization

68P02901W43-J

BSS servicemanuals

The following are the Motorola Base Station service manuals, these manuals are notrelease dependent. The internal organization and makeup of service manual sets mayvary, they may consist of from one to four separate manuals, but they can all be orderedusing the overall catalogue number shown below:

Classificationnumber Name Order number

GSM-100-020 Service Manual: BTS 68P02901W37. . . . . . . . . . . . . . . . . . . . . . . . . . GSM-100-030 Service Manual: BSC/RXCDR 68P02901W38. . . . . . . . . . . . . . . . . . GSM-105-020 Service Manual: M-Cell2 68P02901W75. . . . . . . . . . . . . . . . . . . . . . . GSM-106-020 Service Manual: M-Cell6 68P02901W85. . . . . . . . . . . . . . . . . . . . . . . GSM-201-020 Service Manual: M-Cellcity and M-Cellcity+ 68P02901W95. . . . . . . GSM-202-020 Service Manual: M-Cellaccess 68P02901W65. . . . . . . . . . . . . . . . . . GSM-203-020 Service Manual: Horizonmicro 68P02902W36. . . . . . . . . . . . . . . . . . GSM-206-020 Service Manual: Horizoncompact 68P02902W15. . . . . . . . . . . . . . . GSM-205-020 Service Manual: Horizonmacro Indoor 68P02902W06. . . . . . . . . . . GSM-204-020 Service Manual: Horizonmacro Outdoor 68P02902W12. . . . . . . . . . GSM-207-020 Service Manual: Horizonoffice 68P02902W46. . . . . . . . . . . . . . . . . . GSM-209-020 Service Manual: Horizonmicro2 Horizoncompact2 68P02902W61. GSM-208-020 Service Manual: Horizonmacro 12 Carrier Outdoor 68P02902W66GSM-101-SERIES ExCell4 Documentation Set 68P02900W50. . . . . . . . . . . . . . . . . . . . GSM-103-SERIES ExCell6 Documentation Set 68P02900W70. . . . . . . . . . . . . . . . . . . . GSM-102-SERIES TopCell Documentation Set (GSM900) 68P02901W80. . . . . . . . . . . GSM-104-SERIES TopCell Documentation Set (DCS1800) 68P02902W80. . . . . . . . . . GSM-200-SERIES M-Cellmicro Documentation Set 68P02901W90. . . . . . . . . . . . . . . . .

GPRS servicemanuals

The following are the Motorola GPRS service manuals, these manuals include thePacket Control Unit (PCU) service manual which becomes part of the BSS for GPRS:

Classificationnumber Name Order number

GPRS-301-020 Service Manual:GPRS Support Nodes (GSN) 68P02903W05. . . . . GPRS-302-020 Service Manual: Packet Control Unit (PCU) 68P02903W10. . . . . . .

Classificationnumber

The classification number is used to identify the type and level of a manual. For example,manuals with the classification number GSM-100-2xx contain operating information.

Order number

The Motorola 68P order (catalogue) number is used to order manuals.

Orderingmanuals

All orders for Motorola manuals must be placed with your Motorola Local Office orRepresentative. Manuals are ordered using the order (catalogue) number. Remember,specify the manual issue required by quoting the correct suffix letter.

Page 31: Drive test.pdf

GSM-100-423 GMR amendment

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 19

GMR amendment

Introduction toGMRs

Changes to a manual that occur after the printing date are incorporated into the manualusing General Manual Revisions (GMRs). GMRs are issued to correct Motorola manualsas and when required. A GMR has the same identity as the target manual. Each GMR isidentified by a number in a sequence that starts at 01 for each manual at each issue.GMRs are issued in the form of loose leaf pages, with a pink instruction sheet on thefront.

GMR procedure

When a GMR is received, check on the GMR amendment record page of this manualthat previous GMRs, if any, have been incorporated. If not, contact your administrator orMotorola Local Office to obtain the missing GMRs. Remove and replace pages in thismanual, as detailed on the GMR pink instruction sheet.

Page 32: Drive test.pdf

GSM-100-423GMR amendment record

31st Jul 0120

Installation & Configuration: BSS Optimization

68P02901W43-J

GMR amendment record

Instructions

When a GMR is inserted in this manual, the amendment record below must be filled in torecord the insertion. Retain the pink instruction sheet that accompanies each GMR andinsert it in a suitable place in this manual for future reference.

Amendmentrecord

Record the insertion of GMRs in this manual in the following table:

GMR number Incorporated by (signature) Date

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Page 33: Drive test.pdf

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J i

Chapter 1

Introduction to BSS optimization

Page 34: Drive test.pdf

GSM-100-423

31st Jul 01ii

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 35: Drive test.pdf

GSM-100-423

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J iii

Chapter 1Introduction to BSS optimization i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Guide to using this manual 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of this chapter 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Audience 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of the manual 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Prerequisites 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Structure 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Related documentation 1–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equipment supported 1–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Infrastructure sharing 1–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 36: Drive test.pdf

GSM-100-423

31st Jul 01iv

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 37: Drive test.pdf

GSM-100-423 Guide to using this manual

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 1–1

Guide to using this manual

Purpose of thischapter

This chapter:

� Gives the purpose of the manual.

� Lists the prerequisites for using the manual.

� Explains the purpose of each manual chapter.

� States the range of equipment supported.

Audience

This manual is for technicians who work at base station system (BSS) sites.

The manual assumes a degree of familiarity with Motorola BSS hardware and software.Technicians may use this manual to install, configure and optimize the BSS cabinets.

Purpose of themanual

Use this manual to:

� Optimize and integrate BSS and BTS sites.

� Calibrate the transceiver transmit power and check VSWR.

� Calibrate transceiver bay level offsets.

� Check other communications and calibrations relevant to each system.

Prerequisites

This manual assumes the reader knows:

� How to operate a local maintenance terminal (LMT).

� How the BSS and BTS systems work.

Structure

The manual contains the following chapters:

� Optimization chapter for all non M-Cell systems.

� Optimization chapter for M-Cell2 and M-Cell6.

� Optimization chapter for Horizonmacro.

� Preserve calibration procedure for all systems in previous chapters.

� Optimization chapter for M-Cellcity.

� Optimization chapter for M-Cellaccess and Horizonoffice.

� Integration chapter for all systems.

� Channel numbers and frequencies associated with all systems.

� Optimization chapter for drive testing a network.

� Optimization results forms used for those systems that have manual calibration.

Page 38: Drive test.pdf

GSM-100-423Guide to using this manual

31st Jul 011–2

Installation & Configuration: BSS Optimization

68P02901W43-J

Relateddocumentation

Refer to the appropriate service manuals.

Equipmentsupported

This GSR5 document supports the following Motorola BSS equipment:

BTS4, BTS5, BTS6, BSSC, BSSC2, ExCell 4, ExCell 6, TopCell, M-Cell2, M-Cell6,M-Cellmicro, M-Cellcity, M-Cellaccess, Horizonmicro, Horizoncompact, Horizonoffice andHorizonmacro.

The transceivers use, depending on capability, PGSM, EGSM, DCS1800 and PCS1900frequencies.

Infrastructuresharing

Equipment from GSR3 onwards can employ infrastructure sharing, for use by multibandmobiles. This enables multiband support at site level, and for inter-cell handovers.GSM900 and DCS1800 equipment may be supported at a single site, but in separatecabinets for GSR3. Care should be taken to ensure that appropriate equipment andcables are used for each type, and that the appropriate parts of the Service Manuals areconsulted.

Page 39: Drive test.pdf

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J i

Chapter 2

BTS4/5/6 ExCell TopCell & BSC

optimization

Page 40: Drive test.pdf

GSM-100-423

31st Jul 01ii

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 41: Drive test.pdf

GSM-100-423

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J iii

Chapter 2BTS4/5/6 ExCell TopCell & BSC optimization i. . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to BTS4/5/6, ExCell, TopCell & BSC optimization 2–1. . . . . . . . . . . . . . . . . . . . .

Purpose of this chapter 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Code download 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Test equipment, leads and plugs 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-way to 9-way cable 2–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-way to 25-way cable 2–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test plug A 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test plug B 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test plug C 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Testing the dc power supply 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit breakers 2–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Manually tuning the RTC 2–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating DRCUs Tx power and VSWR check 2–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating the DRCU, DRCUII and DRCU3 bay level offset tables 2–17. . . . . . . . . . . . . . . . Introduction 2–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating SCU Tx power and VSWR check 2–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating the SCU900/1800 bay level offset tables 2–31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setting up procedure 2–33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level calibration for branch1 RX1A 2–34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for RX2A 2–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for RX3A 2–37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Branch completion 2–37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Branch 2 2–37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking calibration 2–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostic check of the SCU 2–39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Restoration 2–39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 42: Drive test.pdf

GSM-100-423

31st Jul 01iv

Installation & Configuration: BSS Optimization

68P02901W43-J

Checking the database for devices and functions 2–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking the E1/T1 link 2–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Command 2–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Verifying PIX connections 2–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Integrating the transcoder 2–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CIC checklist 2–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating the GCLK 2–51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GCLK calibration record form 2–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Verifying ExCell alarms 2–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 2–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 2–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Initial procedure 2–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The alarms 2–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Smoke alarm 2–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overtemperature alarm 2–57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Door open alarm 2–57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fan fail alarm 2–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mains fail alarm 2–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rectifier fail alarm 2–59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low dc voltage alarm 2–59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverter fail alarm 2–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MCB trip alarm 2–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Battery fault alarm 2–61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comms PSU fail alarm 2–61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External alarm 0 2–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External alarm 1 2–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External alarm 2 2–63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External alarm 3 2–63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Identifying DRCU faults on site 2–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 2–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symptoms during normal operation 2–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symptoms during commissioning 2–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure during normal operation 2–65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure during commissioning 2–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 43: Drive test.pdf

GSM-100-423 Introduction to BTS4/5/6, ExCell, TopCell & BSC optimization

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–1

Introduction to BTS4/5/6, ExCell, TopCell & BSC optimization

Purpose of thischapter

This chapter provides information required to optimize and configure Motorola BTS4,BTS5, BTS6, ExCell, TopCell and BSC cabinets. For information about equipment notsupplied by Motorola, for example battery chargers, power supplies and antennas, referto the site specific documentation and the vendor instructions provided with theequipment.

Hazardous voltages in excess of 50 V dc exist inside –48 V and –60 Vcabinets.

Use extreme caution when working on a cabinet with power applied. Removeall rings, watches and other jewellery.

WARNING

In this chapter DRCU is used to mean DRCU, DRCUII, DRCU3, SCU900 orSCU1800. All procedures are the same for each unless otherwise indicated.

NOTE

Code download

At initial loading, or when new system software is distributed to the system, the systemsoftware is downloaded from the OMC-R. If a new load is required at a site, request adownload from the OMC-R to that site.

If the existing software detects a corrupted segment in the current load, itautomatically requests a download from the OMC-R.

NOTE

Page 44: Drive test.pdf

GSM-100-423Test equipment, leads and plugs

31st Jul 012–2

Installation & Configuration: BSS Optimization

68P02901W43-J

Test equipment, leads and plugs

Introduction

Various test equipment and test leads are required to carry out the optimization tests.

All test equipment and test leads must be calibrated annually by a recognizedlaboratory, not in the field. Do not use test equipment that is beyond its duecalibration date.

CAUTION

Allow test equipment to warm up for 30 minutes before use.

NOTE

Requirements

The table lists the equipment required for system optimization:

Quantity Item

1 IBM-compatible personal computer (PC) with:At least a 386 processorAt least a 60 Mbyte hard driveAt least 4 Mbit/s of RAMPCMCIA type 2 slot

1 Signal generator

1 Rubidium standard (minimum accuracy 1x10–10)

1 Commercial terminal emulator software (PC Plus or similar)

1 Digital multimeter (HP E2378A or equivalent)

1 50 ohm RF dummy load (50 W minimum)

1 Transportable cellphone

1 ESD protection kit

1 RF adaptor kit (RTLXQ98088 or equivalent)

1 Adaptors: N to 7/16 in and N to N

1 RF wattmeter (Bird model 43 or equivalent) with 5 W, 10 W,25 W and 50 W elements

1 N to N male coaxial cable (2 m long, calibrated)

1 N to N male coaxial cable (4 m long, calibrated)

1 9 to 9-way cable (PC to DCB/CEB, DRCU, MCU, RTC orTCU)

2 9 to 25-way cable (PC to GPROC)

6 Type 43 loopback cables 23 cm (9 in.) long

1 BIB loopback plug

1 each Test plugs A, B and C

Page 45: Drive test.pdf

GSM-100-423 Test equipment, leads and plugs

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–3

9-way to 9-waycable

The diagram shows the cable for PC to DCB/CEB, DRCU, MCU, RTC, or TCUconnections:

TO PC COMMUNICATIONS PORT TO DESTINATION PORT CONNECTOR

PIN NUMBERPIN NUMBER

4 m LONG SCREENED CABLE

2

3

4

5

6

7

8

2

3

7

9-WAY D-TYPE F 9-WAY D-TYPE M

5

9-way to 25-waycable

The diagram shows the cable for PC to GPROC connection:

PIN NUMBER

9-WAY D-TYPE F 25-WAY D-TYPE M

PIN NUMBER

4 m LONG SCREENED CABLE

1

2

3

4

5

6

7

8

9

3

8

2

20

7

6

4

5

22

Page 46: Drive test.pdf

GSM-100-423Test equipment, leads and plugs

31st Jul 012–4

Installation & Configuration: BSS Optimization

68P02901W43-J

Test plug A

The table lists the pin connections for test plug A:

From pin To pin Connection

1 2 Connect with a 1 kohm resistor

4 5 Connect with a 1 kohm resistor

7 8 Connect with a 1 kohm resistor

10 11 Connect with a 1 kohm resistor

44 45 Connect with a 10 kohm resistor

47 48 Connect with a 10 kohm resistor

50 51 Connect with a 10 kohm resistor

53 54 Connect with a 10 kohm resistor

Test plug B

The table lists the pin connections for test plug B:

From pin To pin Connection

1 2 Connect with a 10 kohm resistor

4 5 Connect with a 10 kohm resistor

7 8 Connect with a 10 kohm resistor

10 11 Connect with a 10 kohm resistor

44 45 Connect with a 1 kohm resistor

47 48 Connect with a 1 kohm resistor

50 51 Connect with a 1 kohm resistor

53 54 Connect with a 1 kohm resistor

Test plug C

The table lists the pin connections for test plug C:

From pin To pin Connection

1 2 Connect with a wire link

4 5 Connect with a wire link

7 8 Connect with a wire link

10 11 Connect with a wire link

44 45 Connect with a wire link

47 48 Connect with a wire link

50 51 Connect with a wire link

53 54 Connect with a wire link

Page 47: Drive test.pdf

GSM-100-423 Testing the dc power supply

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–5

Testing the dc power supply

Introduction

The person carrying out these tests must be accompanied by a secondperson acting in a safety capacity.

WARNING

The objective of the dc power supply tests is to verify that the main dc supply and powersupply modules are operating.

In this section, the term PSM is used to indicate a DPSM, EPSM, or IPSM asappropriate.

NOTE

Test equipment

No special test equipment is required to carry out the dc power supply tests.

Commands

No special software commands are required for the dc power supply tests.

Procedure

To carry out the dc power supply tests:

Preparation for test

1. Ensure that none of the full-size modules, half-size modules or PSMs are seated intheir backplane connectors.

2. Set all cabinet power supply circuit breakers to the OFF position.

3. Positive earth BTS4 cabinets only. Go to step 4.All other BTS cabinets and all BSSC cabinets. Go to Power supply test step1.

4. Firmly seat all power converters (up to four depending upon the cabinetconfiguration).

Page 48: Drive test.pdf

GSM-100-423Testing the dc power supply

31st Jul 012–6

Installation & Configuration: BSS Optimization

68P02901W43-J

Power supply test

1. Apply power to the cabinet.

2. Positive earth BTS4 cabinets only. Set circuit breakers CB5 and CB6.Positive earth BSSC cabinets only. Set circuit breakers CB4 and CB5.Negative earth BTS6 and BSSC2 cabinets only. Set circuit breaker CB1.Positive earth BTS6 and BSSC2 cabinets only. Set circuit breaker CB1 and goto step 4.

3. Check that the cabinet fans are operating.

If the fans are not operating:

Step Action

a. Check that dc power is connected to the cabinet (if not,suspect the dc power supply, the power cabling and thecabinet power input connections).

b. Check the fan fuses and the dc power cabling to the fans,and to the power converters (positive earth BTS4) or fanpower converters (positive earth BSSC).

c. Verify correct power converter (positive earth BTS4) or fanpower converter (positive earth BSSC) operation bysubstituting known good units.

With exception to the cabinets detailed in step 6 below. The fans must beoperating before PSMs or DRCUs can be switched on.

NOTE

4. Firmly seat all PSMs in their backplane connectors.

5. Set the circuit breaker to ON for each PSM. Check that the green LED activeindicator for the chosen PSM lights.

6. Positive earth BTS6 and BSSC2 cabinets only. Check that the cabinet fans areoperating.

If the fans are not operating:

Step Action

a. Check that dc power is connected to the cabinet (if not,suspect the dc power supply, the power cabling or thecabinet input power connections).

b. Check the fan fuses and the dc power cabling to the fans.

7. Set the circuit breaker for each DRCU to ON.

Site restoration

1. Insert all processor cards into their backplane connectors.

2. Insert all other modules into their backplane connectors.

Page 49: Drive test.pdf

GSM-100-423 Testing the dc power supply

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–7

Circuit breakers

The tables list the cabinet circuit breaker assignments:

–48/60 V BTS cabinets

BTS4 BTS6

CB Protects CB Protects

11 PSM2 11 Not fitted

10 PSM1 10 IPSM2

9 PSM0 9 IPSM1

8 PC4 8 IPSM0

7 PC3 7 DRCU5

6 PC2 6 DRCU4

5 PC1 5 DRCU3

4 DRCU3 4 DRCU2

3 DRCU2 3 DRCU1

2 DRCU1 2 DRCU0

1 DRCU0 1 DAB

+27 V BTS cabinets

BTS4/BTS5 BTS6

CB Protects CB Protects

11 PSM2 11 Not fitted

10 PSM1 10 EPSM2

9 PSM0 9 EPSM1

8 Not used 8 EPSM0

7 Not used 7 DRCU5

6 Not used 6 DRCU4

5 DRCU4 5 DRCU3

4 DRCU3 4 DRCU2

3 DRCU2 3 DRCU1

2 DRCU1 2 DRCU0

1 DRCU0 1 DAB

Page 50: Drive test.pdf

GSM-100-423Testing the dc power supply

31st Jul 012–8

Installation & Configuration: BSS Optimization

68P02901W43-J

–48/60 V BSSC/RXCDR cabinets

BSSC BSSC2

CB Protects CB Protects

11 PSM2L 11 Not fitted

10 PSM1L 10 IPSM2L

9 PSM0L 9 IPSM1L

8 PSM2U 8 IPSM0L

7 PSM1U 7 IPSM2U

6 PSM0U 6 IPSM1U

5 FPC2 5 IPSM0U

4 FPC1 4 Not used

3 Not used 3 Not used

2 Not used 2 Not used

1 Not used 1 DAB

+27 V BSSC/RXCDR cabinets

BSSC BSSC2

CB Protects CB Protects

11 PSM2L 11 Not fitted

10 PSM1L 10 EPSM2L

9 PSM0L 9 EPSM1L

8 PSM2U 8 EPSM0L

7 PSM1U 7 EPSM2U

6 PSM0U 6 EPSM1U

5 Not used 5 EPSM0U

4 Not used 4 Not used

3 Not used 3 Not used

2 Not used 2 Not used

1 Not used 1 DAB

Page 51: Drive test.pdf

GSM-100-423 Manually tuning the RTC

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–9

Manually tuning the RTC

Introduction

Follow this procedure to tune a remotely tuneable combiner (RTC) to a desiredfrequency.

This procedure is not applicable to DCS1800 or PCS1900 systems.

NOTE

Test equipment

The following test equipment is required to carry out this procedure:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A copy of the RTC control program.

� A 9 to 9-way cable.

Commands

No special software commands are required for this procedure.

Procedure

Proceed as follows:

Tuning preparation

1. Ensure that the RTC jumpers are in the correct position for manual operation. Onlyone link must be fitted; remove the redundant link.

2. Connect the 9 to 9-way cable from the serial A port on the PC to the RS232 porton the RTC (behind the top left side of the RTC).

Tuning the RTC

1. Type the following command at the PC to start the RTC tuning program:

COM00_02

2. Press Enter eleven times.

The following message is displayed:

Press a highlighted letter of an option or parameter.

3. Select the manual mode of communication with the RTC by typing:

V

4. Press Enter four times. The following message is displayed:

Press a highlighted letter of an option or parameter.

5. Select address by typing:

A

Page 52: Drive test.pdf

GSM-100-423Manually tuning the RTC

31st Jul 012–10

Installation & Configuration: BSS Optimization

68P02901W43-J

6. Enter the required address:

255

or the address determined by the jumpers and then press Enter.

7. Select cavity by typing:

Y

8. Follow the instructions displayed at the bottom of the screen and then pressEnter.

9. Select channel by typing:

C

10. Follow the instructions displayed at the bottom of the screen and select the cavityto be tuned.

11. Select download by typing:

D

Repeat step 9 to step 11 for each cavity that is to be tuned.

12. Quit the RTC tuning program by typing:

Q

To restore the site return the RTC jumpers to the auto position.

Page 53: Drive test.pdf

GSM-100-423 Calibrating DRCUs Tx power and VSWR check

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–11

Calibrating DRCUs Tx power and VSWR check

Introduction

Follow this procedure to set the predefined maximum transmitter output power at the topof the cabinet, and to ensure that antenna feeders and connectors are properlyterminated.

The objective of the VSWR check and output power calibration procedure is to ensurethat antenna feeders and connectors are properly terminated and then set thepre-defined maximum transmitter output power at the top of the cabinet.

When a radio is manufactured, it undergoes comprehensive transmit and receivecalibration procedures. These procedures aim to produce a radio that exhibits a flatfrequency response over the full PGSM band. In the case of the transmitter, this isperformed by sharing out the 124 channels over eight detector groups (the detector beingthe device that maintains a steady output power level).

In the field, the procedure for setting the transmit output power involves using a set ofcommands called Cell Site Power (CSPWR). During CSPWR the cabinet output powercan be trimmed to account for any abnormalities that may occur between the DRCU andthe top of the cabinet. The offset is effectively subtracted from the requested power level,such that for whatever channel is selected, a steady output is maintained at the top of thecabinet.

When the CSPWR command is typed at the DCB/RCB/SCB prompt, it effectively executesa small script containing the following commands:

TS A CHAN 60 Set all timeslots to channel 60.

TS A TX 00 Set all timeslots to full power.

MDLTR UC Turn the modulation off.

Prior to executing the CSPWR command, it assumes that the synthesizers are hopping(not locked) as is the case after the unit is powered up for the first time. To alter thepower, typing U increments or typing D decrements the power setting byte. Oncompletion, the command is exited and the appropriate power byte is saved to RAM.

To specify a specific channel (instead of defaulting to channel 60), two extra commandsmust be entered prior to executing the CSPWR command, one to set the appropriatechannel and the other to lock the synthesizer. By locking the synthesizer, the channelselection made in the CSPWR command will be ignored and the output is maintained atthe frequency specified.

This procedure applies to the DRCU, DRCUII and DRCU3.

In this section DRCU is used to mean DRCU, DRCUII, or DRCU3.The DCB prompt applies to the DRCU.The RCB prompt applies to the DRCUII.The SCB prompt applies to the DRCU3.

NOTE

Page 54: Drive test.pdf

GSM-100-423Calibrating DRCUs Tx power and VSWR check

31st Jul 012–12

Installation & Configuration: BSS Optimization

68P02901W43-J

Test equipment

The following equipment is needed to carry out the procedure:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A Bird model 43P (Thru-line) wattmeter or equivalent, with 5 W and 50 Welements.

� A 50 ohm 50 W dummy load.

� A 9 to 9-way cable.

� A 9 to 25-way cable.

All test equipment and test leads must be calibrated annually by a recognizedlaboratory. Test equipment and test leads must not be calibrated in the field.

Do not optimize Motorola cellular base stations with test equipment that isbeyond its calibration due date.

Allow test equipment to warm up for 30 minutes before use.

CAUTION

Page 55: Drive test.pdf

GSM-100-423 Calibrating DRCUs Tx power and VSWR check

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–13

Commands

The following commands must be used to carry out the procedure:

BSS MMIcommand

Function

lock_device Prevents the device being used.

unlock_device Frees the device for further use.

clear_cal_data Clears previously stored calibration data for a specifiedradio unit on a per DRI basis.

DRCU emulatorcommand

Function

SWAP C 0 Swaps control code between memories to check data.

SWAP E A Swaps equalizer code between memories to checkdata.

SWAP P 0 Swaps PA code between memories to check data.

EXEC C 0 Executes control code currently held in RAM.

EXEC P 0 Executes PA code currently held in RAM.

HALT P 0 Places the power amplifier into active standby mode.

HALT C 0 Places the SCB into active standby mode.

TEST Places the DRCU into test mode.

ACTIVE P 0 Places the power amplifier into call processing mode.

CSPWR Sets the cell site power level using the followingcontrols:

u Increases cell site power by 0.2 dB.

d Decreases cell site power by 0.2 dB.

ESC Exits the calibration session and stores the settings.

TS T CHAN XX Timeslot set up.

Where: T = timeslot number or A = ALL.XX = ARFCN to tune timeslot to.

SYNTH N Locks the transmitted frequency on synthesizer n.

NOTEThe symbol 0 in the commands listed above is a zero.

Page 56: Drive test.pdf

GSM-100-423Calibrating DRCUs Tx power and VSWR check

31st Jul 012–14

Installation & Configuration: BSS Optimization

68P02901W43-J

Procedure

Proceed as follows:

Initial preparation

1. Connect the 9 to 25-way cable from the PC serial A port to a GPROC TTY port.

2. At the PC start the terminal emulator program.

3. At the CUST/MMI prompt, enter the password.

4. Type:

lock_device # dri a * 0

Where: is:

# the number of the sitelogged into.

a the antenna/relative cellnumber (0 to 5).

* the DRI number on theantenna.

5. Type:

clear_cal_data # dri a * 0

Where: is:

# the number of the sitelogged into.

a the antenna/relative cellnumber (0 to 5).

* the DRI number on theantenna.

The clear_cal_data command clears all calibration data out of the CMdatabase. This is required to overide the preserve calibration feature, ifenabled.

NOTE

6. Connect the wattmeter, with 50 W element and dummy load to the TX port, at thetop of the cabinet. If a remote tune combiner is fitted, the relevant port must betuned to channel 60.

In the case of external combiners, connect the wattmeter, with 50 W element anddummy load, to the output port of the combiner.

7. Disconnect and remove the 9 to 25-way cable.

8. Disable the DRI controlling the DRCU under test using the disable switch on theDRI front panel.

9. Connect the 9 to 9-way cable from the PC serial A port to a CONT PRCSR port onthe DRCU.

10. Reset the DRCU using the manual reset button.

Page 57: Drive test.pdf

GSM-100-423 Calibrating DRCUs Tx power and VSWR check

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–15

Tx forward power check

1. Enter the boot code passwords.

2. Type:

SWAP C 0

EXEC C 0

3. At the DCB/RCB/SCB prompt, enter the op code password.

4. Type:

SWAP P 0

EXEC P 0

SWAP E A

TEST

ACTIV P 0

5. If an RTC is fitted go to step 7.

6. To select all timeslots and a particular channel, enter the following commands atthe DCB/RCB/SCB prompt:

TS A CHAN NNN

SYNTH N

Where: is:

A all the timeslots.

NNN the specified channelnumber.

N the synthesizer number.

7. At the DCB/RCB/SCB prompt type:

CSPWR

8. Monitor and record the wattmeter reading (the forward output power).

9. Press ESC.

Tx reverse power check

1. Replace the 50 W element in the wattmeter with a 5 W element and reverse thedirection on the power meter.

2. Type CSPWR.

3. Monitor and record the reverse power reading indicated on the power meter.

Readings should show reflected (reverse) power of no more than 1 W or 5% offorward power.If the ratio of the forward and reverse readings is unacceptable, suspect animproper termination of the antenna feeder and connector.

NOTE

4. Press ESC.

Page 58: Drive test.pdf

GSM-100-423Calibrating DRCUs Tx power and VSWR check

31st Jul 012–16

Installation & Configuration: BSS Optimization

68P02901W43-J

Setting Tx output power

1. Replace the 5 W element in the wattmeter with a 50 W element, and connect themeter in the forward direction.

2. Type CSPWR.

The following message is displayed:

Hit U or D until desired max is measured then hit (ESC, CTL–Y OR CTL–C)

3. Type U or D to achieve 43 dBm (20 W) measured power at the top of the cabinet.When combiners are used the full power may not be achieved. The acceptablemeasured power levels are tabulated below:

Equipment fitted Measured power

1 stage combiner 42.55 dBm (18 W)

RTC 42.75 dBm (18.8 W)

An additional hybrid combiner can add a 3.2 dB loss.

As U or D is entered a message similar to the following example is displayed:

D P:47.8 dBm Cell Site Offset :1

The message indicates the DRCU output power and offset (1 step=0.2 dB).

4. When the required level is achieved press:

ESC

The cell site offset can be checked by connecting to the CONT PRCSR port andreading the following memory locations:

For a DRCU, enter R E:5B13

For a DRCUII, enter R E:5B0C

For a DRCU3, enter R E:5B0C

Site restoration

1. Remove the 9 to 9-way cable and reconnect the DATA IN fibre cable.

2. Connect the serial A port on the PC to a GPROC TTY port using the 9 to 25-waycable.

3. Power the DRCU down and remove the wattmeter and dummy load from the Txport. Reconnect the antenna lead to the Tx port.

4. Power up the DRCU.

5. At the CUST MMI prompt enter:

unlock_device # dri a * 0

Where: is:

# the site logged into.

a the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

6. Remove the 9 to 25-way cable.

The DRCU is now in call processing mode.

Page 59: Drive test.pdf

GSM-100-423 Calibrating the DRCU, DRCUII and DRCU3 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–17

Calibrating the DRCU, DRCUII and DRCU3 bay level offset tables

IntroductionFollow this procedure to calibrate the bay level offset tables to compensate for the lossesor gains, due to preselectors and RF cabling, from the antenna inputs at the BTS to theDRCU, DRCUII or DRCU3 input.

This procedure applies only to the DRCU, DRCUII and DRCU3.

In this section DRCU is used to mean DRCU, DRCUII or DRCU3. Exceptionsare identified by DRCUII or DRCU3 alternatives.The DCB prompt applies to the DRCU.The RCB prompt applies to the DRCUII.The SCB prompt applies to the DRCU3.

NOTE

Test equipmentThe following test equipment is required to carry out this procedure:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A 50 ohm 50 W dummy load.

� A signal generator.

� 9 to 9-way cable.

� 9 to 25-way cable.

All test equipment and test leads must be calibrated annually by a recognizedlaboratory. Test equipment and test leads must not be calibrated in the field.

Do not optimize Motorola cellular base stations with test equipment that isbeyond its calibration due date.

Allow test equipment to warm up for 30 minutes before use.

CAUTION

Page 60: Drive test.pdf

GSM-100-423Calibrating the DRCU, DRCUII and DRCU3 bay level offset tables

31st Jul 012–18

Installation & Configuration: BSS Optimization

68P02901W43-J

CommandsThe following commands must be used to carry out this procedure:

1. The 0 used in the commands in this procedure is a zero. 2. The lock_device, unlock_device and clear_cal_data commands are BSSMMI commands and may be entered in upper or lower case; the rest of thecommands in this list are DRCU (emulator) commands and case is as shown.

NOTE

BSS MMIcommand

Function

lock_device Prevents the device being used.

unlock_device Frees the device for further use.

clear_cal_data Clears previously stored calibration data for a specifiedradio unit on a per DRI basis.

DRCU emulatorcommand

Function

SWAP C 0 Swaps controller code between memories to checkvalidity.

EXEC C 0 Executes controller code currently stored in RAM.

SWAP P 0 Swaps PA code between memories to check validity.

EXEC P 0 Executes PA code currently stored in RAM.

SWAP E A Swaps equalizer code between memories to checkvalidity.

CONFGR E A Sends call processing calibration tables to DEQDSP.

TEST Places the DRCU into test mode.

SNDEQ 0 3C Emulates equalizer messaging.

IQDC0 0 Queries equalizer for IQ absolute dc offset.

IQDCP 0 Passes dc offset information to equallizer DSP.

AIC OUT Disables automatic intermodulation compensation.

TS A CHAN # Sets all timeslots to channel #.

TS A ANT # Sets all timeslots to antenna #.

CAL BAY @1/@2 Calibrates the bay level receive equipment.

CALCHK Verifies calibration data.

Page 61: Drive test.pdf

GSM-100-423 Calibrating the DRCU, DRCUII and DRCU3 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–19

Procedure

Proceed as follows:

Initial preparation

1. Connect the 9 to 25-way cable from the PC serial A port to a GPROC TTY port.

2. At the PC start the terminal emulator program.

Failure to lock the cell could result in the BCCH transmitting into, and causingdamage to the signal generator. The maintenance engineer could receive RFburns when connecting to the antenna socket.

WARNING

3. Type:

lock_device # dri a * 0

Where: is:

# the number of the sitelogged into.

a the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

4. Type:

clear_cal_data # dri a * 0

Where: is:

# the number of the sitelogged into.

a the antenna/relative cellnumber (0 to 5).

* the DRI number on theantenna.

The clear_cal_data command clears all calibration data out of the CMdatabase. This is required to overide the preserve calibration feature, ifenabled.

NOTE

5. If the DRCU is not connected to a Tx antenna, connect a dummy load to the Txport of the DRCU under test.

6. Connect the RF output of the signal generator to the DRCU Rx port.

7. Disconnect the 9 to 25-way cable from the GPROC TTY port.

8. Connect the serial A port on the PC to the CONT PRCSR port on the DRCU usingthe 9 to 9-way cable.

Page 62: Drive test.pdf

GSM-100-423Calibrating the DRCU, DRCUII and DRCU3 bay level offset tables

31st Jul 012–20

Installation & Configuration: BSS Optimization

68P02901W43-J

Calibration setup

1. Input the entry level password to obtain the DCB/RCB/SCB prompt.

DCB is the prompt for DRCU. RCB is the prompt for DRCUII. SCB is theprompt for DRCU3.

For DRCU3, reset using the front panel switch, and at the SCB prompt enterthe boot passwords one and two.

NOTE

2. At the DCB/RCB/SCB prompt type:

SWAP C 0

EXEC C 0

3. At the DCB/RCB/SCB prompt enter the password.

For DRCU3, the entered password is password three.

NOTE

4. At the DCB/RCB/SCB prompt type:

SWAP P 0

EXEC P 0

SWAP E A

TEST

SNDEQ 0 3C

IQDCO 0

IQDCP 0

AIC OUT

5. Set the signal generator to the first channel frequency (channel 04 = 890.801 MHz)at a level of –65.2 dBm.

The Tx level of the signal generator must be set to allow for losses in the testleads used. It is VITAL that the signal generator and cables are correctlycalibrated, and the RF cables are in good order.

NOTE

6. If a receiver matrix is fitted, go to Calibration with a receive matrix.

Page 63: Drive test.pdf

GSM-100-423 Calibrating the DRCU, DRCUII and DRCU3 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–21

Calibration with a six–way splitter

1. Connect the output of the signal generator to branch 1 of the antenna to be used(RX1A, RX2A or RX3A) for the DRCU under test. At the DCB/RCB/SCB prompt type the appropriate command for (RX1A, 2A & 3A):

TS A ANT 1 (2) OR (3)

2. At the DCB/RCB/SCB prompt type:

TS A CHAN #

Where: # is: the channel numbershown in Table 2-1.

CAL BAY @1

3. Repeat step 2 with the signal generator set to the appropriate frequency for all thefollowing test frequencies:

Table 2-1 Channel frequency listing

Channel Frequency (MHz) Channel Frequency (MHz)

04 890.801 68 903.601

12 892.401 76 905.201

20 894.001 84 906.801

28 895.601 92 908.401

36 897.201 100 910.001

44 898.801 108 911.601

52 900.401 116 913.201

60 902.001 122 914.401

4. Go to step 14 at the end of Calibration with a receive matrix.

Calibration with a receive matrix

1. Ensure that the DIP switches on the receiver matrix are set to output signalselection DRCU data controlled.

2. Connect the output of the signal generator to RX1A.

3. At the DCB/RCB/SCB prompt type:

TS A ANT 1

4. At the DCB/RCB/SCB prompt type:

TS A CHAN #

Where: # is: the channel numbershown in Table 2-1.

CAL BAY @1

5. Set the signal generator to the appropriate frequency and repeat step 4 for all testfrequencies listed in Table 2-1.

6. Connect the output of the signal generator to RX2A.

7. At the DCB/RCB/SCB prompt type:

TS A ANT 2

Page 64: Drive test.pdf

GSM-100-423Calibrating the DRCU, DRCUII and DRCU3 bay level offset tables

31st Jul 012–22

Installation & Configuration: BSS Optimization

68P02901W43-J

8. At the DCB/RCB/SCB prompt type:

TS A CHAN #

Where: # is: the channel numbershown in Table 2-1.

CAL BAY @1

9. Set the signal generator to the appropriate frequency and repeat step 8 for all testfrequencies listed in Table 2-1.

10. Connect the output of the signal generator to RX3A.

11. At the DCB/RCB/SCB prompt type:

TS A ANT 3

12. At the DCB/RCB/SCB prompt type:

TS A CHAN #

Where: # is: the channel numbershown in Table 2-1.

CAL BAY @1

13. Set the signal generator to the appropriate frequency and repeat step 12 for all testfrequencies listed in Table 2-1.

14. Repeat steps 5 (under Bay level offset calibration) to 13 (under Calibrationwith a receive matrix) for branch 2 using connectors RX1B, RX2B and RX3Brespectively at the top of the cabinet. Enter @2 instead of @1 in the CAL BAYcommand.

Stored bay level offset verification

1. To verify that the bay level offset values have been stored in EPROM use the readcommand with the required offset table location as an argument; for example:

R E: 5391 53A0 in the case of Branch 1 DRCU antenna 1.

Branch 1

Antenna

DRCU DRCUII DRCU3

1 DCB> R E:5391 53A0 RCB> R E:538A 5399 SCB> R E:538A 5399

2 DCB> R E:53C1 53D0 RCB> R E:53BA 53C9 SCB> R E:53BA 53C9

3 DCB R E:53F1 5400 RCB> R E:53EA 53F9 SCB> R E:53EA 53F9

Branch 2

Antenna

DRCU DRCUII DRCU3

1 DCB> R E:5421 5430 RCB> R E:541A 5429 SCB> R E:541A 5429

2 DCB> R E:5451 5460 RCB> R E:544A 5459 SCB> R E:544A 5459

3 DCB> R E:5481 5490 RCB> R E:547A 5489 SCB> R E:547A 5489

2. If the bay level calibration is successful, each of the locations shown in theappropriate table, will contain valid offsets and must not contain the factory defaultof 80. The presence of 80, will result in error DRI 218 being reported when the unitis unlocked.

Page 65: Drive test.pdf

GSM-100-423 Calibrating the DRCU, DRCUII and DRCU3 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–23

3. If the value 80 is present, it indicates that the bay level calibration wasunsuccessful, and that it will need to be repeated, after checking the configurationand RF cables etc.

4. At the DCB/RCB/SCB prompt type:

CALCHK

All the calibrated parameters for the DRCU are displayed.

5. To check the calibration valid bits are set correctly:

If transceiver is... Then type...

DRCU DCB> R E: 5B1C

DRCUII RCB> R E: 5B15

DRCU3 SCB> R E: 5B15

If the reply is FFFFFF on a DRCU or FFFE00 on a DRCUII/DRCU3, the calibrationvalid bits are set correctly.

The bits must be set, otherwise the bay level tables will not be used as offset,and a default value of 80 will be used.

NOTE

6. To enable setting of the calibration valid bits on a DRCU at the DCB/RCB/SCBprompt type:

WRENB E

7. To set the calibration valid bits at the DCB/RCB/SCB prompt:

If transceiver is... Then type...

DRCU DCB> W E: 5B1C FFFFF

DRCUII RCB> W E: 5B15 FFFE00

DRCU3 SCB> W E: 5B15 FFFE00

8. To protect the calibration valid bits set on a DRCU at the DCB/RCB/SCB prompttype:

WRPTC E

9. To check if the calibration valid bits are set correctly:

If transceiver is... Then...

DRCU DCB> R E: 5B1C

DRCUII RCB> R E: 5B15

DRCU3 SCB> R E: 5B15

If the reply is FFFFFF on a DRCU or FFFE00 on a DRCUII/DRCU3, the calibrationvalid bits are set correctly.

Page 66: Drive test.pdf

GSM-100-423Calibrating the DRCU, DRCUII and DRCU3 bay level offset tables

31st Jul 012–24

Installation & Configuration: BSS Optimization

68P02901W43-J

Site restoration

1. Remove the 9 to 9-way cable.

2. Connect the serial A port on the PC to a GPROC TTY port using the 9 to 25-waycable.

3. Type:

unlock_device # dri a * 0

Where: is:

# the number of the sitelogged into.

a the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

4. Remove the 9 to 25-way cable.

The DRCU is now in call processing mode.

Page 67: Drive test.pdf

GSM-100-423 Calibrating SCU Tx power and VSWR check

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–25

Calibrating SCU Tx power and VSWR check

Introduction

This procedure applies only to the SCU900 and SCU1800.

TCUs can be converted to SCU use in a BTS cabinet, by operation of a switchon the TCU unit. The TCU can then be considered an SCU, with theprocedure the same as for an SCU, except where stated.

Ensure that a TCU is switched to SCU mode before connection to B2. (In TCUmode the B2 inner is at +12 V dc to power the DLNB in M-Cell equipment).

NOTE

Follow this procedure to set the predefined maximum transmitter output power at the topof the cabinet, and to ensure that antenna feeders and connectors are properlyterminated.

The objective of the VSWR check and output power calibration procedure is to ensurethat antenna feeders and connectors are properly terminated and then set thepre-defined maximum transmitter output power at the top of the cabinet.

When a radio is manufactured, it undergoes comprehensive transmit and receivecalibration procedures. These procedures aim to produce a radio that exhibits a flatfrequency response over the full GSM band. In the case of the transmitter, this isperformed by sharing out the channels over three detector groups (the detector being thedevice that maintains a steady output power level).

In the field, the procedure for setting the transmit output power involves using a set ofcommands called Cell Site Power (CSPWR). During CSPWR the cabinet output powercan be trimmed to account for any abnormalities that may occur between the SCU andthe top of the cabinet. The offset is effectively subtracted from the requested power level,such that for whatever channel is selected, a steady output is maintained at the top of thecabinet.

When the CSPWR command is typed at the SCP prompt, it effectively executes a smallscript containing the following commands:

TS A CHAN 700 Set all timeslots to channel 700 (SCU1800).

TS A CHAN 31 Set all timeslots to channel 31 (SCU900).

TS A TXP 00 Set all timeslots to full power.

MDLTR UC Turn the modulation off.

Prior to executing the CSPWR command, it assumes that the synthesizers are hopping(not locked) as is the case after the unit is powered up for the first time. To alter thepower, typing U increments or typing D decrements the power setting byte. Oncompletion, the command is exited and the appropriate power byte is saved to RAM.

To specify a specific channel (instead of defaulting to channel 31 or 700), two extracommands must be entered prior to executing the CSPWR command, one to set theappropriate channel and the other to lock the synthesizer. By locking the synthesizer, thechannel selection made in the CSPWR command will be ignored and the output ismaintained at the frequency specified. To save to non-volatile memory, the SAVE CALTX command must be used.

Page 68: Drive test.pdf

GSM-100-423Calibrating SCU Tx power and VSWR check

31st Jul 012–26

Installation & Configuration: BSS Optimization

68P02901W43-J

Test equipment

The following equipment is needed to carry out this procedure:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A Bird model 43P (Thru-line) wattmeter or equivalent, with 5 W and 50 Welements.

� A 50 ohm 50 W dummy load.

� A 9 to 9-way cable.

� A 9 to 25-way cable.

Commands

The following commands must be used to carry out this procedure:

1. The symbol 0 used in the commands in this procedure is a zero. 2. The lock_device, unlock_device and clear_cal_data commandsare BSS MMI commands and may be entered in upper or lower case; the restof the commands in this list are all SCU (emulator) commands and case is asshown.

NOTE

BSS MMIcommand

Function

lock_device Prevents the device being used.

unlock_device Frees the device for further use.

clear_cal_data Clears previously stored calibration data for a specifiedradio unit on a per DRI basis.

state Displays the current status of devices or functions.

SCU emulatorcommand

Function

SWAP C 0 Swaps SCP code between memories to check data.

SWAP E A Swaps EQB code between memories to check data.

EXEC C 0 Executes SCP code currently held in RAM.

TEST Places the SCU into test mode.

CSPWR Sets the cell site power level using the followingcontrols:

U Increases cell site power by 0.2 dB.

D Decreases cell site power by 0.2 dB.

ESC Exits the calibration session and stores the settings.

TS A CHAN XX Timeslot set up.

Where: T = Timeslot No. or A = ALL.XX = ARFCN to tune timeslot to.

SYNTH N Locks the transmitted frequency on synthesizer n.

SAVE CAL TX Saves the calibration settings.

Page 69: Drive test.pdf

GSM-100-423 Calibrating SCU Tx power and VSWR check

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–27

Procedure

Proceed as follows:

Initial preparation

1. Connect the 9 to 25-way cable from the PC serial A port to a GPROC TTY port.

2. At the PC start the terminal emulator program.

3. At the CUST/MMI prompt, enter the password.

4. Type:

lock_device # dri a * 0

Where: is:

# the number of the sitelogged into.

a the antenna/relative cellnumber (0 to 5).

* the DRI number on theantenna.

5. Type:

clear_cal_data # dri a * 0

Where: is:

# the number of the sitelogged into.

a the antenna/relative cellnumber (0 to 5).

* the DRI number on theantenna.

The clear_cal_data command clears all calibration data out of the CMdatabase. This is required to overide the preserve calibration feature, ifenabled.

NOTE

6. Connect the wattmeter, with 50 W element and dummy load, to the Tx port at thetop of the cabinet.

If an RTC is fitted, the relevant port must be tuned to the channel the RTC is setto.

If external combiners are used connect the wattmeter, with 50 W element anddummy load, to the output port of the combiner.

7. Disconnect and remove the 9 to 25-way cable.

8. Connect the 9 to 9-way cable from the PC serial A port to a CONT PRCSR port onthe SCU.

9. Reset the SCU under test using the front panel reset button.

Page 70: Drive test.pdf

GSM-100-423Calibrating SCU Tx power and VSWR check

31st Jul 012–28

Installation & Configuration: BSS Optimization

68P02901W43-J

Tx forward power check

1. Enter the boot passwords (different from the DRCU passwords).

2. At the SCP prompt enter:

SWAP C 0

EXEC C 0

.<LEVEL_3_PASSWORD> (different from the DRCU password)

TEST

3. To select all timeslots and a particular channel, enter the following commands atthe SCP prompt:

TS A CHAN XXX

SYNTH Y

Where: is:

A all the timeslots (TS).

XXX the specified channelnumber.

Y the synthesizer number.

When an RTC is fitted, the channel number must be the same as the onechosen for the RTC cavity connected to this SCU.

NOTE

4. At the SCP prompt type:

CSPWR

5. Monitor and record the wattmeter reading (the forward output power).

6. Press ESC.

Tx reverse power check

1. Replace the 50 W element in the wattmeter with a 5 W element and reverse thedirection on the power meter.

2. Type CSPWR.

3. Monitor and record the reverse power reading indicated on the power meter.

Readings should show reflected (reverse) power of no more than 1 W or 5% offorward power.If the ratio of the forward and reverse readings is unacceptable, suspect animproper termination of the antenna feeder and connector.

NOTE

4. Press ESC.

Page 71: Drive test.pdf

GSM-100-423 Calibrating SCU Tx power and VSWR check

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–29

Setting Tx output power

1. Replace the 5 W element in the wattmeter with a 50 W element and connect themeter in the forward direction.

2. Type CSPWR.

3. Type U or D to achieve measured power at the top of the cabinet: 42.05 dBm(16 W) for SCU1800, or 43 dBm (20 W) for SCU900. When combiners are usedthe full power may not be achieved. The acceptable measured power levels aretabulated below:

Equipment fitted Measured power(SCU900)

Measured power(SCU1800)

1 stage combiner 42.55 dBm (18 W) 39.0 dBm (8 W)

RTC 42.75 dBm (18.8 W) 40 dBm (10 W)

An additional hybrid combiner can add a 3.2 dB loss.

As U or D is entered, a message like the following example is displayed:

D P:43.8 dBm Cell Site Offset :1

The message indicates the SCU output power and offset value (onestep = 0.2 dB).

4. When the required level is achieved, press ESC.

5. At the SCP prompt enter:

SAVE CAL TX

The cell site offset can be checked by reading its memory location:

R F:15780

Repeat the forward and reverse output power checks and the setting up Tx outputpower, for all SCUs.

Site restoration

1. Remove the 9-way cable from the CNTRL PRSCR port and press the reset buttonon the SCU front panel.

2. Connect serial A port on the PC to a GPROC TTY port using the 9 to 25-waycable.

3. Power the SCU down and remove the wattmeter from the Tx port. Reconnect theantenna lead to the Tx port.

4. Power up the SCU.

5. At the customer MMI prompt enter:

unlock_device # dri a * 0

state # dri a * 0

Where: is:

# the site logged into.

a the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

Page 72: Drive test.pdf

GSM-100-423Calibrating SCU Tx power and VSWR check

31st Jul 012–30

Installation & Configuration: BSS Optimization

68P02901W43-J

6. Remove the 9 to 25-way cable from the GPROC TTY port.

The SCU is now in call processing mode.

Page 73: Drive test.pdf

GSM-100-423 Calibrating the SCU900/1800 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–31

Calibrating the SCU900/1800 bay level offset tables

Introduction

Follow this procedure to calibrate the bay level offset tables to compensate for the lossesor gains due to preselectors and RF cabling from the antenna inputs at the BTS to theSCU900 or SCU1800 input.

Ensure that a TCU is switched to SCU mode before connection to B2. (In TCUmode, the RX2 inner is at +12 V dc to power the DLNB in M-Cell equipment.)

CAUTION

This procedure applies only to the SCU900 and SCU1800.

TCUs can be converted to SCU use in a BTS cabinet, by operation of a switchon the TCU unit. The TCU can then be considered an SCU, with the procedurethe same as for an SCU, except where stated.

NOTE

Test equipment

The following test equipment is required:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A 50 ohm 50 W dummy load.

� A signal generator (0 to 2 GHz).

� 9-way to 9-way cable.

� 9-way to 25-way cable.

All test equipment and test leads must be calibrated annually by a recognizedlaboratory. Test equipment and test leads must not be calibrated in the field.

Do not optimize Motorola cellular base stations with test equipment that isbeyond its calibration due date.

Allow test equipment to warm up for 30 minutes before use.

CAUTION

Page 74: Drive test.pdf

GSM-100-423Calibrating the SCU900/1800 bay level offset tables

31st Jul 012–32

Installation & Configuration: BSS Optimization

68P02901W43-J

Commands

The following commands must be used to carry out the procedure:

1. The 0 used in the commands in this procedure is a zero. 2. The lock_device, unlock_device and clear_cal_data commandsare BSS MMI commands and may be entered in upper or lower case; theremainder of the commands in this list are all SCU (emulator) commands,input as shown. The first SCU password must be in upper case.

NOTE

BSS MMIcommand

Function

lock_device Prevents the device being used.

unlock_device Frees the device for further use.

clear_cal_data Clears previously stored calibration data for a specifiedradio unit on a per DRI basis.

SCU emulatorcommand

Function

SWAP C 0 Swaps DPC code from ROM to RAM and checksvalidity.

EXEC C 0 Executes DPC code currently stored in RAM.

SWAP E A Swaps EQB code from ROM to all four EQDSP’s andchecks validity.

CONFGR E A Sends call processing calibration tables to equaliser.

TEST Places the SCU/TCU into test mode.

CAL BAY @1/@2 Calibrates the bay level receive equipment.

EQTEST 0 Puts equalizer 0 into test mode and checks status.

IQDCP 0 Passes the factory calibrated dc offset informationstored in ROM to EQDSP 0.

AIC OUT Disables automatic intermodulation compensation.

TS A CHAN # Sets all timeslots to channel #.

TS A ANT # Sets all timeslots to antenna #.

R F:XX YY Reads flash memory bay level data held at addressesXX to YY.

SYNTH 1 Stops synthesizer switching with synthesizer 1permanently on.

SYNTH NRM Enables synthesizer switching into normal working.

SAVE CAL BAY Transfers bay level calibration data in RAM to ROM.

BAYDONE @N Informs control processor that bay level calibration isvalid for branch N and sets bay level flag.

Page 75: Drive test.pdf

GSM-100-423 Calibrating the SCU900/1800 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–33

Setting upprocedure

The radio has to first be locked, a dummy load connected if no antenna, the SCU resetand set up for bay level calibration. Proceed as follows:

1. Connect the 9-way to 25-way cable from the PC serial A port to a GPROC TTYport.

2. At the PC start the terminal emulator program.

Failure to lock the cell could result in the BCCH transmitting into, and causingdamage to the signal generator. The maintenance engineer could receive RFburns when connecting to the antenna socket.

WARNING

3. Type:

lock_device # dri a * 0

Where: is:

# the number of the sitelogged into.

a the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

4. Type:

clear_cal_data # dri a * 0

Where: is:

# the number of the sitelogged into.

a the antenna/relative cellnumber (0 to 5).

* the DRI number on theantenna.

The clear_cal_data command clears all calibration data out of the CMdatabase. This is required to overide the preserve calibration feature, ifenabled.

NOTE

5. If a Tx antenna is not connected to the SCU under test connect a 50 ohm 50 Wdummy load to the Tx port of the SCU under test.

6. Remove the 9-way to 25-way cable from the PC serial A port to the GPROC TTYport.

7. Connect the serial A port on the PC to the CNTRL PRCSR port on the SCU usingthe 9-way to 9-way cable.

8. Reset the SCU using the front panel reset button.

Page 76: Drive test.pdf

GSM-100-423Calibrating the SCU900/1800 bay level offset tables

31st Jul 012–34

Installation & Configuration: BSS Optimization

68P02901W43-J

9. Enter the boot passwords.

10. At the SCP prompt type:

SWAP C 0

EXEC C 0

.<LEVEL_3_PASSWORD> (different from the (D)RCU password)

SWAP E A

CONFGR E A

TEST

AIC OUT

EQTEST 0

IQDCP 0

Bay levelcalibration forbranch1 RX1A

1. Connect the output of the signal generator to branch 1 of the antenna port (RX1A,RX2A or RX3A at the top of the cabinet) for the SCU under test.

2. Set the signal generator to the first channel test frequency shown in Table 2-2 orTable 2-3 at a level of –65.2 dBm.

The Tx level of the signal generator must be set to allow for losses in the testleads used. It is VITAL that the signal generator and cables are correctlycalibrated, and the RF cables are in good order.

NOTE

3. At the SCP prompt type:

TS A ANT 1

4. At the SCP prompt type:

TS A CHAN #

Where: # is: the channel number asshown in Table 2-2 orTable 2-3

5. At the SCP prompt type:

SYNTH 1

CAL BAY @1

SYNTH NRM

When the synthesizer is left unlocked, the bay level figure can vary as muchas � 1dB at certain frequencies. By locking the synthesizer (using commandsSYNTH 1 and SYNTH NRM this variation can be reduced to � 0.1 dB.

NOTE

Page 77: Drive test.pdf

GSM-100-423 Calibrating the SCU900/1800 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–35

6. Repeat steps 4 and 5 for each signal generator test frequency in Table 2-2 orTable 2-3.

The BTS cabinets described in this chapter only support PGSM, and notEGSM.

NOTE

7. At the SCP prompt type:

SAVE CAL BAY

This transfers the bay level calibration figures to non-volatile SCU memory.

Table 2-2 GSM900 test frequencies

Channel Frequency (MHz) Channel Frequency (MHz)

03 890.601 67 903.401

11 892.201 75 905.001

19 893.801 83 906.601

27 895.401 91 908.201

35 897.001 99 909.801

43 898.601 107 911.401

51 900.201 115 913.001

59 901.801 123 914.601

Table 2-3 DCS1800 test frequencies

Channel Frequency (MHz) Channel Frequency (MHz)

516 1711.001 708 1749.401

524 1712.601 716 1751.001

532 1714.201 724 1752.601

540 1715.801 732 1754.201

548 1717.401 740 1755.801

556 1719.001 748 1757.401

564 1720.601 756 1759.001

572 1722.201 764 1760.601

580 1723.801 772 1762.201

588 1725.401 780 1763.801

596 1727.001 788 1765.401

604 1728.601 796 1767.001

612 1730.201 804 1768.601

620 1731.801 812 1770.201

628 1733.401 820 1771.801

636 1735.001 828 1773.401

644 1736.601 836 1775.001

652 1738.201 844 1776.601

Page 78: Drive test.pdf

GSM-100-423Calibrating the SCU900/1800 bay level offset tables

31st Jul 012–36

Installation & Configuration: BSS Optimization

68P02901W43-J

Table 2-3 DCS1800 test frequencies

Channel Frequency (MHz)ChannelFrequency (MHz)

660 1739.801 852 1778.201

668 1741.401 860 1779.801

676 1743.001 868 1781.401

684 1744.601 876 1783.001

692 1746.201 883 1784.401

700 1747.801

Bay level repeatfor RX2A

1. Connect the output of the signal generator to RX2A.

2. Set the signal generator to the first channel test frequency shown in Table 2-2 orTable 2-3.

3. At the SCP prompt type:

TS A ANT 2

4. At the SCP prompt type:

TS A CHAN #

Where: # is: the channel number asshown in Table 2-2 orTable 2-3.

5. At the SCP prompt type:

SYNTH 1

CAL BAY @1

SYNTH NRM

6. Repeat steps 4 and 5 for each signal generator test frequency in Table 2-2 orTable 2-3.

7. At the SCP prompt type:

SAVE CAL BAY

This transfers the bay level calibration figures to non-volatile SCU memory.

Page 79: Drive test.pdf

GSM-100-423 Calibrating the SCU900/1800 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–37

Bay level repeatfor RX3A

1. Connect the output of the signal generator to RX3A.

2. Set the signal generator to the first channel test frequency shown in Table 2-2 orTable 2-3.

3. At the SCP prompt type:

TS A ANT 3

4. At the SCP prompt type:

TS A CHAN #

Where: # is: the channel number asshown in Table 2-2 orTable 2-3.

5. At the SCP prompt type:

SYNTH 1

CAL BAY @1

SYNTH NRM

6. Repeat steps 4 and 5 for each signal generator test frequency in Table 2-2 orTable 2-3.

7. At the SCP prompt type:

SAVE CAL BAY

This transfers the bay level calibration figures to non-volatile SCU memory.

Branchcompletion

The BAYDONE command completes the procedure for a branch, by setting a flag toindicate the calibration figures are correct. Proceed as follows:

1. At the SCP prompt type:

BAYDONE @1

Branch 2

Repeat the procedures Bay level calibration branch 1 RX1A, Bay level repeat forRX2A and Bay level repeat for RX3A for branch 2 by using connectors RX1B, RX2Band RX3B respectively at the top of the cabinet. Enter @2 instead of @1 in the CAL BAYand BAYDONE commands.

Page 80: Drive test.pdf

GSM-100-423Calibrating the SCU900/1800 bay level offset tables

31st Jul 012–38

Installation & Configuration: BSS Optimization

68P02901W43-J

Checkingcalibration

1. To check that the bay level offset values have been stored in EPROM, use theread command with the required offset table location as an argument. The readcommand locations are shown in Table 2-4 and Table 2-5, for example:

R F:153B6 153C5 in the case of an SCU900

As the SCU is used only in BTS cabinets, covering the GSM range, only the 16locations per antenna per branch are relevant, as shown in Table 2-4.

Table 2-4 SCU900 frequency offset addresses

Antenna Locations

RX1A Antenna 1 Branch 1 F: 15386 15395

RX2A Antenna 2 Branch 1 F: 153B6 153C5

RX3A Antenna 3 Branch 1 F: 153E6 153F5

RX1B Antenna 1 Branch 2 F: 15416 15425

RX2B Antenna 2 Branch 2 F: 15446 15455

RX3B Antenna 3 Branch 2 F: 15476 15485

The read command allows a maximum of 16 locations to be read at one time. ForDCS1800, SCUs thus require using the read command three times per antennaper branch, as shown in Table 2-5.

Table 2-5 DCS1800 frequency offset addresses

Antenna Locations

First read Second read Third read

RX1A Antenna 1 (A) F: 15380 1538F F: 15390 1539F F: 153A0 153AE

RX2A Antenna 2 (A) F: 153B0 153BF F: 153C0 153CF F: 153D0 153DE

RX3A Antenna 3 (A) F: 153E0 153EF F: 153F0 153FF F: 15400 1540E

RX1B Antenna 1 (B) F: 15410 1541F F: 15420 1542F F: 15430 1543E

RX2B Antenna 2 (B) F: 15440 1544F F: 15450 1545F F: 15460 1546E

RX3B Antenna 3 (B) F: 15470 1547F F: 15480 1548F F: 15490 1549E

2. If the bay level calibration is successful, each appropriate table location will containvalid offsets and not the factory default of 80. The presence of 80 will result in errorDRI 218 being reported when the unit is unlocked.

Any value other than 80 is a valid offset, from 81 to FF, and 00 to 7F.Only the value 80 requires investigation.

NOTE

3. if the value 80 is present, it indicates that the bay level calibration wasunsuccessful, and that it will need to be repeated after checking the configurationand RF cables.

4. If the radio is suspected to be faulty, see next section Diagnostic check of theSCU.

Page 81: Drive test.pdf

GSM-100-423 Calibrating the SCU900/1800 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–39

Diagnostic checkof the SCU

If it is suspected that a bay level calibration problem is caused by the SCU, then adiagnostic check can be made by performing a bay level calibration on the SCU alone.Proceed as follows:

1. Set the signal generator to –55 dBm plus lead loss.

This will simulate a gain of 10 dB.

2. Connect directly to branch 1 or 2 on the SCU.

Ensure a TCU is switched to SCU mode before connection to RX2. In TCUmode the RX2 inner is at +12 V dc to power the DLNB in M-Cell equipment. Asignal source may be damaged by taking +12 V dc in its RF output.

CAUTION

3. Follow the bay level calibration procedure for each branch, Bay level calibrationbranch 1 RX1A, Bay level repeat for RX2A and Bay level repeat for RX3A.

4. Check the diagnostic offset values are within the range 97 (lower) and D3 (upper).

The range 97 – D3 used in step 4 applies to SCU diagnostic checks only, andshould not be compared with the bay level calibration figures.

NOTE

If the values are correct, then the SCU is working correctly and any fault will probably bein the cabinet front end cables, cable connections or preselector modules. If the offsetsare outside this range, the SCU is faulty and should be returned.

Restoration

After the bay level calibration procedure is completed, restore the site by the following:

1. Remove the signal generator and dummy load and refit the site RF cables.

2. Remove the 9-way to 9-way cable from the CNTRL PRSCR port on the SCU.

3. Connect the 9-way to 25-way cable from the PC serial A port to aGPROC/GPROC2 TTY port.

4. Press the reset button on the front panel of the SCU and type:.

unlock_device # dri a * 0

Where: is:

# the number of the sitelogged into.

a the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

The SCU is now in the UNLOCKED BUSY state.

5. Remove the 9-way to 25-way cable from the GPROC/GPROC2 TTY port.

Page 82: Drive test.pdf

GSM-100-423Checking the database for devices and functions

31st Jul 012–40

Installation & Configuration: BSS Optimization

68P02901W43-J

Checking the database for devices and functions

Introduction

Follow this procedure to check which devices and functions are contained in theBSC/BTS database.

Test equipment

The following test equipment is required to carry out the procedure:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A 9 to 25-way cable.

Commands

The following commands must be used to carry out the procedure:

Command Function

disp_site Displays the site number.

disp_equipment Displays the active equipment at a specifiedsite.

Procedure

To check the database for devices and functions:

1. Ensure that the site is in call processing mode.

2. Connect the serial A port on the PC to a GPROC/GPROC2 TTY port using the9 to 25-way cable.

3. At the PC start the terminal emulator program.

4. At the CUST MMI prompt type:

disp_site

The following message (from the GPROC/GPROC2) is displayed:

current site is # where # = the number of the site logged into.

Page 83: Drive test.pdf

GSM-100-423 Checking the database for devices and functions

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–41

5. Type:

disp_equipment # where # = the number of the site logged into.

A complete list of the equipment and functions in the database is displayed, forexample:

GPROC 0 0 0

GPROC 1 0 0

BSP 0 0 0

DRI 0 0 0

DRI 0 1 0

MSI 1 0 0

MMS 1 0 0

MMS 1 1 0

MTL 1 0 0

OML 1 0 0

GCLK 0 0 0

KSW 0 0 0

CAGE 0 0 0

CAB 0 0 0

SITE 0 0 0

BTF 0 0 0

RTF 0 0 0

RTF 1 0 0

RTF 2 0 0

RTF 3 0 0

RTF 0 1 0

6. To check the MSI configuration type:

disp_equipment 0 MSI 1 0 0

A message similar to the following example is displayed:

MSI identifier 1

Cage number 0

Slot number 16

MSI type 0 (0 = MSI and 1 = XCDR)

Page 84: Drive test.pdf

GSM-100-423Checking the E1/T1 link

31st Jul 012–42

Installation & Configuration: BSS Optimization

68P02901W43-J

Checking the E1/T1 link

Introduction

Follow this procedure to verify the integrity of the E1/T1 links to the BSC/MSC.

Test equipment

The following test equipment is required:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A 9-way to 25-way cable.

Command

The following command must be used to carry out the procedure:

Command Function

state Displays the status of specified devices orfunctions.

Procedure

To check the E1/T1 link:

1. Ensure that the site is in call processing mode.

2. Connect the serial A port on the PC to a GPROC TTY port using the 9-way to25-way cable.

3. At the PC start the terminal emulator program.

4. Contact the end point of the E1/T1 link to be tested (BSC/MSC) and request aloopback on the relevant distribution frame (DDF) port.

Repeat for all MSIs and E1/T1 links. If the E1/T1 link has not been installed,perform this test at the digital distribution frame (DDF) in the site, or at the topof the cabinet if no DDF is fitted.

NOTE

5. Determine the site number, equipment list and MMS configuration.

Page 85: Drive test.pdf

GSM-100-423 Checking the E1/T1 link

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–43

6. At the CUST MMI prompt type:

state <site #> MMS <MMS #>

For example:

state 0 MMS 1 0 0

The following message (from the GPROC) is displayed:

Status Information

Administration state : Unlocked

Operational state : Busy

Reason code is : 0

Time of last transition : Wed Jan 5 01:43:13 1994

Other identification : 255 255 255 255

End of status report

If this display shows Unlocked and Busy, then the MSI port (MMS) T43 cablingand the E1/T1 link are all good. If the loop is removed and the commandreentered, the result is Unlocked and Disabled.

The MSI requires at least 20 seconds to register a change in status after thesecommands are entered.If the display continues to show Unlocked and Busy, this may be because:1. The wrong connection is looped, if the cabling is direct.2. The MMS may be terminated by a device generating a 2.048 Mbit/s link.

NOTE

Page 86: Drive test.pdf

GSM-100-423Verifying PIX connections

31st Jul 012–44

Installation & Configuration: BSS Optimization

68P02901W43-J

Verifying PIX connections

IntroductionFollow this procedure to verify the PIX connections. This test can be carried out at a livesite.

Test equipmentThe following test equipment is required:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A 9-way to 25-way cable.

� PIX test plugs A, B, and C.

CommandsThe following command must be used to carry out the procedure:

Command Function

enable_alarm Enables alarm reporting for a specified site.

ProcedureUse the following procedure to verify PIX connections:

Preparation

1. Ensure download has been completed.

2. Connect the serial A port on the PC to the master GPROC/GPROC2 using the9-way to 25-way cable.

3. At the PC start the terminal emulator program.

4. At the CUST MMI prompt enter the password.

Checking PIX connections

1. At the PC, type:

enable_alarm #

where # = site number.

The system will respond with:

SITE ENABLE ALARM STATUS

–––– ––––––––––––––––––––––

# Site enabled

2. Connect the PIX test plug C to the appropriate socket on top of the rack.

3. All eight alarms are displayed.

The states in this step depend on the database settings; whether a faultcondition is indicated by closed loop or an open loop.

NOTE

Page 87: Drive test.pdf

GSM-100-423 Verifying PIX connections

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–45

Site restoration

1. Remove the test plug.

2. The alarm display clears.

The states in this step depend on the database settings; whether a faultcondition is indicated by closed loop or an open loop.

NOTE

Page 88: Drive test.pdf

GSM-100-423Integrating the transcoder

31st Jul 012–46

Installation & Configuration: BSS Optimization

68P02901W43-J

Integrating the transcoder

Introduction

Follow this procedure to ensure that all allocated Circuit Identification Codes (CICs) arecarrying good quality voice traffic.

Transcoders may be in the form of XCDR boards, or an enhanced versionutilising a Generic Digital Signal Processor Board (GDP). If GDPs are used inXCDR slots as XCDRs, the procedure is the same as for XCDRs, exceptwhere stated.

NOTE

Test equipment

The following test equipment is required:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A 9-way to- 25-way cable.

� A GSM mobile with a registered SIM card.

Commands

The following commands are required to carry out this procedure:

Command Function

disp_mms_ts_usage Displays the timeslot usage on an MMS span.

disp_channel Displays the BSC–MSC connectivity.

fil_list Lists active filters.

fil_create Creates a filter.

fil_start Starts a filter.

fil_stop Stops a filter.

fil_delete Deletes filters.

Page 89: Drive test.pdf

GSM-100-423 Integrating the transcoder

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–47

ProcedureBefore starting the transcoder integration procedure, consult the site specificdocumentation to determine the BSC/RXCDR configuration and cage slot allocation(conventionally, timeslots 00 and 16 on XCDR boards are not allocated to voice/trafficchannels).

Proceed as follows:

Displaying MMS timeslot usage

1. At the operations and maintenance centre (OMC-R) man-machine interface (MMI),log in to the required base site controller (BSC).

2. To display the circuit mapping, type:

disp_mms_ts_usage X Y Z

Where: is:

X location

Y 1st digit of MMS identifier

Z 2nd digit of MMS identifier

The following header message is displayed:

Start of Report:

Site: X MMS: Y Z

TS Usage Device ID Type Site CIC Group CIC State TS

Group RTF State RTF TS

Under each heading, information relevent to the site and MMS port will bedisplayed.

3. Repeat step 2 for all MMSs.

4. Log out from the BSC.

Displaying BSC-MSC connectivity

1. Log on to the required RXCDR.

2. To display all CEPT nailed connections, type:

disp_channel

The following message is an example response:

Incoming MMS id 6 1, timeslot: – 2 group : – 3 Outgoing MMS id 24 0, timeslot: – 1

Incoming MMS id 6 1, timeslot: – 2 group : – 2 Outgoing MMS id 24 0, timeslot: – 2

Incoming MMS id 6 1, timeslot: – 2 group : – 1 Outgoing MMS id 24 0, timeslot: – 3

Incoming MMS id 6 1, timeslot: – 2 group : – 0 Outgoing MMS id 24 0, timeslot: – 4

Incoming MMS id 6 1, timeslot: – 3 group : – 3 Outgoing MMS id 24 0, timeslot: – 5

Incoming MMS id 6 1, timeslot: – 3 group : – 2 Outgoing MMS id 24 0, timeslot: – 6

Incoming MMS id 6 1, timeslot: – 3 group : – 1 Outgoing MMS id 24 0, timeslot: – 7

Incoming MMS id 6 1, timeslot: – 3 group : – 0 Outgoing MMS id 24 0, timeslot: – 8

Page 90: Drive test.pdf

GSM-100-423Integrating the transcoder

31st Jul 012–48

Installation & Configuration: BSS Optimization

68P02901W43-J

3. The information in the messages displayed in steps 2 and 2, together withBSC/RXCDR site documentation,contain the CIC mapping.Two examples are:

Circuit ID = 3 Group Number = 1 Timeslot Number = 2

Incoming MMS id 6 1, timeslot: – 2 group : – 1 Outgoing MMS id 24 0, timeslot: – 3

Circuit ID = 91 Group Number = 2 Timeslot Number = 24

Incoming MMS id 6 1, timeslot: – 24 group : – 2 Outgoing MMS id 24 0, timeslot: – 3

CIC test

1. Log on to the required BSC.

2. At the RAM EMON prompt type:

fil list

If any filters are shown delete them using the fil delete command.

3. Remotely log in to the GPROC running the LCF that supports the site under testusing the rlogin command. Determine this using the disp_p <site number>command at the BSP.

4. At the RAM EMON prompt type:

fil create tag 10501h

Filter 10501h is created.

A response will be returned with a filter id.

5. At the prompt type:

fil start *

Filter * is started.

Where: * is: filter id

6. Set up a mobile to land or land to mobile call and monitor the filter output.

The following message is displayed:

FILTER: SRC: pid: 10 mbid: 0002 cpu: 0119 subsys: 01 tag: 00010501 len:0014

DEST: function: 0009 instance: 001b mbid: 0003 TIME: 96942.975s

data:00.7b.60.00.0f.00.0d.01.0b.03.01.08.01.07.02.06.00.06.01.00.05

The last two bytes of the data displayed (in hexadecimal) indicate the CIC in use.Check the quality of the call and, if good, check off the CIC number on thechecklist on the next page. If the quality is bad, note the CIC number and retest.The last two bytes in the example show a call on CIC 05 (hexadecimal).

Repeat this step until all CICs have been tested.

7. At the RAM EMON prompt type:

fil stop *

Filter * is stopped.

Where: * is: filter id

Page 91: Drive test.pdf

GSM-100-423 Integrating the transcoder

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–49

8. At the RAM EMON prompt type:

fil delete *

Filter * is deleted.

Where: * is: filter id

9. At the RAM EMON prompt type:

fil list

If any filters are shown delete them using the fil delete command.

10. Log out of the BSC.

11. Report the result of the integration and any anomalies to the OMC-R operator.

Page 92: Drive test.pdf

GSM-100-423Integrating the transcoder

31st Jul 012–50

Installation & Configuration: BSS Optimization

68P02901W43-J

CIC checklist

Check off good quality calls on the CIC checklist:

Slot no.

Slot no.

Slot no.

Slot no.

Slot no.

Slot no.

Slot no.

Slot no.

Slot no.

Slot no.

00 01 00 21 00 41 00 61 00 81 00 A1 00 C1 00 E1 01 01 01 21

00 02 00 22 00 42 00 62 00 82 00 A2 00 C2 00 E2 01 02 01 22

00 03 00 23 00 43 00 63 00 83 00 A3 00 C3 00 E3 01 03 01 23

00 04 00 24 00 44 00 64 00 84 00 A4 00 C4 00 E4 01 04 01 24

00 05 00 25 00 45 00 65 00 85 00 A5 00 C5 00 E5 01 05 01 25

00 06 00 26 00 46 00 66 00 86 00 A6 00 C6 00 E6 01 06 01 26

00 07 00 27 00 47 00 67 00 87 00 A7 00 C7 00 E7 01 07 01 27

00 08 00 28 00 48 00 68 00 88 00 A8 00 C8 00 E8 01 08 01 28

00 09 00 29 00 49 00 69 00 89 00 A9 00 C9 00 E9 01 09 01 29

00 0A 00 2A 00 4A 00 6A 00 8A 00 AA 00 CA 00 EA 01 0A 01 2A

00 0B 00 2B 00 4B 00 6B 00 8B 00 AB 00 CB 00 EB 01 0B 01 2B

00 0C 00 2C 00 4C 00 6C 00 8C 00 AC 00 CC 00 EC 01 0C 01 2C

00 0D 00 2D 00 4D 00 6D 00 8D 00 AD 00 CD 00 ED 01 0D 01 2D

00 0E 00 2E 00 4E 00 6E 00 8E 00 AE 00 CE 00 EE 01 0E 01 2E

00 0F 00 2F 00 4F 00 6F 00 8F 00 AF 00 CF 00 EF 01 0F 01 2F

00 11 00 31 00 51 00 71 00 91 00 B1 00 D1 00 F1 01 11 01 31

00 12 00 32 00 52 00 72 00 92 00 B2 00 D2 00 F2 01 12 01 32

00 13 00 33 00 53 00 73 00 93 00 B3 00 D3 00 F3 01 13 01 33

00 14 00 34 00 54 00 74 00 94 00 B4 00 D4 00 F4 01 14 01 34

00 15 00 35 00 55 00 75 00 95 00 B5 00 D5 00 F5 01 15 01 35

00 16 00 36 00 56 00 76 00 96 00 B6 00 D6 00 F6 01 16 01 36

00 17 00 37 00 57 00 77 00 97 00 B7 00 D7 00 F7 01 17 01 37

00 18 00 38 00 58 00 78 00 98 00 B8 00 D8 00 F8 01 18 01 38

00 19 00 39 00 59 00 79 00 99 00 B9 00 D9 00 F9 01 19 01 39

00 1A 00 3A 00 5A 00 7A 00 9A 00 BA 00 DA 00 FA 01 1A 01 3A

00 1B 00 3B 00 5B 00 7B 00 9B 00 BB 00 DB 00 FB 01 1B 01 3B

00 1C 00 3C 00 5C 00 7C 00 9C 00 BC 00 DC 00 FC 01 1C 01 3C

00 1D 00 3D 00 5D 00 7D 00 9D 00 BD 00 DD 00 FD 01 1D 01 3D

00 1E 00 3E 00 5E 00 7E 00 9E 00 BE 00 DE 00 FE 01 1E 01 3E

00 1F 00 3F 00 5F 00 7F 00 9F 00 BF 00 DF 00 FF 01 1F 01 3F

Page 93: Drive test.pdf

GSM-100-423 Calibrating the GCLK

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–51

Calibrating the GCLK

Introduction

Follow this procedure to calibrate the GCLK in the field. The GCLK must be calibratedwhen either of the following occur:

� More than one frame slip per hour is observed at the OMC-R.

� The GCLK calibration request alarm is observed at the OMC-R.

� The GCLK cannot phase lock, and the LTA values are near their limits.

The GCLK must be calibrated only by fully trained GSM qualified staff. Do notattempt this procedure under any circumstances unless the test equipmentlisted below is available.

CAUTION

Test equipment

The following test equipment is required:

� An IBM-compatible personal computer (PC).

� A 9-way to 25-way cable.

� A rubidium clock standard with 1 or 10 MHz output frequency.

� Universal counter – Hewlett Packard Model HP5385A or equivalent.

� Screened coaxial cable – BNC to 2 mm multicontact AG connector.

� New calibration sticker(s).

� A non-ferrous tuning tool.

Commands

The following commands must be used to calibrate the GCLK:

Command Function

disp_equipment Displays the active equipment at a specifiedsite.

state Displays the status of specified devices orfunctions.

disp_elementphase_lock_gclk<location>

Shows the status of the phase lock function.<location> is the site id.

chg_elementphase_lock_gclk <flag><location>

Turns the phase lock function on or off, where<flag> is “0” for off and “1” for on, and<location> is the site id.

clear_gclk_avgs<location>

Clears LTA values in memory for a specifiedGCLK.

Page 94: Drive test.pdf

GSM-100-423Calibrating the GCLK

31st Jul 012–52

Installation & Configuration: BSS Optimization

68P02901W43-J

Procedure

Before attempting this procedure, record the board serial number, date of last calibrationand present frequency on the calibration record shown at the end of this section.Remove the old calibration stickers from the GCLK front panels.

Before starting the procedure, consult the site specific documentation to determine theBSC/BTS configuration and cage slot allocation.

Prior to carrying out the following calibration procedure, allow a 30 minutewarm-up period after switching on the GCLK to enable it to reach its operatingtemperature.

NOTE

Proceed as follows:

Preparation

1. Log in to the required BSC, either at the BSC or via the OMC-R.

2. Go to step 5 if all commands are to be made at the OMC-R MMI.

3. Connect the serial A port on the PC to a GPROC/GPROC2 TTY port using the 9to 25-way cable.

4. Start the terminal emulator program at the PC.

5. Connect the output from the 10 MHz standard to the reference input of thefrequency counter and select external standard.

6. Set the frequency gate time to 10 seconds and set the display to give 10significant digits.

Clearing GCLK LTA values

1. Check to see if phase lock is on. At the OMC-R/BSC CUST MMI prompt type:

disp_element phase_lock_gclk <location>

Where: <location> is: 0 or bsc

This gives the status of phase lock at the site. 0 is shown for phase lock off and 1is shown for phase lock on.

2. If phase lock is on, type:

chg_element phase_lock_gclk 0 <location>

This turns off the phase lock to the selected site.

3. Then type:

disp_equipment <location>

This gives the device id of the GCLKs.

4. Then type:

state <location> GCLK <dev id> <dev id> <dev id>

This displays the status for the GCLK.

Page 95: Drive test.pdf

GSM-100-423 Calibrating the GCLK

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–53

5. Then type:

clear_gclk_avgs <location>

The system will respond with:

Enter the gclk_id:

Type in 0 or 1.

This clears the LTA values for the specified GCLK.

Adjusting the GCLK frequency

1. Connect the frequency counter to the front panel 16.384 MHz connection of theGCLK.

2. Connect the cable to the input port of the frequency counter and the jack plug endto the front panel of the GCLK 16.384 MHz output and ground respectively.

3. Using a non-ferrous tuning tool, adjust the potentiometer labelled FREQ ADJUSTon the GCLK to 16.384 MHz.

The GSM specified tolerance is +/– 0.8 Hz, although it is desirable (and should bepossible) to adjust the frequency more accurately than this. This reads as16.384 000 00 on the frequency counter. Adjusting the potentiometer clockwiseincreases the frequency and anticlockwise decreases the frequency.

To carry out calibration on the redundant GCLK repeat from step 3 in ClearingGCLK LTA values to step 3 in Adjusting the GCLK frequency.

4. If phase locking of the GCLK(s) at the site is required, type the followingcommand:

chg_element phase_lock_gclk 1 <location>

This turns the phase lock on for the specified site.

5. Place a new calibration sticker, indicating the date of calibration, over thepotentiometer labelled FREQ ADJUST on each calibrated GCLK.

Page 96: Drive test.pdf

GSM-100-423Calibrating the GCLK

31st Jul 012–54

Installation & Configuration: BSS Optimization

68P02901W43-J

GCLK calibrationrecord form

The GCLK calibration record form is shown below:

SITE NAME ........................................

SITE ID ..............................................

SERIALNUMBER

OFBOARD

DATE

DATEOF

LASTCALIBRATION

FREQUENCYBEFORE

CALIBRATION

TESTER’S NAMES

.....................................

.....................................

Page 97: Drive test.pdf

GSM-100-423 Verifying ExCell alarms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–55

Verifying ExCell alarms

Introduction

Follow these procedures to verify that the ExCell alarms function correctly.

Test equipment

The following test equipment is required to carry out the serial and alarm tests:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A 9-way to 25-way cable.

� An approved smoke canister.

� Krone tool.

Commands

The following commands must be used to carry out the ExCell alarm tests:

Command Function

enable_alarm Enables alarm reporting for a specified site.

state Displays the status of specified devices orfunctions.

Initial procedure

To verify ExCell alarms:

1. Ensure download has been completed.

2. Connect the serial A port on the PC to the master GPROC/GPROC2 using the9-way to 25-way cable.

3. At the PC start the terminal emulator program.

4. At the CUST MMI prompt enter the password.

5. At the PC, type:

enable_alarm 0

6. Check that PIX 0 is unlocked and busy. At the prompt, type:

state 0 EAS 000

7. Check that PIX 1 is unlocked and busy. At the prompt, type:

state 0 EAS 100

Page 98: Drive test.pdf

GSM-100-423Verifying ExCell alarms

31st Jul 012–56

Installation & Configuration: BSS Optimization

68P02901W43-J

The alarms

The following ExCell alarms are tested:

� Smoke alarm.

� Overtemperature alarm.

� Door open alarm.

� Fan fail alarm.

� Mains fail alarm.

� Rectifier fail alarm.

� Low dc voltage alarm.

� Inverter fail alarm.

� Miniature circuit breaker trip alarm.

� Battery fault alarm.

� Comms PSU fail alarm.

� External alarm 0.

� External alarm 1.

� External alarm 2.

� External alarm 3.

Smoke alarm

To verify the ExCell smoke alarm:

1. Ensure that both the smoke sensors are not set (the red LED on each sensor isnot lit). If one or both LEDs are lit, switch the cabinet control circuit breaker off thenon again to reset the sensors.

2. As directed by the instructions on the smoke canister, direct a jet of smoke at bothsensors. When both sensors are active the following message is displayed:

EAS ALARM: 20 0 0 0:40:Optocoupler 1

SITE: 0 CAGE: 0 SLOT: 16 FUNC: N/A

Severity: Critical Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO: Smoke Alarm

3. Switch the cabinet control circuit breaker off then on again to reset the sensors.The following message is displayed:

EAS ALARM: 20 0 0 0:40:Optocoupler 1

SITE: 0 CAGE: 0 SLOT: 16 FUNC: N/A

Severity: Clear Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO:

Page 99: Drive test.pdf

GSM-100-423 Verifying ExCell alarms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–57

Overtemperaturealarm

To verify the ExCell overtemperature alarm:

1. Press the control override button. The heat management system (HMS) displayshould show a temperature of about 25 �C.

2. Adjust the Adjust Test Temp control until the HMS display shows a temperaturebetween 65 �C and 67 �C. The overtemperature sensor lamp should light and thefollowing message should be displayed:

EAS ALARM: 20 0 0 0:41:Optocoupler 2

SITE: 0 CAGE: 0 SLOT: 16 FUNC: N/A

Severity: Critical Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO: Over Temperature

3. Adjust the Adjust Test Temp control until the HMS display shows a temperaturebelow 60 �C. The overtemperature sensor lamp should light and the followingmessage should be displayed:

EAS ALARM: 20 0 0 0:41:Optocoupler 2

SITE: 0 CAGE: 0 SLOT: 16 FUNC: N/A

Severity: Clear Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO:

Door open alarm

To verify the ExCell door open alarm:

1. Close the cabinet doors. The following message should be displayed:

EAS ALARM: 20 0 0 0:42:Optocoupler 3

SITE: 0 CAGE: 0 SLOT: 16 FUNC: N/A

Severity: Clear Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO:

2. Open any cabinet door. The following message should be displayed:

EAS ALARM: 20 0 0 0:42:Optocoupler 3

SITE: 0 CAGE: 0 SLOT: 16 FUNC: N/A

Severity: Critical Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO: Cabinet Door Open

Page 100: Drive test.pdf

GSM-100-423Verifying ExCell alarms

31st Jul 012–58

Installation & Configuration: BSS Optimization

68P02901W43-J

Fan fail alarm

To verify the ExCell fan fail alarm:

1. Switch off any of the RCU or BSC fans. The following message should bedisplayed:

EAS ALARM: 20 0 0 0:43:Optocoupler 4

SITE: 0 CAGE: 0 SLOT: 16 FUNC: N/A

Severity: Critical Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO: Fan Failure

2. Switch the fan on again. The following message should be displayed:

EAS ALARM: 20 0 0 0:43:Optocoupler 4

SITE: 0 CAGE: 0 SLOT: 16 FUNC: N/A

Severity: Clear Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO:

Mains fail alarm

This alarm is active when the ac mains input to all the rectifiers is interrupted,with mains input to just one rectifier the alarm will remain inactive.

NOTE

To verify the ExCell mains fail alarm:

1. Switch off the mains supply to all rectifiers. The following message should bedisplayed:

EAS ALARM: 20 0 0 0:40:Optocoupler 1

SITE: 0 CAGE: 0 SLOT: 17 FUNC: N/A

Severity: Critical Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO: Mains Failure

2. Reconnect the mains supply to all rectifiers. The following message should bedisplayed:

EAS ALARM: 20 0 0 0:40:Optocoupler 1

SITE: 0 CAGE: 0 SLOT: 17 FUNC: N/A

Severity: Clear Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO:

Page 101: Drive test.pdf

GSM-100-423 Verifying ExCell alarms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–59

Rectifier failalarm

This alarm is active when the ac mains input to a rectifier is interrupted.

NOTE

To verify the ExCell rectifier fail alarm:

1. Switch off the mains supply to rectifier 1. The following message should bedisplayed:

EAS ALARM: 20 0 0 0:41:Optocoupler 2

SITE: 0 CAGE: 0 SLOT: 17 FUNC: N/A

Severity: Critical Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO: Rectifier Failure

2. Reconnect the mains suply to all rectifiers. The following message should bedisplayed:

EAS ALARM: 20 0 0 0:41:Optocoupler 2

SITE: 0 CAGE: 0 SLOT: 17 FUNC: N/A

Severity: Clear Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO:

Low dc voltagealarm

To verify the ExCell low dc voltage alarm:

1. Remove the alarms fuse on the PSU meter panel. The following message shouldbe displayed:

EAS ALARM: 20 0 0 0:42:Optocoupler 3

SITE: 0 CAGE: 0 SLOT: 17 FUNC: N/A

Severity: Critical Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO: Low dc voltage

2. Replace the fuse. The following message should be displayed:

EAS ALARM: 20 0 0 0:42:Optocoupler 3

SITE: 0 CAGE: 0 SLOT: 17 FUNC: N/A

Severity: Clear Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO:

Page 102: Drive test.pdf

GSM-100-423Verifying ExCell alarms

31st Jul 012–60

Installation & Configuration: BSS Optimization

68P02901W43-J

Inverter fail alarm

Carry out this test only if an inverter is fitted.

NOTE

To verify the ExCell inverter fail alarm:

1. Switch off the mains supply to the inverter. The following message should bedisplayed:

EAS ALARM: 20 0 0 0:43:Optocoupler 4

SITE: 0 CAGE: 0 SLOT: 17 FUNC: N/A

Severity: Critical Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO: Inverter Fail

2. Reconnect the mains suply to the inverter. The following message should bedisplayed:

EAS ALARM: 20 0 0 0:43:Optocoupler 4

SITE: 0 CAGE: 0 SLOT: 17 FUNC: N/A

Severity: Clear Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO:

MCB trip alarm

To verify the ExCell miniature circuit breaker (MCB) trip alarm:

1. Manually trip any MCB associated with the PSU. The following message should bedisplayed:

EAS ALARM: 20 0 0 0:44:Optocoupler 5

SITE: 0 CAGE: 0 SLOT: 17 FUNC: N/A

Severity: Critical Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO: MCB Tripped

2. Reset the MCB. The following message should be displayed:

EAS ALARM: 20 0 0 0:44:Optocoupler 5

SITE: 0 CAGE: 0 SLOT: 17 FUNC: N/A

Severity: Clear Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO:

Page 103: Drive test.pdf

GSM-100-423 Verifying ExCell alarms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–61

Battery faultalarm

To verify the ExCell battery fault alarm:

1. Remove any fuse from the front of the battery box. The following message shouldbe displayed:

EAS ALARM: 20 0 0 0:45:Optocoupler 6

SITE: 0 CAGE: 0 SLOT: 17 FUNC: N/A

Severity: Critical Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO: Battery Fault

2. Replace the fuse. The following message should be displayed:

EAS ALARM: 20 0 0 0:45:Optocoupler 6

SITE: 0 CAGE: 0 SLOT: 17 FUNC: N/A

Severity: Clear Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO:

Comms PSU failalarm

To verify the ExCell comms PSU fail alarm:

1. Manually trip the MCB supplying the comms PSU module. The following messageshould be displayed:

EAS ALARM: 20 0 0 0:46:Optocoupler 7

SITE: 0 CAGE: 0 SLOT: 17 FUNC: N/A

Severity: Critical Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO: Comms. PSU Failure

2. Reset the MCB. The following message should be displayed:

EAS ALARM: 20 0 0 0:46:Optocoupler 7

SITE: 0 CAGE: 0 SLOT: 17 FUNC: N/A

Severity: Clear Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO:

Page 104: Drive test.pdf

GSM-100-423Verifying ExCell alarms

31st Jul 012–62

Installation & Configuration: BSS Optimization

68P02901W43-J

External alarm 0

To vertify the ExCell external alarm 0:

1. Insert a Krone tool into position 1 of the top Krone connector. The followingmessage should be displayed:

EAS ALARM: 20 0 0 0:44:Optocoupler 5

SITE: 0 CAGE: 0 SLOT: 16 FUNC: N/A

Severity: Critical Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO: External Alarm #0

2. Remove the Krone tool. The following message should be displayed:

EAS ALARM: 20 0 0 0:44:Optocoupler 5

SITE: 0 CAGE: 0 SLOT: 16 FUNC: N/A

Severity: Clear Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO:

External alarm 1

To verify the ExCell external alarm 1:

1. Insert a Krone tool into position 2 of the top Krone connector. The followingmessage should be displayed:

EAS ALARM: 20 0 0 0:45:Optocoupler 6

SITE: 0 CAGE: 0 SLOT: 16 FUNC: N/A

Severity: Critical Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO: External Alarm #1

2. Remove the Krone tool. The following message should be displayed:

EAS ALARM: 20 0 0 0:45:Optocoupler 6

SITE: 0 CAGE: 0 SLOT: 16 FUNC: N/A

Severity: Clear Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO:

Page 105: Drive test.pdf

GSM-100-423 Verifying ExCell alarms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–63

External alarm 2

To verify the ExCell external alarm 2:

1. Insert a Krone tool into position 3 of the top Krone connector. The followingmessage should be displayed:

EAS ALARM: 20 0 0 0:46:Optocoupler 7

SITE: 0 CAGE: 0 SLOT: 16 FUNC: N/A

Severity: Critical Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO: External Alarm #2

2. Remove the Krone tool. The following message should be displayed:

EAS ALARM: 20 0 0 0:46:Optocoupler 7

SITE: 0 CAGE: 0 SLOT: 16 FUNC: N/A

Severity: Clear Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO:

External alarm 3

To verify the ExCell external alarm 3:

1. Insert a Krone tool into position 4 of the top Krone connector. The followingmessage should be displayed:

EAS ALARM: 20 0 0 0:47:Optocoupler 8

SITE: 0 CAGE: 0 SLOT: 16 FUNC: N/A

Severity: Critical Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO: External Alarm #3

2. Remove the Krone tool. The following message should be displayed:

EAS ALARM: 20 0 0 0:47:Optocoupler 8

SITE: 0 CAGE: 0 SLOT: 16 FUNC: N/A

Severity: Clear Category: Environment

Date

Alarm Type: Fault Management Initiated Clear

ADDITIONAL INFO:

Page 106: Drive test.pdf

GSM-100-423Identifying DRCU faults on site

31st Jul 012–64

Installation & Configuration: BSS Optimization

68P02901W43-J

Identifying DRCU faults on site

Introduction

Follow these procedures to identify DRCU module faults without returning the unit toMotorola.

These procedures are also available as a quick reference card (catalogue number68P02900W39).

Refer to the Test equipment, leads and plugs section earlier in this chapter forrecommended test equipment.

Symptomsduring normaloperation

Go to the indicated procedure step for the following symptoms:

For this symptom ... Go to step ...

If the codes and instances are incorrect on the local maintenanceterminal (LMT)

P1

If the DRCU goes to sleep P2

If only the DRCU goes to sleep and the alarm LED lights briefly P3

If code loads CEB/DCB/RCB/SCB, EQ, or PA fail P3

If the DRCU resets P4

If a DRI alarm indicates a DRCU failure P4

If there are bad timeslots or if reception quality is poor P5

Symptomsduringcommissioning

Go to the indicated procedure step for the following symptoms:

For this symptom ... Go to step ...

If the transmitter output is high or low C1

If the transmitter output is zero C1

If the transmitter output is unchangeable C2

If, after bay level calibration, some or all channels read 80H C3

If, after bay level calibration, some or all channels marginal C4

Page 107: Drive test.pdf

GSM-100-423 Identifying DRCU faults on site

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–65

Procedure duringnormal operation

To identify DRCU module faults during normal operation:

Step Action Go to step

P1 Lock the DRI.

Check DRIX and fibre optic cable by substitution.

Refit DRIX and fibre optic cable.

Recheck the codes and instances on the LMT. If they arecorrect, continue.

If they are not correct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C6

P2 Lock the DRI.

Remove the fibre optic cables from the DRCU.

Connect a 9 to 9-way cable from a PC serial port A to theDRCU TTY port. Start the terminal emulator program.

Manually reset the DRCU using the reset button.

Check that the calibration checksums and operationalcode versions are correct.

If they are not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If they are correct continue.

Refit the fibre optic cables.

Unlock the DRI.

If the DRCU goes into or remains in sleep mode . . . . . . .

If not continue.

Run the failed test again.

If the DRCU passes this time, continue.

If not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C6

C6

C6

Page 108: Drive test.pdf

GSM-100-423Identifying DRCU faults on site

31st Jul 012–66

Installation & Configuration: BSS Optimization

68P02901W43-J

Step Action Go to step

P3 Lock the DRI.

Connect a 9 to 9-way cable from a PC serial port A to theDRCU TTY port. Start the terminal emulator program.

Unlock the DRI and verify that the DRCU reset sequenceis performed.

Wait until the CEB/DCB/RCB/SCB> prompt has beendisplayed twice.

At the PC enter the third level password.

At the PC type the command ALARM_ALL.

If alarms are displayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If not allow the system to complete its configuration of theDRCU.

If alarms are displayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If not continue.

Lock the DRI.

Manually reset the DRCU using the reset button.

Check that the calibration checksums and operationalcode versions are correct.

If they are not correct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If they are correct continue.

At the PC type:

First level password

Second level password

SWAP C 0

EXEC C 0

Third level password

SWAP E A

SWAP P 0

EXEC P 0

TEST

In test mode, watch the display for any alarms that mightbe generated.

If alarms are displayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If they are not, at the PC type ALARM_ALL.

If alarms are displayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If not, continue

C6

C6

C6

C6

C6

Page 109: Drive test.pdf

GSM-100-423 Identifying DRCU faults on site

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–67

Step Action Go to step

P4 Lock the DRI.

Connect a 9 to 9-way cable from a PC serial port A to theDRCU TTY port. Start the terminal emulator program.

Manually reset the DRCU using the reset button.

Check that the calibration checksums and operationalcode versions are correct.

If they are not correct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If they are correct continue.

At the PC type:

First level password

Second level password

SWAP C 0

EXEC C 0

Third level password

SWAP E A

SWAP P 0

EXEC P 0

TEST

In test mode, watch the display for any alarms that mightbe generated.

If alarms are displayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If they are not, at the PC type ALARM_ALL.

If alarms are displayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If not continue.

C6

C6

C6

P5 Lock the DRI.

Carry out the bay level and cell site offset calibrationagain.

If the calibration cannot be carried out . . . . . . . . . . . . . . . .

If the calibrations can be carried out continue.

Check the DRIM, DRIX, and fibre optic cables bysubstitution.

Check the BSS code load is the latest version.

If necessary, contact the Motorola local office to see ifany FYI or CSB covers a similar failure . . . . . . . . . . . . . . .

P6

P7

P6 Which calibration routine failed?

If the transmitter power calibration is incorrect . . . . . . . . .

If the bay level calibration is incorrect . . . . . . . . . . . . . . . . .

C1

C4

P7 Run the failed test again.

If the DRCU passes continue.

If not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C6

Page 110: Drive test.pdf

GSM-100-423Identifying DRCU faults on site

31st Jul 012–68

Installation & Configuration: BSS Optimization

68P02901W43-J

Procedure duringcommissioning

To identify DRCU module faults during commissioning:

Step Action Go to step

C1 Connect a 9 to 9-way cable from a PC serial port A to theDRCU TTY port. Start the terminal emulator program.

At the PC type the command ALARM_ALL.

If alarms are displayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If not continue.

Remove power from the DRCU.

Connect the combination of a 50 W dummy load andhybrid combiner through a power meter to the output ofthe PA module (make a note of all the losses).

Apply power to the DRCU.

At the PC type:

First level password

Second level password

SWAP C 0

EXEC C 0

Third level password

SWAP E A

SWAP P 0

EXEC P 0

TEST

In test mode watch the display for any alarms that mightbe generated.

If alarms are displayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If they are not, at the PC type ALARM_ALL.

If alarms are displayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If not, at PC type:

ACTIV P 0

TS A TX 0

Check the reading on the power meter (bearing in mindthe losses noted above) is within the limits 48.5 to60.5 W (46.85 to 47.85 dBm).

If the power is within limits, the problem probably liesbetween the DRCU output connector and the top of thecabinet.

If the power is not within limits . . . . . . . . . . . . . . . . . . . . . . .

C6

C6

C6

C6

Page 111: Drive test.pdf

GSM-100-423 Identifying DRCU faults on site

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–69

Step Action Go to step

C2 Connect a 9 to 9-way cable from a PC serial port A to theDRCU TTY port. Start the terminal emulator program.

Manually reset the DRCU using the reset button.

Check that the calibration checksums and code versionsare correct.

If they are not correct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If they are correct continue.

Check that the PA operation code is versionPA_0040.BIN or later.

If the code is correct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If the code is not correct continue.

Connect a 9 to 25-way cable from a second PC serialport A to the DRCU TTY port. Start the terminal emulatorprogram.

Unlock the DRI (PC2) and verify that the DRCU resetsequence is performed (PC1).

Wait until the CEB/DCB/RCB/SCB> prompt has beendisplayed twice.

At the PC enter the third level password.

At the PC type the command ALARM_ALL.

If alarms are displayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If not continue.

At the prompt type:

FM TEST

HALT P 0

(The next two commands must be entered within fiveseconds of each other.)

HALT C 0

TEST

Pause briefly to check that the DRCU does not reset.

At the prompt type:

REVSWAP P U

Wait for 50 seconds for code to be swapped from RAM toEEPROM.

If the swap was unsuccessful, lock the DRI . . . . . . . . . . . .

If the swap was successful continue.

Lock the DRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C6

C5

C6

C6

C5

Page 112: Drive test.pdf

GSM-100-423Identifying DRCU faults on site

31st Jul 012–70

Installation & Configuration: BSS Optimization

68P02901W43-J

Step Action Go to step

C3 Connect a 9 to 9-way cable from a PC serial port A to theDRCU TTY port. Start the terminal emulator program.

At the PC type ALARM_ALL.

If alarms are displayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If not continue.

Rerun the bay level procedures for those channels thatread 80H.

If the channels are correct . . . . . . . . . . . . . . . . . . . . . . . . . .

If not continue.

At the CEB/DCB/RCB/SCB> prompt type:

TS A CHAN

Check that the displayed response has TS0 – TS7 on thesame channel.

Use a channel frequency table to check that the signalgenerator is set up correctly.

If the signal generator is not set up correctly . . . . . . . . . . .

If the signal generator is set up correctly . . . . . . . . . . . . . .

C6

C5

C5

C4

Page 113: Drive test.pdf

GSM-100-423 Identifying DRCU faults on site

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 2–71

Step Action Go to step

C4 Connect a 9 to 9-way cable from a PC serial port A to theDRCU TTY port. Start the terminal emulator program.

At the PC type ALARM_ALL.

If alarms are displayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If not continue.

Remove power from the DRCU.

Connect a coaxial cable from the signal generator to theDRCU Rx branch 1 input.

Calculate the new signal generator output power usingthe formula:

Revised output = splitter/preselector gain + cable loss+ nominal generator output

Where splitter/preselector gain is taken at 13.3 dBm

and nominal generator output is –65.5 dBm.

Apply power to the DRCU.

Check that the calibration checksums and code versionsare correct.

If they are not correct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If they are correct continue.

At the PC type:

First level password

Second level password

SWAP C 0

EXEC C 0

Third level password

SWAP E A

SWAP P 0

EXEC P 0

TEST

In test mode watch the display for any alarms that mightbe generated.

If alarms are displayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If they are not, at the PC type ALARM_ALL.

If alarms are displayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If they are not, rerun the bay level procedures using therevised signal generator output power calculated above(ignore the RX_MATRIX alarm).

Repeat the bay level procedures for both branches.

If the DRCU passes this time, continue

If not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C6

C6

6

C6

C6

Page 114: Drive test.pdf

GSM-100-423Identifying DRCU faults on site

31st Jul 012–72

Installation & Configuration: BSS Optimization

68P02901W43-J

Step Action Go to step

C5 Run the failed test again.

If the DRCU passes this time, continue

If not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C6

C6 Power the DRCU down in a controlled manner by haltingeach processor (HALT E A).

Record all details of the fault including the proceduresused.

Return the DRCU for repair.

Page 115: Drive test.pdf

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J i

Chapter 3

M-Cell2/6 optimization

Page 116: Drive test.pdf

GSM-100-423

31st Jul 01ii

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 117: Drive test.pdf

GSM-100-423

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J iii

Chapter 3M-Cell2/6 optimization i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to M-Cell2/6 optimization 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Purpose of this chapter 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Test equipment, leads and plugs 3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test lead calibration 3–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test leads 3–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating TCU output power and checking VSWR 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cell site offsite calibration (Tx only) 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test stages 3–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 3–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 3–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test all antennas 3–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for test 3–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 1 (automatic) 3–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 2 (manual) 3–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibrating the transmit output power 3–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setting cellsite power M-Cell6 with CCB 3–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 3–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Restoring the site 3–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCU-B VSWR and cellsite offset information 3–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSWR and cellsite offsite information 3–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test stages 3–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 3–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 3–21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test all antennas 3–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for test 3–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Normal TCU-B VSWR and cellsite power calibration 3–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Normal VSWR information 3–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSWR Method 1 (automatic) 3–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSWR Method 2 (manual) 3–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibrating TCU-B transmit output power 3–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCU-B VSWR and cellsite power calibration for CCBs 3–29. . . . . . . . . . . . . . . . . . . . . . . . . . . CCB calibration information 3–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibration procedures 3–31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Restoring the site 3–35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables 3–37. . . . . . . . . . . . . . . . . . Introduction 3–37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 3–37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 3–37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Locking radio, dummy load and TCU reset 3–39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Silencing PLL_LK alarm 3–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setting up TCU for Bay Level 3–41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level calibration for branch1 RX1A 3–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for RX2A 3–49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for RX3A 3–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Branch completion 3–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Branch 2 3–51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking calibration 3–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostic check of TCU 3–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . End procedure restoring site 3–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 118: Drive test.pdf

GSM-100-423

31st Jul 01iv

Installation & Configuration: BSS Optimization

68P02901W43-J

Calibrating M-Cell2/6 TCU-B bay level offset tables 3–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 3–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 3–57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparation for bay level calibration 3–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level calibration for branch 1 RX1A 3–61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for RX2A 3–65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for RX3A 3–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Branch completion 3–66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Branch 2 3–67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking calibration 3–68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . End procedure restoring site 3–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TCU-B diagnostic check 3–71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking the database equipage 3–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 3–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 3–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for the test 3–73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking the database equipage 3–73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking the 2.048 Mbit/s link 3–75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 3–75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 3–75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for the test 3–75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking the 2.048 Mbit/s link 3–76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking serial connections and alarms 3–77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 3–77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 3–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for the test 3–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Testing the PIX connections 3–78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating the MCU (GCLK) 3–79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3–79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . When to calibrate the GCLK 3–79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment required 3–79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setting up for calibration 3–80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Procedure 3–81. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 119: Drive test.pdf

GSM-100-423 Introduction to M-Cell2/6 optimization

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–1

Introduction to M-Cell2/6 optimization

Purpose of thischapter

This chapter provides information required for the hardware optimization of M-Cell2 andM-Cell6 equipment.

Before starting the hardware optimization, the equipment must be commissioned.

Hardware optimization of the M-Cell2 and M-Cell6 equipment consists of the followingprocedures:

� Checking the antenna VSWR and calibrating the transmit output power.

� Calibrating the bay level offset tables.

� Checking the database equipage.

� Checking the 2.048 Mbit link.

� Checking the serial connections, power supply module version and alarm status.

The M-Cell2 and M-Cell6 and all associated site equipment must becompletely optimized before integrating the base site for operation.

CAUTION

Page 120: Drive test.pdf

GSM-100-423Test equipment, leads and plugs

31st Jul 013–2

Installation & Configuration: BSS Optimization

68P02901W43-J

Test equipment, leads and plugs

Introduction

This section provides information on the test equipment required for the HardwareOptimization procedures in this chapter. The GSM cellullar field installation tool kits listedin Chapter 1 may also be necessary.

Ensure that all test equipment associated with commissioning of Motorolacellular base stations is within calibration date.

CAUTION

Test equipment

Table 3-1 provides details of the test equipment required to perform the hardwareoptimization procedures provided in this chapter:

Table 3-1 Hardware optimization equipment

Quantity Description Comments

1 IBM compatible 486 DX2 or DX4portable Personal Computer (PC).

The basic requirements are:

� TFT colour screen.

� 170 Mbyte hard drive(minimum).

� Minimum 4 Mbyte RAM(minimum) or 8 Mbyte(recommended).

� 3.5 inch floppy drive.

� Serial port.

� CD-ROM drive(recommended).

� PCMCIA (Type 2)compatible slot.

� Windows 3.1 loaded andrunning in 386 enhancedmode.

� Battery power.

1 Signal generator Up to 1 GHz.

1 Commercial terminal emulatorsoftware

PC PLUS or similar software.

1 Digital multimeter Hewlett Packard E2378A orequivalent.

1 30 dB attenuator 100 W minimum.

1 RF adaptor kit RTLXQ98088 or equivalent.

2 N to 7/16 inch adaptor

1 N to N barrel adaptor

1 RF wattmeter with 5 W, 10 W 25 Wand 50 W elements

Bird model 43 or equivalent.

Page 121: Drive test.pdf

GSM-100-423 Test equipment, leads and plugs

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–3

Quantity CommentsDescription

1 2 metres of N to N male coaxialcable

Must be calibrated.

1 4 metres of N to N male coaxialcable

Must be calibrated.

2 9-way to 9-way cable Compatible with PC to TTY port onTCU/MCU.

1 9-way to 25-way cable(TCU-B only)

EQCP/RSS cable, connecting PCto TCU-B test interface.

Test leadcalibration

To minimize variations in test results, ensure that all appropriate test leads used inhardware optimization procedures are calibrated.

A recognized laboratory must calibrate all test equipment and associated testleads annually. Do not calibrate test equipment or test leads in the field.

CAUTION

Test leads

Connections for a TTY test lead

Figure 3-1 shows the possible connections for the test lead used in the hardwareoptimization procedures:

TO PC COMMUNICATIONS PORT TO TCU/MCU CONNECTOR

PIN NUMBERPIN NUMBER

4 m LONG SCREENED CABLE

2

3

4

5

6

7

8

2

3

5

9-WAY D-TYPE F 9-WAY D-TYPE M

Figure 3-1 9-way to 9-way cable connections

Page 122: Drive test.pdf

GSM-100-423Test equipment, leads and plugs

31st Jul 013–4

Installation & Configuration: BSS Optimization

68P02901W43-J

Connections for a TCU-B test lead

Figure 3-2 shows the possible connections for the test lead (3086240N01: EQCP/RSScable, TCU-B) used in the TCU-B hardware optimization procedures:

EQCP PINS

PIN NUMBER

4 m SCREENED CABLE

9-WAY D-TYPE

F CONNECTOR

(TO PC COMMUNICATIONS

PORT)

5

2

3

6

2

3

4

5

SELECTOR

SWITCH

RSS PINS

PIN NUMBER

25-WAY D-TYPE

M CONNECTOR

(TO TCU–B TTY

INTERFACE PORT)

Figure 3-2 9-way to 25-way cable connections

Connections for a PIX test lead

Table 3-2 shows pin out details to make a PIX test lead:

Table 3-2 Test plug pin connections

From PIN To PIN

1 20

2 21

3 22

4 23

5 24

6 25

7 26

8 27

Page 123: Drive test.pdf

GSM-100-423 Test equipment, leads and plugs

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–5

Table 3-2 Test plug pin connections

From PIN To PIN

9 & 10 not used N/A

11 29

When making the PIX test lead:Normally open (N/O) PIX inputs should be connected through a 50 ohmresistor.Normally closed (N/C) PIX inputs should be connected through a 50 kohmresistor.Details of N/O and N/C site inputs can be found in the equip_eas file in thesite commissioning database.

NOTE

Connections for a GCLK calibration test lead

Figure 3-3 shows the connections for test lead 3086144E01: Cable Assy, MCU ClockCalibration.

PIN NUMBER

2 m COAXIAL CABLE TYPE RG178

3-WAY CONNECTOR

(TO MCU, CAL. PORT)

3

2

50 OHM BNC CONNECTOR

(TO FREQUENCY COUNTER)

Pin 2 not used

1

Earth

8 kHz output

Figure 3-3 3-way to BNC connection

Page 124: Drive test.pdf

GSM-100-423Calibrating TCU output power and checking VSWR

31st Jul 013–6

Installation & Configuration: BSS Optimization

68P02901W43-J

Calibrating TCU output power and checking VSWR

Cell site offsitecalibration(Tx only)

The objective of the VSWR check and output power calibration procedure is to ensurethat antenna feeders and connectors are properly terminated and then set thepre-defined maximum transmitter output power at the top of the cabinet.

When a radio is manufactured, it undergoes comprehensive transmit and receivecalibration procedures. These procedures aim to produce a radio that exhibits a flatfrequency response over the GSM band. In the case of the transmitter, this is performedby distributing the channels over three detector groups (the detector being the devicethat maintains a steady output power level).

In the field, the procedure for setting the transmit output power involves using a set ofcommands called Cell Site Power (CSPWR). During CSPWR the cabinet output powercan be trimmed to account for any abnormalities that may occur between the TCU andthe top of the cabinet. The offset is effectively subtracted from the requested power level,such that for whatever channel is selected, a steady output is maintained at the top of thecabinet.

Two methods for setting output transmit power are described in this section, oneautomatic and one manual:

Method 1 (automatic)

When the CSPWR command is typed at the SCP prompt, it effectively executes a smallscript containing the following commands:

TS A CHAN 31 Set all timeslots to channel 31 (TCU900).

TS A CHAN 700 Set all timeslots to channel 700 (TCU1800/1900).

TS A TXP 00 Set all timeslots to full power.

MDLTR UC Turn the modulation off.

Prior to executing the CSPWR command, it assumes that the synthesizers are hopping(not locked) as is the case after the unit is powered up for the first time. To alter thepower, typing U increments or typing D decrements the power setting byte. Oncompletion, the command is exited and the appropriate power byte is saved to RAM.

Method 2 (manual)

To specify a specific channel (instead of defaulting to channel 31 or 700), two extracommands must be entered prior to executing the CSPWR command, one to set theappropriate channel and the other to lock the synthesizer. By locking the synthesizer, thechannel selection made in the CSPWR command will be ignored and the output ismaintained at the frequency specified.

Page 125: Drive test.pdf

GSM-100-423 Calibrating TCU output power and checking VSWR

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–7

Test stages

There are four stages to the procedure:

� Preparing for test.

� Checking the VSWR.

� Calibrating the transmit output power.

� Restoring the site.

Test equipment

The following test equipment is required during the VSWR and output power calibrationprocedure:

� An IBM compatible personal computer (PC).

� Terminal emulator software.

� A Bird model 43P (Thru-line) wattmeter, or equivalent, with 5 W and 50 Welements.

� A 9-way to 9-way cable (a diagram of this cable is provided in the Testequipment, leads and plugs section).

� 7/16 N-type adaptor.

� 50 Ohm/100 W power attenuator.

All test equipment and test leads must be calibrated annually by a recognizedlaboratory. Test equipment and test leads must not be calibrated in the field.

Do not optimize Motorola cellular base stations with test equipment that isbeyond its calibration due date.

Allow test equipment to warm up for 30 minutes before use.

CAUTION

Page 126: Drive test.pdf

GSM-100-423Calibrating TCU output power and checking VSWR

31st Jul 013–8

Installation & Configuration: BSS Optimization

68P02901W43-J

CommandsThe following table lists the commands used during the VSWR and output powercalibration procedure:

1. The 0 used in the commands in this procedure is a zero. 2. The lock_device, unlock_device and clear_cal_data commandsare BSS MMI commands and may be entered in upper or lower case; the restof the commands in this list are all TCU (emulator) commands and case is asshown.

NOTE

BSS MMI command Function

lock_device Prevents the device being used.

unlock_device Frees the device for further use.

clear_cal_data Clears previously stored calibration data for a specifiedradio unit on a per DRI basis.

TCU emulator command Function

SWAP Swaps the code from one memory storage device toanother (eg RAM to ROM). It verifies that the sourcecode contains valid code and that the destination is inthe proper state. If either of these conditions are notmet, an error is flagged.

EXEC Executes the code currently in RAM (see swapcommand).

TS <T> CHAN XX Timeslot set up.

Where: <T> = Timeslot No. or A = ALLXX = ARFCN to tune timeslot to.

TS <T> TXPWR <nn> Timeslot set up.

Where: <T> = Timeslot No. or A = ALLnn = Attenuation level from max.

TEST Places the TCU in test mode.

SYNTH 1 Uses one synth for all timeslots.

SYNTH NRM Restore synth to normal working mode.

CSPWR Cell Site Power. Allows the cell site power to be set tothe maximum output power.

U Used with the CSPWR command to increase the powerlevel by a factor of 0.2 dB.

D Used with the CSPWR command to decrease the powerlevel by a factor of 0.2 dB.

ESC (key) Used to exit the CSPWR command and store theresulting offset to RAM.

SAVE CAL TX Used to store the resulting offset in ROM.

ACTIV Changes the state of the requested processor fromActive Standby to Call processing.

state Displays the current state of the code for the processorrequested.

Page 127: Drive test.pdf

GSM-100-423 Calibrating TCU output power and checking VSWR

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–9

Test all antennas

Repeat the Prepare for test and Procedure 1 or Procedure 2 sequence for allantennas on site, both receive and transmit.

Preparing for test

To prepare for the VSWR check and output power calibration:

1. Connect the 9-way to 9-way cable from the PC serial A port to the MCU MMI port.

2. Start the terminal emulator program at the PC.

3. Enter the password at the CUST/MMI prompt.

4. Enter the command:

lock_device # dri a * 0

Where: is:

# the number of the sitelogged into.

a the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

An RF hazard exists during DRI transmissions. As one antenna may beconnected to a number of DRIs, the lock command must be repeated for allDRIs on the antenna being worked on before connecting the wattmeter.

WARNING

5. Type:

clear_cal_data # dri A * 0

The clear_cal_data command clears all calibration data out of the CMdatabase. This is required to overide the preserve calibration feature, ifenabled.

NOTE

6. Connect the wattmeter, with the 50 W element in series, with the Tx port at the topof the cabinet and the antenna.

7. In the case of external high power duplexers, connect the wattmeter with 50 Welement to the output port of the high power duplexer.

8. Connect the 9-way to 9-way cable from the PC to the CNTRL PRCSR port on theTCU.

9. Press the front panel RESET button to reset the TCU under test.

10. Enter the boot code passwords.

11. Continue with either Procedure 1 or Procedure 2.

Page 128: Drive test.pdf

GSM-100-423Calibrating TCU output power and checking VSWR

31st Jul 013–10

Installation & Configuration: BSS Optimization

68P02901W43-J

Procedure 1(automatic)

Checking the VSWR

1. Disconnect the antenna and connect a dummy load to the meter.

2. Type the following commands at the SCP prompt:

SWAP C 0

EXEC C 0

level_3_password

TEST

CSPWR

3. Monitor and record the wattmeter reading (the forward output power).

4. Press ESC.

5. Replace the 50 W element in the wattmeter with a 5 W element and reverse thedirection on the power meter.

6. Connect the power meter through to the antenna.

The VSWR check requires full power to be transmitted through the antenna.Ensure all personnel are clear of the antenna. Do not carry out this VSWRtest unless the antenna installation is complete.

WARNING

Minimize the time that the radio is powered up To reduce the possibility ofinterference with other users.

CAUTION

7. Type CSPWR.

8. Monitor and record the reverse power reading indicated on the power meter.

Readings should show reflected (reverse) power of no more than 1 W or 5% offorward power.If the ratio of the forward and reverse readings is unacceptable, suspect animproper termination of the antenna feeder and connector.

NOTE

9. Press ESC.

The CSPWR command defaults to a midpoint channel number (normally 31 or700), but if required, a manual process can be performed as shown inProcedure 2.

NOTE

10. Reconnect antenna.

Page 129: Drive test.pdf

GSM-100-423 Calibrating TCU output power and checking VSWR

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–11

Procedure 2(manual)

Checking the VSWR1. Disconnect the antenna and connect a dummy load to the meter.

2. Enter the following commands at the SCP prompt:

SWAP C 0

EXEC C 0

level_3_password

TEST

3. Enter the two following commands:

TS A CHAN nnn

SYNTH 1

where:

A means all timeslots (TS).

nnn means the specified channel number.

4. Type CSPWR.

5. Monitor and record the wattmeter reading (the forward output power).

6. Press ESC.

7. Type SYNTH NRM.

Once the SYNTH 1 command has been executed, the CSPWR and ESCcommands can be toggled between as many times as required. The channelwill still remain on the one originally defined in step 3.

NOTE

Repeat steps 3 through 7 for the required number of channels.

8. Replace the 50 W element in the wattmeter with a 5 W element and reverse thedirection on the power meter.

9. Connect the power meter through to the antenna.

The VSWR check requires full power to be transmitted through the antenna.Ensure all personnel are clear of the antenna. Do not carry out this VSWRtest unless the antenna installation is complete.

WARNING

Minimize the time that the radio is powered up To reduce the possibility ofinterference with other users.

CAUTION

10. Type CSPWR.

11. Monitor and record the reverse power reading indicated on the power meter.

Readings should show reflected (reverse) power of no more than 1 W or 5% offorward power.If the ratio of the forward and reverse readings is unacceptable, suspect animproper termination of the antenna feeder and connector.

NOTE

Page 130: Drive test.pdf

GSM-100-423Calibrating TCU output power and checking VSWR

31st Jul 013–12

Installation & Configuration: BSS Optimization

68P02901W43-J

12. Press ESC.

13. Reconnect the antenna.

Calibrating thetransmit outputpower

1. Disconnect the antenna and connect a dummy load to the meter.

2. Replace the 5W element in the Wattmeter with a 50 W element and connect themeter in the forward direction.

3. Enter the two following commands:

TS A CHAN nnn

SYNTH 1

Where:

A means all timeslots (TS)

nnn means the specified channel number.

4. Type CSPWR.

The following message is displayed:

Hit U or D until desired max is measured then hit ESC, CTRL-Y or CTRL-C

5. Enter U or D to achieve the appropriate value in Table 3-3:

Table 3-3 Achievable TX RF power output

TCU type Achievable value

Twin band passfilter, no duplexer

No combining One stagecombining

TCU900 40 W (46 dBm) Not applicable 20 W (43 dBm)

TCU1800/1900 Not applicable 16 W (42.05 dBm) 8 W (39.05 dBm)

High PowerTCU1800/1900

Not applicable 32 W (45.05 dBm) 16 W (42.05 dBm)

All Or the customer-specified value at the top of the cabinet, takingcable losses into account.

6. As U or D is typed, a message similar to the following example, indicating the TCUoutput power and offset value, is displayed:

D P: 43.8 dBm Cell Site Offset: 1When the required output level is achieved, press ESC

7. At the SCP prompt, type SAVE CAL TX.

The cell site offset can be checked by reading the memory location:R F:15780

NOTE

8. Repeat steps 2 to 7 until all TCUs have been tested.

9. Reconnect the antenna.

Page 131: Drive test.pdf

GSM-100-423 Calibrating TCU output power and checking VSWR

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–13

Setting cellsitepower M-Cell6with CCB

The Cavity Combining Block (CCB) combines the output of up to three radios to acommon output, and up to six radios by use of an additional CCB (extension). The CCB(extension) output is an input to the CCB (output) for a single-antenna system. Everytransmitted frequency is attenuated by approximately 3.5 dB for a six cavity system and2.7 dB for a three cavity system. The CCB is not available for M-Cell2.

All CCB commands are issued via the TTY port on a TCU.

NOTE

An M-Cell6 can support one or two CCB modules. There is a minimum of one CCBcontrol board. The CCB control board is located at the front of the CCB beneath a screwdown cover. If redundancy of the CCB control board is provided, both CCB modules willbe equipped with a CCB control board.

The CCB has an address which is defined in the database using the equip_devicecomb command. The address can also be displayed by using the disp_equipmentcomb command. The CCB control board has a set of eight DIP switches which are usedto provide the binary representation of the address defined in the database.

If a single CCB control board is used, it must be in position 0, or the right side of thecabinet viewed from the front.

If two CCB control boards are used, the one mounted on the right module (looking fromthe front) will normally be the master. If this unit fails, the redundant unit will automaticallyassume control.

The initial main/standby relationship is defined from the power connection to the toppanel of the M-Cell6 cabinet. The two CCB control boards receive power from differentpins in the connector, this provides the main/ standby relationship. A fault or problem withthe CCB control board is indicated by a red LED, which can be viewed from above.

There is not a master/slave relationship as no CCB control board has any influence overthe other. It is a main/standby relationship where each CCB control board is equallyaware of what is happening with the CCB system, hence the ability for the standby CCBcontrol board to take seamless control in the event of a problem with the main CCBcontrol board.

The CCB control board is sometimes referred to as the Transmit AntennaTransceiver Interface Control Board (TATI Control Board or TCB).

NOTE

Page 132: Drive test.pdf

GSM-100-423Calibrating TCU output power and checking VSWR

31st Jul 013–14

Installation & Configuration: BSS Optimization

68P02901W43-J

Example:If the combiner address is required to be 75, the DIP switches are set as in Table 3-4.

Table 3-4 Switch settings for example of value 75

Switch 8 7 6 5 4 3 2 1

On/off for value75

off on off off on off on on

Binary value ofeach switch

128 64 32 16 8 4 2 1

� If CCB control board redundancy is supported, the dip switches mustbe set the same on both CCB control boards.

� 255 (all on) is not a valid address.

NOTE

The CCB control board is equipped with a green LED to indicate the presence of power.

ProcedureThe following procedure details the necessary steps to perform the setting of theCSPWR on M-Cell6 sites when they are equipped with CCBs.

Setting the CSPWRThe radio on slot 0 can be used to control all the cavities in the CCB.

1. Connect a PC to the TCU TTY port and put the radio into test mode.

2. Issue the full reset command to the CCB. At the SCP prompt, type:

SNDCMB 0A 02 <CCB control board address 00–FE> <Cavityaddress> <Checksum>

Where:

0A is the reset command.

02 is the byte count.

CCB control board address is the address, in hex, set by the CCBcontrol board DIP switches (see Table 3-4).

Cavity address is the address, in hex, of the cavity to be reset (seeTable 3-5).

Checksum is the low byte of the sum of all other values.

For example, to perform a reset of cavity 0, on a CCB with address 254 decimal,type:

SNDCMB 0A 02 FE 01 0B

The response should occur in under 12 seconds and begin with 09. The 09indicates a reset response.

If OK:

09 02 FE 00 0A

If not OK:

09 02 FE FF 08

The cavities may be tuned individually or as a group from a single command.

NOTE

Page 133: Drive test.pdf

GSM-100-423 Calibrating TCU output power and checking VSWR

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–15

3. The TCU radios use channel 31 as the default value associated with the CSPWRcommand. If a different channel is required, the following commands should beinput with the radio in test mode:

TS A CHAN nnn (where nnn represents the channel to use)

SYNTH 1

CSPWR.

Tuning CCB cavities

To tune a CCB cavity use the following command:

SNDCMB 02 <byte count> <CCB control board address> <cavityaddress> <Chan No. high byte> <Chan No. low byte> <Pwr_Lvl><Chksum Lo>

Multiple cavities may be tuned in a single command, but the channel spacing betweencavities must be 800 kHz or four channels.

For example: To tune the first cavity of the CCB with address 254 to channel 120 type:

SNDCMB 02 05 FE 01 00 78 00 7E

Where:

02 is the parameter download message ID.

05 is the number of bytes to follow.

FE is the address 254 in hex.

01 is the cavity.

00 is the channel high byte.

78 is the channel low byte = 120.

00 is the power level – always 00.

7E is the lowbyte of the checksum (02 + 05 + FE + 01 + 00 + 78 + 00).

The cavities are addressed from a bitmap. The mapping follows the plan in Table 3-5:

Table 3-5 Cavity bitmap

MSB LSB

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Cav 5 Cav 4 Cav 3 Cav 2 Cav 1 Cav 0

The reserved bits are always set to zero.

The channel number has a high and low byte as the CCB has the ability to handle EGSMfrequencies.

The power level value is always set to zero.

Page 134: Drive test.pdf

GSM-100-423Calibrating TCU output power and checking VSWR

31st Jul 013–16

Installation & Configuration: BSS Optimization

68P02901W43-J

The single command string, used to tune all cavities starting with channel 60 for cavity 0and incrementing the channel number by 4 for subsequent cavities, and with the CCBhaving an address of 254, would have the following format:

SNDCMB 02 14 FE 3F 00 3C 00 00 40 00 00 44 00 00 48 00 4C 4000 00 50 00 F7

Where:

02 is the command to tune cavities.

14 is the number of bytes to follow excluding checksum.

FE is the CCB control board address.

3F is the cavity bitmap (represents all 6 cavities).

00 is the channel high byte.

3C 40 44 48 4C 50 are the channel numbers low bytes.

00 is the power level per cavity.

The sequence: channel high byte, channel low byte, power level repeats for each cavity until all cavities have been defined.

NOTE

The CCB responds within 7 seconds for a single cavity or within 14 seconds for multiplecavities with the message:

ID 01, parameter download confirm

Page 135: Drive test.pdf

GSM-100-423 Calibrating TCU output power and checking VSWR

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–17

Restoring thesite

After all installed TCUs have been checked and calibrated, perform the following steps torestore the site. This is done in two stages:

� RF output power check.

� Returning the TCUs to call processing mode.

RF output power check

1. Remove the 9-way to 9-way cable from the CNTRL PRSCR port and connect tothe MCU MMI port.

2. Connect a wattmeter fitted with a 50 W element and a dummy load to the TX portof the TCU to be tested.

3. Press the reset button on the TCU front panel.

4. Unlock the DRI under test using the following commands:

unlock_device # dri a * 0

state # dri a * 0

Where: is:

# the number of the sitelogged into.

a the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

This returns the TCU to the Unlocked Busy state (confirmed by the statecommand).

5. Via the MMI, determine whether maximum BTS power output is set on thedatabase by typing:

disp_element max_tx_bts X cell_number=a a a b b ccc dd

Where: is:

a the mobile country code(MCC).

b the mobile network code(MNC).

c the location area code(LAC).

d the cell ID.

Observe the value displayed; zero indicates maximum transmit power. Each stepdecreases power by 2 dB.

6. Note the RF output reading on the wattmeter; it should be the same as themaximum power set up in step 5 of Calibrating the transmit output power inthis section

Page 136: Drive test.pdf

GSM-100-423Calibrating TCU output power and checking VSWR

31st Jul 013–18

Installation & Configuration: BSS Optimization

68P02901W43-J

7. Lock the TCU by typing:

lock_device # dri a * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

Repeat steps 2 to 7 for all TCUs.

Returning the TCUs to call processing mode

1. Ensure the TX port of all TCUs tested is reconnected to its correct antenna feedercable.

2. Unlock all TCUs tested using the command detailed in step 4 of RF output powercheck.

The command is to be entered for each TCU to be unlocked.

3. Remove the 9-way to 9-way cable from the MCU MMI port.

4. Inform the OMC the VSWR and cell site power calibration has been completed.

Page 137: Drive test.pdf

GSM-100-423 TCU-B VSWR and cellsite offset information

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–19

TCU-B VSWR and cellsite offset information

VSWR andcellsite offsiteinformation

The TCU-B can only be used with BSS software release 1.5.1.6 onwards.

There is no DCS1800/PCS1900 version of TCU-B.The TCU-B cannot be used as an SCU.

NOTE

The objective of the VSWR check and output power calibration procedure is to ensurethat antenna feeders and connectors are properly terminated and then set thepre-defined maximum transmitter output power at the top of the cabinet.

When a radio is manufactured, it undergoes comprehensive transmit and receivecalibration procedures. These procedures aim to produce a radio that exhibits a flatfrequency response over the GSM band. In the case of the transmitter, this is performedby distributing the channels over three detector groups (the detector being the devicethat maintains a steady output power level).

In the field, the procedure for setting the transmit output power involves using a set ofcommands called Cell Site Power (CSPWR). During CSPWR the user can trim thecabinet output power to account for any abnormalities that may occur between theTCU-B and the top of the cabinet. The offset is effectively subtracted from the requestedpower level, such that for whatever channel is selected, a steady output is maintained atthe top of the cabinet.

There are two sets of procedures available for checking VSWR and cell site power:

� Normal TCU-B VSWR and cellsite power calibration.

� TCU-B VSWR and cellsite power calibration for CCBs.

The Preparing for test procedure at the end of this section should be completed beforeattempting the VSWR and cellsite power calibration procedures.

Page 138: Drive test.pdf

GSM-100-423TCU-B VSWR and cellsite offset information

31st Jul 013–20

Installation & Configuration: BSS Optimization

68P02901W43-J

Test stages

There are four stages to the procedure:

� Preparing for test.

� Checking the VSWR.

� Calibrating the transmit output power.

� Restoring the site.

Test equipment

The following test equipment is required during the VSWR and output power calibrationprocedure:

� An IBM compatible personal computer (PC).

� Terminal emulator software.

� A Bird model 43P (Thru-line) wattmeter, or equivalent, with 5 W and 50 WElements.

� A 9-way to 9-way cable (a diagram of this cable is provided in the Testequipment, leads and plugs section).

� 9 to 25-way EQCP/RSS cable.

� 7/16 N-type adaptor.

� 50 Ohm/100 W power attenuator.

All test equipment and test leads must be calibrated annually by a recognizedlaboratory. Test equipment and test leads must not be calibrated in the field.

Do not optimize Motorola Cellular Base Stations with test equipment that isbeyond its calibration due date.

Allow test equipment to warm up for 30 minutes before use.

CAUTION

Page 139: Drive test.pdf

GSM-100-423 TCU-B VSWR and cellsite offset information

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–21

Commands

The following table lists the commands for the VSWR and output power calibrationprocedure:

1. The symbol 0 used in the commands in this procedure is a zero. 2. BSS MMI commands may be entered in upper or lower case. RSS MMI orTCU-B (emulator) commands must be entered in case as shown.

NOTE

BSS MMI command Function

ins_device Initializes the device, bringing it into service.

lock_device Prevents the device being used.

unlock_device Frees the device for further use.

clear_cal_data Clears previously stored calibration data for a specified radiounit on a per DRI basis

RSS MMI command Function

tcu_clock 0 Stops the TCU-B hunting between link A and link B andforces the TCU-B to look only at link A.

TCU-B TTY command Function

TEST Places the TCU-B in test mode.

ACT C Activates the Control Processor.

BBH ALARM OFF Inhibits the BBH alarm.

CSPWR Cell Site Power. Allows the Cell Site power to be set to themaximum output power.

HALT C Stops the Control Processor.

TS <T> CHAN XXX Timeslot set up.

Where: <T> = Timeslot No or A = ALL XXX = ARFCN to tune Timeslot to.

TS <T> TXPWR <nn> Timeslot set up.

Where: <T> = Timeslot No or A = ALL nn = Attenuation level from max.

U Used with the CSPWR command to increase the powerlevel by a factor of 0.2dB.

D Used with the CSPWR command to decrease the powerlevel by a factor of 0.2dB.

ESC (key)or CTRL-Yor CTRL-C

Used to exit the CSPWR command and store the resultingoffset to RAM.

WRENB Write enables the FLASH EPROM.

SAVE CAL TX Used to store the resulting offset in FLASH EPROM.

WRPTC Write protects the FLASH EPROM.

FR TX Reads Tx offset for FLASH EPROM.

MR TX Reads Tx offset for RAM.

SNDCMB Emulates Combiner Control Processor messaging

Page 140: Drive test.pdf

GSM-100-423TCU-B VSWR and cellsite offset information

31st Jul 013–22

Installation & Configuration: BSS Optimization

68P02901W43-J

Test all antennas

VSWR checks ensure correct antenna matching and can prove the serviceability of theantenna. Repeat the procedures for all antennas on site, including receive antennas.

Preparing for test

To prepare for the VSWR check and output power calibration:

1. If CCBs are fitted, set all DIP switches on the CCB control board to zero (thisassists programming and checksum calculations).

2. Connect the 9 to 9-way cable from the PC serial A port to MCU TTY port.

3. At the PC start the terminal emulator program.

4. At the MMI-RAM> prompt type:

ins_device # dri A *

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

The radio must be brought into service as there is no Flash EPROM storage ofcode at the radio control processor level.If a connection to the BSC is not available a PCMCIA commissioning cardmust be used.

NOTE

5. Wait for the radio to finish initializing, then type

lock_device # dri A *

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

An RF hazard exists during DRI transmissions. As one antenna may beconnected to a number of DRIs, the lock command must be repeated for allDRIs on the antenna being worked on before connecting the wattmeter.

WARNING

For ease of calibration, all TCU-Bs in a cell should be initialized and thenlocked. Always lock the transceiver providing the BCCH last, as this preventsthe BCCH being switched to alternate transceivers.

NOTE

Page 141: Drive test.pdf

GSM-100-423 TCU-B VSWR and cellsite offset information

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–23

6. Type:

clear_cal_data # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

The clear_cal_data command clears all calibration data out of the CMdatabase. This is required to overide the preserve calibration feature, ifenabled.

NOTE

7. Connect port COM1 on the PC to the TTY Interface port on the transceiver usingthe 9 to 25-way RSS cable.

8. At the MMI-ROM prompt type:

tcu_clock 0

9. Remove the 9 to 25-way RSS cable from the transceiver and replace it with the9 to 25-way EQCP cable.

Page 142: Drive test.pdf

GSM-100-423Normal TCU-B VSWR and cellsite power calibration

31st Jul 013–24

Installation & Configuration: BSS Optimization

68P02901W43-J

Normal TCU-B VSWR and cellsite power calibration

Normal VSWRinformation

Two methods available for normal VSWR checking are described in this section; oneautomatic and one manual. The reason for the two methods is as follows:

VSWR Method 1 (automatic)

When typing the CSPWR command at the EQCP prompt, it effectively executes a smallscript containing the following commands:

TS A CHAN 31 Set all timeslots to channel 31(TCU900 and TCU-B)

TS A CHAN 700 Set all timeslots to channel 700(TCU1800/1900)

TS A TXP 00 Set all timeslots to full power

MDLTR UC Turn the modulation off

Prior to executing the CSPWR command, it assumes that the synthesizers are in normalmode (not locked), as is the case after the unit is powered up for the first time.

Although embedded in the CSPWR script, the TS a CHAN 700 command isignored by the TCU-B VSWR calibration procedure.

NOTE

VSWR Method 2 (manual)

To allow a specific channel to be specified (instead of defaulting to channel 31 or 700)additional commands must be entered, rather than using the CSPWR command. Onecommand sets the appropriate channel and the other switches the TCU-B output poweron and off.

Page 143: Drive test.pdf

GSM-100-423 Normal TCU-B VSWR and cellsite power calibration

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–25

VSWR Method 1(automatic)

The first method for normal VSWR checking uses automatic channel selection. TheCSPWR command automatically selects a midpoint channel number (channel 31 or 700),but if required a manual process can be performed as shown in method 2.

Checking the forward output power

To check the transmission path forward output power:

1. Disconnect antenna. Connect a dummy load to the meter and ensure the meter isfitted with a 50 W element. Connect the meter to the TX output.

2. At the EQCP prompt type:

.GSMFWTESTACT CBBH ALARM OFFCSPWR

3. Monitor and record the wattmeter reading (the forward output power).

4. Press ESC or CTRL-Y or CTRL-C.

Checking the reverse power

To check the transmission path reverse power:

1. Replace the 50 W element in the wattmeter with a 5 W element and reverse thedirection on the power meter.

2. Remove the dummy load and connect the power meter through to the antenna.

Full power is transmitted during VSWR checks. Ensure all personnel areclear of the antenna. Do not carry out this check unless antenna installation iscomplete.

WARNING

To reduce the possibility of interference with other users, minimize the timethat the radio is powered up.

CAUTION

3. At the EQCP prompt type:

CSPWR

4. Monitor and record the reverse power reading indicated on the power meter.

Readings should show reflected (reverse) power of no more than 5% of theforward power at the point of measurement, but less than 1W.If the ratio of the forward and reverse readings is unacceptable, suspect animproper termination of the antenna feeder and connector.

NOTE

5. Press ESC or CTRL-Y or CTRL-C

6. At the EQCP prompt type:

HALT C

Page 144: Drive test.pdf

GSM-100-423Normal TCU-B VSWR and cellsite power calibration

31st Jul 013–26

Installation & Configuration: BSS Optimization

68P02901W43-J

7. Remove the power meter and reconnect antenna.

VSWR Method 2(manual)

The second method for normal VSWR checking allows the manual selection of achannel.

Checking the forward output power

To check the transmission path forward output power:

1. Disconnect antenna. Connect a dummy load to the meter and ensure the meter isfitted with a 50 W element. Connect the meter to the TX output.

2. At the EQCP prompt type:

.GSMFW

TEST

ACT C

BBH ALARM OFF

3. Enter the following command:

TS A CHAN nnn

Where: is:

A all timeslots (TS).

nnn the specified channelnumber.

4. To switch the power on, enter the following command:

TS A TXPWR 00

Where: is:

A all timeslots (TS).

00 maximum output power

5. Monitor and record the wattmeter reading (the forward output power).

6. To switch the power off, enter the following command:

TS A TXPWR FF

Where: is:

A all timeslots (TS).

FF zero output power

Page 145: Drive test.pdf

GSM-100-423 Normal TCU-B VSWR and cellsite power calibration

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–27

Checking the reverse power

To check the transmission path reverse power:

1. Replace the 50 W element in the wattmeter with a 5 W element and reverse thedirection on the power meter.

2. Remove the dummy load and connect the power meter through to the antenna.

Full power is transmitted during VSWR checks. Ensure all personnel areclear of the antenna. Do not carry out this check unless antenna installation iscomplete.

WARNING

To reduce the possibility of interference with other users, minimize the timethat the radio is powered up.

CAUTION

3. To switch the power on, enter:

TS A TXPWR 00

4. Monitor and record the reverse power reading indicated on the power meter.

Readings should show reflected (reverse) power of no more than 5% of theforward power at the point of measurement, but less than 1 W.If the ratio of the forward and reverse readings is unacceptable, suspect animproper termination of the antenna feeder and connector.

NOTE

5. To switch the power off, enter:

TS A TXPWR FF

6. Repeat steps 3 to 5 for the required number of channels.

7. At the EQCP prompt type:

HALT C

8. Remove the power meter and reconnect the antenna.

CalibratingTCU-B transmitoutput power

To calibrate TCU-B transmit output power:

1. Disconnect antenna. Connect a dummy load to the meter and ensure the meter isfitted with a 50 W element. Connect the meter to the TX output.

2. At the EQCP prompt type:

.GSMFW

TEST

ACT C

BBH ALARM OFF

Page 146: Drive test.pdf

GSM-100-423Normal TCU-B VSWR and cellsite power calibration

31st Jul 013–28

Installation & Configuration: BSS Optimization

68P02901W43-J

3. At the EQCP prompt type:

CSPWR

The following message is displayed:

Hit U or D until desired max is measured then

hit ESC, CTRL-Y or CTRL-C

4. Enter U or D to adjust the TCU-B Tx power to achieve the appropriate value, asdetailed in Table 3-6:

Table 3-6 Achievable Tx RF power output

TCU type Achievable value

Twin band passfilter, no duplexer

No combining One stagecombining

TCU-B 40 W (46 dBm) Not applicable 20 W (43 dBm)

All Or the customer-specified value at the top of the cabinet, takingcable losses into account.

5. As U or D is typed, a message similar to the following example, indicating theTCU-B output power and offset value, is displayed:

D P: 43.8 dBm Cell Site Offset: 1

When the required output level is achieved, press ESC or CTRL-Y or CTRL-C

6. At the EQCP prompt type:

HALT C

WRENB

SAVE CAL TX

WRPTC

The cell site offset can be checked by reading the memory location:Use FR TX to verify writes to FLASHUse MR TX to verify writes to RAM

NOTE

7. Repeat steps 1 to 6 until all transceivers have been calibrated.

8. Remove the power meter and reconnect the antenna.

9. Use the Restoring the site procedure to return the site to service.

Page 147: Drive test.pdf

GSM-100-423 TCU-B VSWR and cellsite power calibration for CCBs

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–29

TCU-B VSWR and cellsite power calibration for CCBs

CCB calibrationinformation

The Cavity Combining Block (CCB) combines the output of up to three radios to acommon output, and up to six radios by use of an additional CCB(extension). TheCCB(extension) output is an input to the CCB(output) for a single-antenna system.Every transmitted frequency will be attenuated by approximately 3.5 dB for a six cavitysystem and 2.7 dB in a three cavity system. The CCB is not available for M-Cell2.

All CCB commands are issued via the TTY port on a TCU-B.

NOTE

An M-Cell6 can support up to two CCB modules. There is a minimum of one CCBcontrol board. The CCB control board is located at the front of the CCB beneath a screwdown cover. If redundancy of the CCB control board is provided, both CCB modules willbe equipped with a CCB control board. The CCB has an address which is defined in thedatabase using the equip_device COMB command. The address can also be displayedby using the disp_equipment COMB command.

The CCB control board has a set of eight DIP switches which are used to provide thebinary representation of the address defined in the database. These switches have allbeen set to zero in the Preparing for test procedure. Once the cellsite power has beenset the DIP switches should be returned to positions for the address defined in thedatabase.

Example of DIP switch setting

If the combiner address is required to be 75 (hex 4B), the DIP switches will be set asTable 3-7.

Table 3-7 Switch settings for example of value 75

Switch 8 7 6 5 4 3 2 1

On/off for value75

off on off off on off on on

Binary value ofeach switch

128 64 32 16 8 4 2 1

� If CCB control board redundancy is supported, the dip switches mustbe set the same on both CCB control boards.

� 255 (all on) is not a valid address.

NOTE

Page 148: Drive test.pdf

GSM-100-423TCU-B VSWR and cellsite power calibration for CCBs

31st Jul 013–30

Installation & Configuration: BSS Optimization

68P02901W43-J

CCB control board details

The CCB control board is equipped with a green LED to indicate the presence of power.

If a single CCB control board is used it must be in position 0, or the right of the cabinetwhen viewed from the front.

If two CCB control boards are used, the one mounted on the right, looking from the front,will normally be the master. If this unit fails, the redundant unit will automatically assumecontrol. The initial main/standby relationship is defined from the power connection to thetop panel of the M-Cell6 cabinet. The two CCB control boards receive power fromdifferent pins in the connector, this provides the main/ standby relationship. A fault orproblem with the CCB control board is indicated by a red LED, which can be viewed fromabove.

There is not a master/slave relationship as no CCB control board has any influence overthe other. It is a main/standby relationship where each CCB control board is equallyaware of what is happening with the CCB system, hence the ability for the standby CCBcontrol board to take seamless control in the event of a problem with the main CCBcontrol board.

The CCB control board is sometimes referred to as the Transmit AntennaTransceiver Interface Control Board (TATI Control Board or TCB).

NOTE

Page 149: Drive test.pdf

GSM-100-423 TCU-B VSWR and cellsite power calibration for CCBs

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–31

Calibrationprocedures

The procedures Tuning the CCB cavities, VSWR calibration procedure, Calibratingcellsite power and Parking the CCB cavities should be used for VSWR and cellsitecalibration of M-Cell6 cabinets equiped with TCU-Bs and CCB RF combiners.

The four calibration procedures should be completed sequentially, and withoutpause, for each radio.Failure to do so could result in the associated CCB being parked on the wrongchannel.

NOTE

Tuning the CCB cavities

The following procedure details the steps necessary to tune the cavities in preparation forthe VSWR and cellsite power calibration. The TCU-B radios use channel 31 as thedefault value associated with the CSPWR command.

The procedure should be performed on each radio in turn:

1. Disconnect antenna. Connect a dummy load to the meter and ensure the meter isfitted with a 50 W element. Connect the meter to the TX output.

2. Connect a PC to the TCU-B TTY interface port.

3. At the EQCP prompt type:

.GSMFW

TEST

ACT C

BBH ALARM OFF

4. Issue the full tuning command to the CCB. To tune cavity 0, at the EQCP prompt,type:

SNDCMB 02 05 00 01 00 1F 00 27

Where:

02 is the parameter download message ID.

05 is the number of bytes to follow, excluding final checksum.

00 is the CCB address (as set on the DIP switches).

01 is the hex value of the address of the cavity to be tuned. (set for cavity 0)

00 is the channel high byte.

1F is the channel low byte (set for channel 31).

00 is the power level – always 00.

27 is the low byte of the checksum (02 + 05 + 00 + 01 + 00 + 1F + 00).

Page 150: Drive test.pdf

GSM-100-423TCU-B VSWR and cellsite power calibration for CCBs

31st Jul 013–32

Installation & Configuration: BSS Optimization

68P02901W43-J

The response should occur in under 12 seconds and begin with 01.

A typical response, if OK, is:

01 04 00 01 00 00 06

A typical failure response is:

F1 0B 00 A0,

followed by a repetition of the input bytes.

Table 3-9 details the tuning commands for all possible cavities.

VSWR calibration procedure

To check the VSWR of the transmission path:

1. At the EQCP prompt type:

CSPWR

2. Monitor and record the wattmeter reading (the forward output power).

3. Press ESC or CTRL-Y or CTRL-C

4. Replace the 50 W element in the wattmeter with a 5 W element and reverse thedirection on the power meter.

5. Remove the dummy load and connect the power meter through to the antenna.

Full power is transmitted during VSWR checks. Ensure all personnel areclear of the antenna. Do not carry out this check unless antenna installation iscomplete.

WARNING

To reduce the possibility of interference with other users, minimize the timethat the radio is powered up.

CAUTION

6. At the EQCP prompt type:

CSPWR

7. Monitor and record the reverse power reading indicated on the power meter.

Readings should show reflected (reverse) power of no more than 5% of theforward power at the point of measurement, but less than 1 W .If the ratio of the forward and reverse readings is unacceptable, suspect animproper termination of the antenna feeder and connector.

NOTE

8. Press ESC or CTRL-Y or CTRL-C

Calibrating cellsite power

To calibrate the cellsite power:

1. At the EQCP prompt type:

CSPWR

The following message is displayed:

Hit U or D until desired max is measured then

hit ESC, CTRL-Y or CTRL-C

Page 151: Drive test.pdf

GSM-100-423 TCU-B VSWR and cellsite power calibration for CCBs

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–33

2. Enter U or D to adjust the TCU-B Tx power to achieve the appropriate value, asdetailed in Table 3-8:

Table 3-8 Achievable Tx RF power output

TCU type Achievable value

Twin band passfilter, no duplexer

No combining One stagecombining

TCU-B 40 W (46 dBm) Not applicable 20 W (43 dBm)

All Or the customer-specified value at the top of the cabinet, takingcable losses into account.

3. As U or D is typed, a message similar to the following example, indicating theTCU-B output power and offset value, is displayed:

D P: 43.8 dBm Cell Site Offset: 1

When the required output level is achieved, press ESC or CTRL-Y or CTRL-C

4. Save the transmit power calibration. At the EQCP prompt type:

HALT C

WRENB

SAVE CAL TX

WRPTC

Parking the CCB cavities

To prevent cavity interference park the cavity. To park cavity 0, at the EQCP prompttype:

SNDCMB C2 02 00 01 C5

Where:

C2 is the parameter download message ID.

02 is the number of bytes to follow, excluding final checksum.

00 is the CCB address (as set on the DIP switches).

01 is the hex value of the address of the cavity to be tuned. (set for cavity 0)

C5 is the low byte of the checksum (C2 + 02 + 00 + 01).

Repeat for remaining cavities

Repeat the procedures Tuning the CCB cavities, VSWR calibration procedure,Calibrating cellsite power and Parking the CCB cavities until all transceivers havetuned the CCB cavity they are connected to and the TX output power has beencalibrated. The cavity tuning and parking commands are detailed in Table 3-9 andTable 3-10

Page 152: Drive test.pdf

GSM-100-423TCU-B VSWR and cellsite power calibration for CCBs

31st Jul 013–34

Installation & Configuration: BSS Optimization

68P02901W43-J

Table 3-9 TCU-B CCB cavity tuning commands

Cavity to betuned

Cavity tuning command

0 02 05 00 01 00 1F 00 27

1 02 05 00 02 00 1F 00 28

2 02 05 00 04 00 1F 00 2A

3 02 05 00 08 00 1F 00 2E

4 02 05 00 10 00 1F 00 36

5 02 05 00 20 00 1F 00 46

Table 3-10 TCU-B CCB cavity parkingcommands

Cavity to beparked

Cavity parking command

0 C2 02 00 01 C5

1 C2 02 00 02 C6

2 C2 02 00 04 C8

3 C2 02 00 08 CC

4 C2 02 00 10 D4

5 C2 02 00 20 E4

Remove the power meter and reconnect the antenna.

Use the Restoring the site procedure to return the site to service.

Page 153: Drive test.pdf

GSM-100-423 TCU-B VSWR and cellsite power calibration for CCBs

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–35

Restoring thesite

After all installed TCU-Bs have been checked and calibrated, perform the following stepsto restore the site. Restoration of the site is done in two stages:

� RF output power check.

� Returning the TCU-Bs to call processing mode.

RF output power check

1. Remove the 9 to 25-way EQCP cable from the TTY port and connect a 9 to 9-waycable to the MCU MMI port.

2. Disconnect the antenna and connect a dummy load and wattmeter fitted with a 50W element to the TX output.

3. Return the DIP switches on the CCB control boards to their original positions.

4. Press the reset button on the front panel of the TCU-B under test.

5. Unlock the DRI under test using the following commands:

unlock_device # dri A *

state # DRI A *

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

This forces the TCU-B to enter the Unlocked Busy state (confirmed by the statecommand).

6. Monitor and record the wattmeter reading.

7. Lock the TCU-B by entering:

lock_device # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

Repeat steps 4 to 7 for all DRIs.

Page 154: Drive test.pdf

GSM-100-423TCU-B VSWR and cellsite power calibration for CCBs

31st Jul 013–36

Installation & Configuration: BSS Optimization

68P02901W43-J

Returning the TCU-Bs to call processing mode

1. Remove the wattmeter and reconnect the antenna lead to the TX port.

2. Unlock all DRIs tested using the command detailed in step 5 of RF output powercheck.

The command is to be entered for each TCU-B to be unlocked.

3. Remove the 9 to 9-way cable from the MCU MMI port.

4. Inform the OMC the VSWR and cellsite power calibration has been completed.

Page 155: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–37

Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

IntroductionFollow this procedure to calibrate the bay level offset tables to compensate for the lossesor gains due to preselectors and RF cabling from the antenna inputs at the M-Cell2 orM-Cell6 to the TCU900, TCU1800, or TCU1900 input.

This procedure applies only to the TCU900, TCU1800 and TCU1900.

NOTE

All units are factory calibrated. This procedure is thus necessary only if one of thefollowing changes occur:

� A TCU is replaced.

� RF front end equipment is changed.

� The site is reconfigured.

� High power duplexers are fitted.

The procedures contained in Calibrating M-Cell2/6 TCU900/1800/1900 baylevel offset tables are to calibrate a single TCU. Repeat the procedures forall TCUs affected by the changes listed above.

NOTE

Test equipmentThe following test equipment is required:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A 50 ohm 50 W dummy load.

� A signal generator (0 to 2 GHz).

� 9-way to 9-way cable.

� 9-way to 25-way RS232 cable.

All test equipment and test leads must be calibrated annually by a recognizedlaboratory. Test equipment and test leads must not be calibrated in the field.

Do not optimize Motorola Cellular Base Stations with test equipment that isbeyond its calibration due date.

Allow test equipment to warm up for 30 minutes before use.

CAUTION

CommandsThe following commands must be used to carry out the procedure:

1. The symbol 0 used in the commands in this procedure is a zero. 2. The lock_device, unlock_device and clear_cal_data commands are BSSMMI commands and may be entered in upper or lower case. The remainder ofthe commands in this list are TCU (emulator) or TCU TSM port commandsand must be input as shown. The first TCU password must be upper case.

NOTE

Page 156: Drive test.pdf

GSM-100-423Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 013–38

Installation & Configuration: BSS Optimization

68P02901W43-J

BSS MMIcommand

Function

lock_device Prevents the device being used

unlock_device Frees the device for further use

clear_cal_data Clears previously stored calibration data for a specifiedradio unit on a per DRI basis

TCU TTYcommand

Function

SWAP C 0 Swaps DPC code from ROM to RAM and checksvalidity

EXEC C 0 Executes DPC code currently stored in RAM

SWAP E A Swaps EQ code from ROM to all four EQDSP’s andchecks validity

CONFGR E A Sends call processing calibration tables to equaliser

TEST Places the TCU into test mode

CAL BAY @1/@2 Calibrates the bay level receive equipment

EQTEST 0 Puts equalizer 0 into test mode and checks status

IQDCP 0 Passes the factory calibrated dc offset informationstored in ROM to EQDSP 0

AIC OUT Disables automatic intermodulation compensation

TS A CHAN # Sets all timeslots to channel #

TS A ANT # Sets all timeslots to antenna #

R F:XX YY Reads flash memory bay level data held at addressesXX to YY

SYNTH 1 Stops synthesizer switching with synthesizer 1permanently on

SYNTH NRM Enables synthesizer switching into normal working

SAVE CAL BAY Transfers Bay Level Calibration stored data in RAM toROM

BAYDONE @N Informs control processor that Bay Level Calibration isvalid for branch N and sets bay level flag

TCU TSM portcommand

Function

tcu_clock 0 Stops the TCU hunting between fibre A and fibre B andforces the TCU to look only at fibre A.

Page 157: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–39

Locking radio,dummy load andTCU reset

The radio has first to be locked, a dummy load connected if no antenna, and the TCUreset so that it is ready for Bay Level Calibration. Proceed as follows:

The two receive cables must be connected to the TCU at all times, as thecable connecting the TCU RX IN 1 terminal carries signalling information to theIADU and the cable connecting the TCU RX IN 2 terminal carries power feedto the DLNB.

NOTE

1. Connect the 9-way to 9-way cable from the PC serial A port to MCU TTY port.

2. At the PC start the terminal emulator program.

Failure to lock the cell could result in the BCCH transmitting into, and causingdamage to the signal generator. The maintenance engineer could receive RFburns when connecting to the antenna socket.

WARNING

3. Type:

lock_device # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

4. Type:

clear_cal_data # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

The clear_cal_data command clears all calibration data out of the CMdatabase. This is required to overide the preserve calibration feature, ifenabled.

NOTE

5. If a Tx antenna is not connected to the TCU under test connect a 50 ohm 50 Wdummy load to the Tx port of the TCU under test.

Page 158: Drive test.pdf

GSM-100-423Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 013–40

Installation & Configuration: BSS Optimization

68P02901W43-J

6. Remove the 9-way to 9-way cable from the PC serial A port to MCU TTY port.

7. Reset the TCU using the front panel reset button.

SilencingPLL_LK alarm

With the TCU in test mode, and no redundant MCU or FOX fibre pair present, there willbe a PLL_LK alarm cycling on and off as the radio hunts between its fibre inputs for areference. This may interfere with the CAL BAY @n (n=1,2) command. The followingprocedure forces the radio to lock to fibre A, stopping the alarm.

If the BTS is equipped with a redundant MCU and both fibre pairs A and B areconnected then this procedure may be omitted.

NOTE

1. Connect a standard 9-way to 25-way RS232 cable from the PC serial A port to theTCU TSM port.

2. Set up a terminal connection to this port at 9600 baud.

3. At the ROM prompt type:

tcu_clock 0

4. Remove the 9-way to 25-way cable from the PC serial A port to the TCU TSMport.

Page 159: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–41

Setting up TCUfor Bay Level

The TCU has to be set up to respond to bay level calibration. Proceed as follows:

1. Connect the 9-way to 9-way cable from the PC serial A port to CNTRL PRCSRport on the TCU.

2. Enter the boot passwords.

3. At the SCP prompt type:

SWAP C 0

The system responds with the following:

Swap in completed O.K.

At the SCP prompt type:

EXEC C 0

The system responds with the following:

The current state of the Control Processor is Active Standby.

The last reset was caused by hardware.

4. At the SCP prompt type:

.<LEVEL_3_PASSWORD> (different from the RCU level 3 password)

SWAP E A

The system responds with the following:

Swap in completed O.K.

5. At the SCP prompt type:

CONFGR E A

The system will respond with the following:

Equalizer #0 configuration successful

Equalizer #1 configuration successful

Equalizer #2 configuration successful

Equalizer #3 configuration successful

6. At the SCP prompt type:

TEST

AIC OUT

EQTEST 0

The system responds with the following:

003D

Equalizer is now in Test Mode

7. At the SCP prompt type:

IQDCP 0

The system responds with the following:

0057

Equalizer has been configured with the DC Offsets

Page 160: Drive test.pdf

GSM-100-423Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 013–42

Installation & Configuration: BSS Optimization

68P02901W43-J

Bay levelcalibration forbranch1 RX1A

Proceed as follows:

1. Connect the output of the signal generator to branch 1 of the antenna port at thetop of the cabinet for the TCU under test as indicated in Table 3-11.

As the IADU connects the TCU900 receive port to the receive antenna via theDLNB, and there are up to three DLNBs per cabinet, it is important to choosethe correct number in the TS A ANT command.If RX path is via DLNB 0 then antenna is TS A ANT 1.If RX path is via DLNB 1 then antenna is TS A ANT 2.If RX path is via DLNB 2 then antenna is TS A ANT 3.See Examples with diagrams in later pages, for further explanation.

NOTE

The antenna number can also be found by using the disp_equipment # DRI A * 0command. The number next to antenna_select is the antenna number.

Table 3-11 Signal generator to TCU connection

TCU frequency Non duplexerconfigurations

Duplexer configurations

PGSM/EGSM900 RX1 on relevantDLNB.

ANTENNA/ANT port of medium orexternal highpower duplexer which isconnected to RX1 on the DLNB.

DCS1800/PCS1900 A on the relevantLNA.

ANTENNA/ANT port of duplexer which isconnected to A on the LNA.

Any TCU within an M-Cell6 cabinet can be connected to any input signal. The IADUswitches the outputs of up to three DLNBs to up to six TCUs. An IADU in one cabinetcan be connected to an IADU in another cabinet via extension ports.

2. Set the signal generator at a level of –65.2 dBm, to the first channel test frequencyshown in Table 3-12, Table 3-13 or Table 3-14.

The Tx level of the signal generator must be set to allow for losses in the testleads used. It is VITAL that the signal generator and cables are correctlycalibrated, and the RF cables are in good order.

If signal generator connection is made at a location away from the top of thecabinet, make allowance for loss in the feeder cable to the antenna port at thetop of the cabinet, by increasing the –65.2 dBm level. For example, if feedercable loss is 4dBm, the signal generator should be set to –61.2 dBm.The High Power Duplexer should be considered part of the cabinet for thisconnection.

NOTE

3. At the SCP prompt type:

TS A ANT 1

Page 161: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–43

4. At the SCP prompt type:

TS A CHAN #

Where: # is: the channel number asshown in Table 3-12 ,Table 3-13 or Table 3-14.

5. At the SCP prompt type:

SYNTH 1

CAL BAY @1

The system responds with the following:

0051 0005 28F4

Rx Bay Level Offset = F7

6. At the SCP prompt type:

SYNTH NRM

When the synthesizer is left unlocked, the bay level figure can vary as muchas � 1dB at certain frequencies. By locking the synthesizer (using commandsSYNTH 1 and SYNTH NRM this variation can be reduced to � 0.1 dB.

NOTE

7. Repeat steps 4 to 6 for each signal generator test frequency in Table 3-12,Table 3-13 or Table 3-14.

8. At the SCP prompt type:

SAVE CAL BAY

The system responds with the following:

Transfer of Calibration Data to Non–Volatile Storage Complete

This transfers the Bay Level Calibration figures to non-volatile TCU memory.

Page 162: Drive test.pdf

GSM-100-423Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 013–44

Installation & Configuration: BSS Optimization

68P02901W43-J

Examples with diagrams

The following examples are intended to clarify how to identify antenna number for eachTCU.

Figure 3-4 shows a single M-Cell6 cabinet supporting a 2/2/2 configuration (3 cells with2-carriers per cell).

TCU

TCU

TCU

TCU

TCU

TCU

� � �

IADU

DLNB

������������ �����

� � � � � �

Cell C Cell B Cell A

� � �

Figure 3-4 M-Cell6 2/2/2 configuration (3 cells with 2 carriers per cell).

For cell A the receive antennas are connected to DLNB 0; these antennas are known asantenna 1, so the timeslot command is TS A ANT 1.

For cell B the receive antennas are connected to DLNB 1; these antennas are known asantenna 2, so the timeslot command is TS A ANT 2.

For cell C the receive antennas are connected to DLNB 2; these antennas are known asantenna 3, so the timeslot command is TS A ANT 3.

Page 163: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–45

Figure 3-5 shows two M-Cell6 cabinets supporting a 4/4/4 configuration (3 cells with 4carriers per cell).

� � �

IADU

DLNB

������������ �����

� �

Cell ACell BCell C

TCU

TCU

TCU

TCU

TCU

TCU

��

� � �

� �

TCU

TCU

TCU

TCU

TCU

TCU-

� �����

�������� ��������

�� �� ��

Figure 3-5 M-Cell6 4/4/4 configuration (3 cells with 4 carriers per cell).

For cell A the receive antennas are connected to DLNB 0 in cabinet 1; these antennasare known as antenna 1, so the timeslot command is TS A ANT 1.

For cell B the receive antennas are connected to DLNB 2 in cabinet 1 and extended tothe DLNB 0 connector in cabinet 2 (by using the extender module). The cabinet 1transceivers see the antennas as antenna 3 and require the TS A ANT 3 timeslotcommand, and the cabinet 2 transceivers see the antennas as antenna 1 and require theTS A ANT 1 timeslot command.

For cell C the receive antennas are connected to DLNB 2 in cabinet 2; these antennasare known as antenna 3, so the timeslot command is TS A ANT 3.

Page 164: Drive test.pdf

GSM-100-423Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 013–46

Installation & Configuration: BSS Optimization

68P02901W43-J

Table 3-12 GSM900 and EGSM900 test frequencies

Channel Frequency (MHz) Channel Frequency (MHz)

979 (see note) 881.001 43 898.601

987 (see note) 882.601 51 900.201

995 (see note) 884.201 59 901.801

1003 (see note) 885.801 67 903.401

1011 (see note) 887.401 75 905.001

1019 (see note) 889.001 83 906.601

03 890.601 91 908.201

11 892.201 99 909.801

19 893.801 107 911.401

27 895.401 115 913.001

35 897.001 123 914.601

Channels 979 to 1019 apply to Extended GSM only.

NOTE

Page 165: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–47

Table 3-13 DCS1800 test frequencies

Channel Frequency (MHz) Channel Frequency (MHz)

516 1711.001 708 1749.401

524 1712.601 716 1751.001

532 1714.201 724 1752.601

540 1715.801 732 1754.201

548 1717.401 740 1755.801

556 1719.001 748 1757.401

564 1720.601 756 1759.001

572 1722.201 764 1760.601

580 1723.801 772 1762.201

588 1725.401 780 1763.801

596 1727.001 788 1765.401

604 1728.601 796 1767.001

612 1730.201 804 1768.601

620 1731.801 812 1770.201

628 1733.401 820 1771.801

636 1735.001 828 1773.401

644 1736.601 836 1775.001

652 1738.201 844 1776.601

660 1739.801 852 1778.201

668 1741.401 860 1779.801

676 1743.001 868 1781.401

684 1744.601 876 1783.001

692 1746.201 883 1784.401

700 1747.801

Page 166: Drive test.pdf

GSM-100-423Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 013–48

Installation & Configuration: BSS Optimization

68P02901W43-J

Table 3-14 PCS1900 test frequencies

Channel Frequency (MHz) Channel Frequency (MHz)

516 1851.001 668 1881.401

524 1852.601 676 1883.001

532 1854.201 684 1884.601

540 1855.801 692 1886.201

548 1857.401 700 1887.801

556 1859.001 708 1889.401

564 1860.601 716 1891.001

572 1862.201 724 1892.601

580 1863.801 732 1894.201

588 1865.401 740 1895.801

596 1867.001 748 1897.401

604 1868.601 756 1899.001

612 1870.201 764 1900.601

620 1871.801 772 1902.201

628 1873.401 780 1903.801

636 1875.001 788 1905.401

644 1876.601 796 1907.001

652 1878.201 804 1908.601

660 1879.801

Page 167: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–49

Bay level repeatfor RX2A

Continue the bay level calibration procedure to the second antenna port as follows:

It may not be possible to calibrate all three antennas because there may notbe a DLNB or LNA fitted to every RX port ( see Examples with diagrams).

NOTE

1. Connect the output of the signal generator to RX2A.

2. Set the signal generator to the first channel test frequency shown in Table 3-12,Table 3-13 or Table 3-14.

3. At the SCP prompt type:

TS A ANT 2

4. At the SCP prompt type:

TS A CHAN #

Where: # is: the channel number asshown in Table 3-12,Table 3-13 or Table 3-14.

5. At the SCP prompt type:

SYNTH 1

CAL BAY @1

The system responds with the following:

0051 0005 28F4

Rx Bay Level Offset = F7

6. At the SCP prompt type:

SYNTH NRM

7. Repeat steps 4 to 6 for each signal generator test frequency in Table 3-12,Table 3-13 or Table 3-14.

8. At the SCP prompt type:

SAVE CAL BAY

The system responds with the following:

Transfer of Calibration Data to Non–Volatile Storage Complete

This transfers the Bay Level Calibration figures to non-volatile TCU memory.

Page 168: Drive test.pdf

GSM-100-423Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 013–50

Installation & Configuration: BSS Optimization

68P02901W43-J

Bay level repeatfor RX3A

Continue the Bay Level Calibration procedure to the third antenna port as follows:

It may not be possible to calibrate all three antennas because there may notbe a DLNB or LNA fitted to every RX port.

NOTE

1. Connect the output of the signal generator to RX3A.

2. Set the signal generator to the first channel test frequency shown in Table 3-12,Table 3-13 or Table 3-14.

3. At the SCP prompt type:

TS A ANT 3

4. At the SCP prompt type:

TS A CHAN #

Where: # is: the channel number asshown in Table 3-12,Table 3-13 or Table 3-14.

5. At the SCP prompt type:

SYNTH 1

CAL BAY @1

The system responds with the following:

0051 0005 28F4

Rx Bay Level Offset = F7

6. At the SCP prompt type:

SYNTH NRM

7. Repeat steps 4 to 6 for each signal generator test frequency listed in Table 3-12,Table 3-13 or Table 3-14.

8. At the SCP prompt type:

SAVE CAL BAY

The system responds with the following:

Transfer of Calibration Data to Non–Volatile Storage Complete

This transfers the Bay Level Calibration figures to non-volatile TCU memory.

Branchcompletion

The BAYDONE command completes the procedure for a branch, by setting a flag toindicate the calibration figures are correct. Proceed as follows:

1. At the SCP prompt type:

BAYDONE @1

The system responds with the following:

Transfer of Calibration Data to Non–Volatile Storage Complete

Page 169: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–51

Branch 2

Repeat the procedures Bay level calibration branch 1 RX1A, Bay level repeat forRX2A and Bay level repeat for RX3A for branch 2 by connector RX2 for TCU900 andconnector B for TCU1800/TCU1900 at the top of the cabinet. Enter @2 instead of @1 inthe cal bay and baydone commands.

Only one branch calibration is required in the special case of an M-Cell2 dualantenna/shared radios (bow-tie). This is because each radio can be split in abow-tie to either antenna, and one measured branch will provide accuracy towithin the GSM specification.

NOTE

Page 170: Drive test.pdf

GSM-100-423Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 013–52

Installation & Configuration: BSS Optimization

68P02901W43-J

Checkingcalibration

The following procedure should be followed to check the bay level calibration has beensuccessful.

1. To verify that the bay level offset values have been stored in EPROM use the readcommand with the required offset table location as an argument, the readcommand locations are shown in Table 3-15 to Table 3-18 below, for example:

R F:153B6 153C5 in the case of a TCU900

TCUs that cover only the GSM range, need only use the 16 locations per antennaper branch shown in Table 3-15 GSM900 frequency offset addresses.

Table 3-15 GSM900 frequency offset addresses

Antenna Locations

RX1A Antenna 1 Branch 1 F: 15386 15395

RX2A Antenna 2 Branch 1 F: 153B6 153C5

RX3A Antenna 3 Branch 1 F: 153E6 153F5

RX1B Antenna 1 Branch 2 F: 15416 15425

RX2B Antenna 2 Branch 2 F: 15446 15455

RX3B Antenna 3 Branch 2 F: 15476 15485

TCUs that cover the EGSM range, store offsets at 22 locations in each memoryarea per antenna per branch. As the read command allows a maximum of 16locations to be read at one time, each memory area has to use the read commandtwice, as shown in Table 3-16 EGSM900 frequency offset addresses.

Table 3-16 EGSM900 frequency offset addresses

Antenna Locations

First read Second read

RX1A Antenna 1 Branch 1 F: 15380 1538F F: 15390 15395

RX2A Antenna 2 Branch 1 F: 153B0 153BF F: 153C0 153C5

RX3A Antenna 3 Branch 1 F: 153E0 153EF F: 153F0 153F5

RX1B Antenna 1 Branch 2 F: 15410 1541F F: 15420 15425

RX2B Antenna 2 Branch 2 F: 15440 1544F F: 15450 15455

RX3B Antenna 3 Branch 2 F: 15470 1547F F: 15480 15485

NOTEThe lowest 6 locations for each antenna apply to Extended GSMonly.

Page 171: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–53

DCS1800/PCS1900 TCUs require the read command to be used three times perantenna per branch, as shown in Table 3-17 and Table 3-18.

Table 3-17 DCS1800 frequency offset addresses

Antenna Locations

First read Second read Third read

RX1A Antenna 1 (A) F: 15380 1538F F: 15390 1539F F: 153A0 153AE

RX2A Antenna 2 (A) F: 153B0 153BF F: 153C0 153CF F: 153D0 153DE

RX3A Antenna 3 (A) F: 153E0 153EF F: 153F0 153FF F: 15400 1540E

RX1B Antenna 1 (B) F: 15410 1541F F: 15420 1542F F: 15430 1543E

RX2B Antenna 2 (B) F: 15440 1544F F: 15450 1545F F: 15460 1546E

RX3B Antenna 3 (B) F: 15470 1547F F: 15480 1548F F: 15490 1549E

Table 3-18 PCS1900 frequency offset addresses

Antenna Locations

First read Second read Third read

RX1A Antenna 1 (A) F: 15380 1538F F: 15390 1539F F: 153A0 153A4

RX2A Antenna 2 (A) F: 153B0 153BF F: 153C0 153CF F: 153D0 153D4

RX3A Antenna 3 (A) F: 153E0 153EF F: 153F0 153FF F: 15400 15404

RX1B Antenna 1 (B) F: 15410 1541F F: 15420 1542F F: 15430 15434

RX2B Antenna 2 (B) F: 15440 1544F F: 15450 1545F F: 15460 15464

RX3B Antenna 3 (B) F: 15470 1547F F: 15480 1548F F: 15490 15494

2. If the bay level calibration is successful, each appropriate table location will containvalid offsets and not the factory default of 80.

The presence of 80 will result in error alarm DRI 218: Invalid TransceiverCalibration Data being reported when the unit is unlocked.However, unused data columns in a site configuration may have value 80; noalarm will be reported as such table locations are inappropriate to the site.

NOTE

The 6-column table has the following form:

(Branch 1) (Branch 2)

Antenna 1 Antenna 2 Antenna 3 Antenna 1 Antenna 2 Antenna 3

Any value other than 80 is a valid offset, from 81 to FF, and 00 to 7F.Only the value 80 requires investigation.

NOTE

3. If the value 80 is present, it indicates that the bay level calibration wasunsuccessful, and that it will need to be repeated after checking the configurationand RF cables.

4. If the radio is suspected to be faulty, see next section Diagnostic check of TCU.

Page 172: Drive test.pdf

GSM-100-423Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 013–54

Installation & Configuration: BSS Optimization

68P02901W43-J

Diagnostic checkof TCU

If it is suspected that a bay level calibration problem is caused by the TCU, then adiagnostic check can be made by performing a bay level calibration on the TCU alone.Proceed as follows:

1. Set the signal generator to –55 dBm plus lead loss.

This will simulate a gain of 10 dB.

2. Connect directly to branch 1 or 2 on the TCU.

Ensure a TCU is switched to SCU mode before connection to RX2. In TCUmode the RX2 inner is at +12 V dc to power the DLNB in M-Cell equipment. Asignal source may be damaged by taking +12 V dc in its RF output.

CAUTION

3. Follow the Bay Level Calibration procedure for each branch, Bay level calibrationbranch 1 RX1A, Bay level repeat for RX2A and Bay level repeat for RX3A.

Ensure the mode switch is returned to the TCU position on completion oftesting.

NOTE

4. Check the diagnostic offset values are within the range 97 (lower) and D3 (upper).

The range 97 – D3 used in step 4 applies to TCU diagnostic checks only, andshould not be compared with the bay level calibration figures.

NOTE

If the values are correct, then the TCU is working correctly and any fault will probably bein the cabinet front end cables, cable connections or LNA or DNLB. If the offsets areoutside this range, the TCU is faulty and should be returned.

Page 173: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU900/1800/1900 bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–55

End procedurerestoring site

After the bay level calibration procedure is completed, restore the site by the following:

1. Remove the signal generator and dummy load and refit the site RF cables.

2. Remove the 9-way to 9-way cable from the CNTRL PRSCR port on the TCU.

3. Connect the 9-way to 9-way cable from the PC serial A port to a MCU TTY port.

4. Press the reset button on the front panel of the TCU.

5. Type:

unlock_device # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

The TCU is now in the unlocked_busy state.

6. Type:

disp_act_alarm # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

Confirm that there is no DRI 218 alarm. If there is a DRI 218 alarm, repeat thewhole Bay Level Calibration procedure

7. Remove the 9-way to 9-way cable from the MCU TTY port.

Page 174: Drive test.pdf

GSM-100-423Calibrating M-Cell2/6 TCU-B bay level offset tables

31st Jul 013–56

Installation & Configuration: BSS Optimization

68P02901W43-J

Calibrating M-Cell2/6 TCU-B bay level offset tables

Introduction

Follow this procedure to calibrate the bay level offset tables to compensate for the lossesor gains due to preselectors and RF cabling from the antenna inputs at the M-Cell2 orM-Cell6 to the TCU-B input.

This procedure applies only to the TCU-B.

The TCU-B can only be used with software release 1.5.1.6 onwards.

NOTE

All units are factory calibrated. This procedure is thus necessary only if one of thefollowing changes occur:

� A TCU-B is replaced.

� RF front end equipment is changed.

� The site is reconfigured.

� High power duplexers are fitted.

The procedures contained in Calibrating M-Cell2/6 TCU-B bay level offsettables are to calibrate a single TCU-B. Repeat the procedures for all TCU-Bsaffected by the changes listed above.

NOTE

Test equipment

The following test equipment is required:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A 50 ohm 50 W dummy load.

� A signal generator (0 to 2 GHz).

� 9-way to 9-way cable.

� 9-way to 25-way RS232 cable.

� 9-way to 25-way EQCP cable.

All test equipment and test leads must be calibrated annually by a recognizedlaboratory. Test equipment and test leads must not be calibrated in the field.

Do not optimize Motorola Cellular Base Stations with test equipment that isbeyond its calibration due date.

Allow test equipment to warm up for 30 minutes before use.

CAUTION

Page 175: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU-B bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–57

Commands

The following table lists the commands for the bay level calibration procedure:

1. The symbol 0 used in the commands in this procedure is a zero. 2. BSS MMI commands may be entered in upper or lower case. TCU-Bemulator or RSS MMI commands must be entered as shown. The firsttransceiver password must be in upper case.

NOTE

BSS MMI command Function

ins_device Initializes the device, bringing it into service

lock_device Prevents the device being used

unlock_device Frees the device for further use

clear_cal_data Clears previously stored calibration data for a specifiedradio unit on a per DRI basis

TCU-B emulator TTYcommand

Function

TEST Places the TCU-B into test mode

BBH ALARM OFF Inhibits the BBH alarm

CAL BAY @1/@2 Calibrates the bay level receive equipment

AIC OUT Disables automatic intermodulation compensation

ACT C Activates the Control Processor

TS A CHAN # Sets all timeslots to channel #

TS A ANT # Sets all timeslots to antenna #

SYNTH 1 Stops synthesizer switching with synthesizer 1permanently on

SYNTH NRM Enables synthesizer switching into normal working

SAVE CAL BAY Transfers Bay Level Calibration stored data in RAM toFLASH EPROM

BAYDONE @N Informs control processor that bay level calibration isvalid for branch N and sets bay level flag

HALT C Stops the Control Processor

WRENB Write enables the FLASH EPROM

WRPTC Write protects the FLASH EPROM

FR BAY Reads cal bay offsets from FLASH EPROM

MR BAY Reads cal bay offsets from RAM

RSS MMI command Function

tcu_clock 0 Stops the TCU-B hunting between fibre A and fibre Band forces the TCU-B to look only at fibre A.

Page 176: Drive test.pdf

GSM-100-423Calibrating M-Cell2/6 TCU-B bay level offset tables

31st Jul 013–58

Installation & Configuration: BSS Optimization

68P02901W43-J

Preparation forbay levelcalibration

The RF path has to be prepared for bay level calibration. The radio has to be reset andlocked, a dummy load connected if no antenna and the alarms disabled. Proceed asfollows:

The two receive cables must be connected to the TCU-B at all times, as thecable connecting the TCU-B RX IN 1 terminal carries signalling information tothe IADU and the cable connecting the TCU-B RX IN 2 terminal carries powerfeed to the DLNB.

NOTE

1. Connect the 9-way to 9-way cable from the PC serial A port to MCU TTY port.

2. At the PC start the terminal emulator program.

3. At the MMI-RAM> prompt type:

ins_device # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

The radio must be brought into service as there is no Flash EPROM storage ofcode at the radio control processor level.If a connection to the BSC is not available a PCMCIA commissioning cardmust be used.

NOTE

Page 177: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU-B bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–59

4. Wait for the radio to finish initializing, then type:

Failure to lock the cell could result in the BCCH transmitting into, and causingdamage to the signal generator. The maintenance engineer could receive RFburns when connecting to the antenna socket.

WARNING

lock_device # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

For ease of calibration, all TCU-Bs in a cell should be initialized and thenlocked. Always lock the transceiver providing the BCCH last as this preventsthe BCCH being switched to alternate transceivers.

NOTE

5. Type:

clear_cal_data # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

The clear_cal_data command clears all calibration data out of the CMdatabase. This is required to overide the preserve calibration feature, ifenabled.

NOTE

6. Connect port COM1 on the PC to the TTY Interface port on the radio using a9-way to 25-way RS232 cable.

7. At the MMI-ROM prompt type:

tcu_clock 0

The system responds with the following:

WARNING: TCU must be reset to get connection to MCU.

Do not reset the TCU at this point. The reset is carried out on completion ofthe bay level calibration procedure, as detailed in section End procedurerestoring site.

NOTE

Page 178: Drive test.pdf

GSM-100-423Calibrating M-Cell2/6 TCU-B bay level offset tables

31st Jul 013–60

Installation & Configuration: BSS Optimization

68P02901W43-J

8. If a tx antenna is not conected to the radio under test, connect a 50 ohm 50 Wdummy load to the Tx port of the radio under test.

Ensure that you have entered the tcu_clock 0 command at the RSSMMI-ROM 0000> prompt, as shown in step 7 before entering call processingto avoid EQCP instability at step 3 of Bay level calibration (next procedure).

CAUTION

9. Remove the 25 pin RSS connector from the radio and replace it with a 9 to 25-wayEQCP cable.

10. At the EQCP prompt type:

.GSMFW

At the EQCP prompt type:

TEST

The system responds with the following:

WARNING: The EQCP is now in test mode.

At the EQCP TEST prompt type:

BBH ALARM OFF

The system responds with the following:

The alarm reporting for the BBH connection is turned off

At the EQCP TEST prompt type:

AIC OUT

The system responds with the following:

The AIC pad for branch 1 is OUT.

The AIC pad for branch 2 is OUT.

Page 179: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU-B bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–61

Bay levelcalibration forbranch 1 RX1A

Proceed as follows:

1. Connect the output of the signal generator to branch 1 of the antenna port at thetop of the M-Cell cabinet.

As the IADU connects the TCU-B receive port to the receive antenna via theDLNB, and there are up to three DLNBs per cabinet, it is important to choosethe correct number in the TS A ANT command.If RX path is via DLNB 0 then antenna is TS A ANT 1.If RX path is via DLNB 1 then antenna is TS A ANT 2.If RX path is via DLNB 2 then antenna is TS A ANT 3.See Examples with diagrams in later pages, for further explanation.

NOTE

The antenna number can also be found by using the disp_equipment # DRI A * 0command. The number next to antenna_select is the antenna number.

2. Set the signal generator to provide –65.0 dBm at the antenna port and to the firstchannel test frequency shown in Table 3-19.

Table 3-19 EGSM900 test frequency table

Channel Frequency (MHz) Channel Frequency (MHz)

979 881.001 43 898.601

987 882.601 51 900.201

995 884.201 59 901.801

1003 885.801 67 903.401

1011 887.401 75 905.001

1019 889.001 83 906.601

03 890.601 91 908.201

11 892.201 99 909.801

19 893.801 107 911.401

27 895.401 115 913.001

35 897.001 123 914.601

3. At the EQCP TEST prompt type:

ACT C

The system responds with the following:

The EQCP is in the Call Processing state

Warning: After locking carrier down, enter TCU_CLOCK 0 command at RSSMMI-ROM 0000> prompt before entering Call Processing to avoid EQCPinstability.

TS A ANT 1

The system responds with the following:

All timeslots are under user control.

Page 180: Drive test.pdf

GSM-100-423Calibrating M-Cell2/6 TCU-B bay level offset tables

31st Jul 013–62

Installation & Configuration: BSS Optimization

68P02901W43-J

4. At the EQCP TEST prompt type:

TS A CHAN #

Where: # is: the channel number of theselected frequency, asshown in Table 3-19.

The system responds with the following:

The data for all timeslots has been changed.

5. At the EQCP TEST prompt type:

SYNTH 1

The system responds with the following:

Synthesizer 1 is enabled.

At the EQCP TEST prompt type:

CAL BAY @1

The system responds with the following:

BAY LEVEL OFFSET = XX

Where XX = The hex value of the bay level reading.

At the EQCP TEST prompt type:

SYNTH NRM

The system responds with the following:

The system is under real time control.

6. Set the signal generator to the next frequency and repeat steps 4 and 5 for all thetest frequencies in Table 3-19.

Page 181: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU-B bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–63

Examples with diagrams

The following examples are intended to clarify how to identify antenna number for eachtransceiver.

Figure 3-6 shows a single M-Cell6 cabinet supporting a 2/2/2 configuration (3 cells with2-carriers per cell).

TCU-B

� � �

IADU

DLNB

������������ �����

� � � � � �

Cell A

� � �

Cell BCell C

TCU-B

TCU-B

TCU-B

TCU-B

TCU-B

Figure 3-6 M-Cell6 2/2/2 configuration (3 cells with 2 carriers per cell).

For cell A the receive antennas are connected to DLNB 0; these antennas are known asantenna 1, so the timeslot command is TS A ANT 1.

For cell B the receive antennas are connected to DLNB 1; these antennas are known asantenna 2, so the timeslot command is TS A ANT 2.

For cell C the receive antennas are connected to DLNB 2; these antennas are known asantenna 3, so the timeslot command is TS A ANT 3.

Page 182: Drive test.pdf

GSM-100-423Calibrating M-Cell2/6 TCU-B bay level offset tables

31st Jul 013–64

Installation & Configuration: BSS Optimization

68P02901W43-J

Figure 3-7 shows two M-Cell6 cabinets supporting a 4/4/4 configuration (3 cells with 4carriers per cell).

� � �

IADU

DLNB

������������ �����

� �

Cell ACell BCell C

TCU-B

TCU-B

TCU-B

TCU-B

TCU-B

TCU-B

��

� � �

� �

TCU-B

TCU-B

TCU-B

TCU-B

TCU-B

TCU-B

� �����

�������� ��������

�� �� ��

Figure 3-7 M-Cell6 4/4/4 configuration (3 cells with 4 carriers per cell).

For cell A the receive antennas are connected to DLNB 0 in cabinet 1; these antennasare known as antenna 1, so the timeslot command is TS A ANT 1.

For cell B the receive antennas are connected to DLNB 2 in cabinet 1 and extended tothe DLNB 0 connector in cabinet 2 (by using the extender module). The cabinet 1transceivers see the antennas as antenna 3 and require the TS A ANT 3 timeslotcommand, and the cabinet 2 transceivers see the antennas as antenna 1 and require theTS A ANT 1 timeslot command.

For cell C the receive antennas are connected to DLNB 2 in cabinet 2; these antennasare known as antenna 3, so the timeslot command is TS A ANT 3.

Page 183: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU-B bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–65

Bay level repeatfor RX2A

Continue the bay level calibration procedure for the second antenna port as follows:

It may not be possible to calibrate all three antennas because there may notbe a DLNB or LNA fitted to every RX port ( see Examples with diagrams).

NOTE

1. Connect the output of the generator to RX2A.

2. Set the signal generator to provide –65.0 dBm at the antenna port and to the firstchannel test frequency shown in Table 3-19.

3. At the EQCP prompt type:

TS A ANT 2

4. At the EQCP prompt type:

TS A CHAN #

Where: # is: the channel number of theselected frequency, asshown in Table 3-19.

5. At the EQCP prompt type:

SYNTH 1

CAL BAY @1

SYNTH NRM

6. Set the signal generator to the next frequency and repeat steps 4 and 5 for all thetest frequencies in Table 3-19.

Page 184: Drive test.pdf

GSM-100-423Calibrating M-Cell2/6 TCU-B bay level offset tables

31st Jul 013–66

Installation & Configuration: BSS Optimization

68P02901W43-J

Bay level repeatfor RX3A

Continue the bay level calibration procedure for the third antenna port as folows:

It may not be possible to calibrate all three antennas because there may notbe a DLNB or LNA fitted to every RX port ( see Examples with diagrams).

NOTE

1. Connect the output of the generator to RX3A.

2. Set the signal generator to provide –65.0 dBm at the antenna port and to the firstchannel test frequency shown in Table 3-19.

3. At the EQCP prompt type:

TS A ANT 3

4. At the EQCP prompt type:

TS A CHAN #

Where: # is: the channel number of theselected frequency, asshown inTable 3-19.

5. At the EQCP prompt type:

SYNTH 1

CAL BAY @1

SYNTH NRM

6. Set the signal generator to the next frequency and repeat steps 4 and 5 for all thetest frequencies in Table 3-19.

Branchcompletion

To complete the bay level procedure for the branch:

1. At the EQCP TEST prompt type:

BAYDONE @1

The system responds with the following:

BAY LEVEL CALIBRATION IS DONE

2. At the EQCP TEST prompt type:

HALT C

The system responds with the following:

The EQCP is in the Active Standby state

3. At the EQCP TEST prompt type:

WRENB

The system responds with the following:

Device OK. Flash is now write enabled.

Page 185: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU-B bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–67

4. At the EQCP TEST prompt type:

SAVE CAL BAY

The system responds with the following:

Save Cal Completed.

5. At the EQCP TEST prompt type:

WRPTC

The system responds with the following:

Flash is now write protected.

Branch 2

Repeat the procedures Bay level calibration branch 1 RX1A, Bay level repeat forRX2A and Bay level repeat for RX3A for branch 2 by connecting to RX1B, RX2B andRX3B alternately. Enter @2 instead of @1 in the cal bay and baydone commands.

Only one branch calibration is required in the special case of an M-Cell2 dualantenna/shared radios. This is because each radio can be split in a bow-tie toeither antenna, and one measured branch will provide accuracy to within theGSM specification.

NOTE

Page 186: Drive test.pdf

GSM-100-423Calibrating M-Cell2/6 TCU-B bay level offset tables

31st Jul 013–68

Installation & Configuration: BSS Optimization

68P02901W43-J

Checkingcalibration

The following procedure should be used to check the bay level calibration has beensuccessful.

1. To verify that the bay level offset values have been stored in EPROM, use the readcommand with the required offset table location as an argument.

FR BAY To verify writes to FLASH

MR BAY To verify writes to RAM

Table 3-20 TCU-B frequency offset addresses

Bay Level Calibration Storage Flash Address

Branch 1 Valid Flag A000700

Branch 2 Valid Flag A000703

Branch 1 Checksum A000706

Branch 2 Checksum A000709

Bay Level Offsets For Branch 1 Antenna 1 A00070C – A00074B

Bay Level Offsets For Branch 1 Antenna 2 A00074E – A00078D

Bay Level Offsets For Branch 1 Antenna 3 A000790 – A0007CF

Bay Level Offsets For Branch 2 Antenna 1 A0007D2 – A000811

Bay Level Offsets For Branch 2 Antenna 2 A000814 – A000859

Bay Level Offsets For Branch 2 Antenna 3 A00085C – A000895

TCU-Bs cover the EGSM range and store offsets in 22 locations in each memoryarea per antenna per branch.

Each location consists of three bytes. For example, the branch 1 valid flagdata is stored in address locations A000700, A000701 and A000702.

NOTE

2. The following is an example of the first line of the FLASH BAY LEVEL OFFSETtable when using the FR BAY command, and a description of the fields displayed:

Address BR1 BR2

flag

BR1

Cksum

BR2

Cksum

BL

offset

BL

offset

BL

offset

BL

offset

A000700 000001 000001 000595 000595 000060 000002 000005 000002

The remaining rows of the table contain BL offset values

Page 187: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU-B bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–69

3. If the bay level calibration is successful, each appropriate table location will containvalid offsets, and not the factory default of 80.

The presence of 80 will result in error alarm DRI 218: Invalid TransceiverCalibration Data being reported when the unit is unlocked.However, unused data columns in a site configuration may have value 80; noalarm will be reported as such table locations are inappropriate to the site.

NOTE

4. If the value 80 is present it indicates an unsuccessful calibration procedure or anuncalibrated antenna port. The calibration procedure will have to be repeated afterchecking the configuration and RF cables.

Any value other than 80 is a valid offset, from 81 to FF, and 00 to 7F.Only the value 80 requires investigation.

NOTE

5. If the radio is suspected faulty, see section TCU-B diagnostic check.

Page 188: Drive test.pdf

GSM-100-423Calibrating M-Cell2/6 TCU-B bay level offset tables

31st Jul 013–70

Installation & Configuration: BSS Optimization

68P02901W43-J

End procedurerestoring site

After the bay level calibration procedure is completed, restore the site by the following:

1. Remove the signal generator and dummy load and refit the site RF cables.

2. Remove the 9-way to 25-way cable from the TTY INTERFACE port on the TCU-B.

3. Connect the 9-way to 9-way cable from the PC serial A port to a MCU TTY port.

The following step must be carried out to initialize software and so ensure theTCU-B is correctly brought into service.

CAUTION

4. Press the reset button on the front panel of the TCU-B.

5. Type:

unlock_device # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

The TCU-B is now in the unlocked_busy state.

6. Type:

disp_act_alarm # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

Confirm that there is no DRI 218 alarm. If there is a DRI 218 alarm, redo thewhole Bay Level Calibration procedure

7. Remove the 9-way to 9-way cable from the MCU TTY port.

Page 189: Drive test.pdf

GSM-100-423 Calibrating M-Cell2/6 TCU-B bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–71

TCU-Bdiagnostic check

The RX2 inner of the TCU-B is at +12 V dc and is used to power the DLNB inM-Cell equipment. Failure to follow this procedure accurately could result indamage to the signal generator.

CAUTION

If it is suspected that a bay level calibration problem is caused by the TCU-B, then adiagnostic check can be made by performing a bay level calibration on the TCU-B alone.Proceed as follows:

1. Use a signal generator that:

Can withstand +25 V dc applied to its output.

or

Has a dc block between the generator output and transceiver RX2 input.

2. Set the signal generator to –55 dBm plus lead loss.

This will simulate a gain of 10 dB.

3. Connect directly to branch 1 or 2 on the TCU-B.

4. Follow the Bay Level Calibration procedure for each branch, Bay level calibrationbranch 1 RX1A, Bay level repeat for RX2A and Bay level repeat for RX3A.

5. Check the diagnosic offset values are within the range 97 (lower) and D3 (upper).

The range 97 – D3 used in step 5 applies to TCU-B diagnostic checks only,and should not be compared with the bay level calibration figures.

NOTE

If the values are correct, then the TCU-B is working correctly and any fault will probablybe in the cabinet front end cables, cable connections or LNA or DNLB. If the offsets areoutside this range, the TCU-B is faulty and should be returned.

Page 190: Drive test.pdf

GSM-100-423Checking the database equipage

31st Jul 013–72

Installation & Configuration: BSS Optimization

68P02901W43-J

Checking the database equipage

Introduction

The database equipage checks determine what devices and functions have beenequipped in the BSC/M-Cell2/M-Cell6 database.

There are two stages to the procedure:

� Preparing for the test.

� Checking the database equipage.

Commands

The following commands are used during the procedure:

The symbol 0 used in the commands in this procedure is a zero.

NOTE

� disp_site

� disp_equipment

Test equipment

The following test equipment is required during the procedure:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A 9-way to 9-way cable (a diagram of this cable is provided in the Testequipment, leads and plugs section).

All test equipment and test leads must be calibrated annually by a recognizedlaboratory. Test equipment and test leads must not be calibrated in the field.

Do not optimize Motorola Cellular Base Stations with test equipment that isbeyond its calibration due date.

Allow test equipment to warm up for 30 minutes before use.

CAUTION

Page 191: Drive test.pdf

GSM-100-423 Checking the database equipage

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–73

Preparing for thetest

To prepare for the database equipage checks:

1. Ensure that the site is in call processing mode.

2. Connect the serial A port on the PC to a MCU TTY port using the 9-way to 9-waycable.

3. Start the terminal emulator program at the PC.

Checking thedatabaseequipage

To check the database for devices and functions:

1. At the CUST MMI prompt type:

disp_site

The following message (from the MCU) is displayed:

current site is #

where # = the number of the site logged into.

2. At the CUST MMI prompt type:

disp_equipment #

where # = the number of the site logged into.

A complete list of the equipment and functions in the database is displayed, forexample:

GPROC 0 0 0

GPROC 1 0 0

BSP 0 0 0

DRI 0 0 0

DRI 0 1 0

MSI 0 0 0

MMS 0 0 0

MMS 0 1 0

GCLK 0 0 0

KSW 0 0 0

CAB 0 0 0

SITE 0 0 0

RTF 0 0 0

RTF 0 1 0

Page 192: Drive test.pdf

GSM-100-423Checking the database equipage

31st Jul 013–74

Installation & Configuration: BSS Optimization

68P02901W43-J

3. Check the MSI configuration by entering:

disp_equipment # MSI 1 0 0

Where: # = site number.

A message similar to the following example is displayed:

MSI identifier 1

Cage number 0

Slot number 16

MSI type 0 (0 = MSI)

Page 193: Drive test.pdf

GSM-100-423 Checking the 2.048 Mbit/s link

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–75

Checking the 2.048 Mbit/s link

Introduction

The 2.048 Mbit/s link checks verify the integrity of the 2.048 Mbit/s links back to theBSC/MSC.

There are two stages to the procedure:

� Preparing for the test.

� Checking the 2.048 Mbit/s link.

Commands

The following command is used to carry out the procedure:

� state

Test equipment

The 2.048 Mbit/s link checks require the following test equipment:

� An IBM compatible personal computer (PC).

� Terminal emulator software.

� A 9-way to 9-way cable (a diagram of this cable is provided in the Testequipment, leads and plugs section).

All test equipment and test leads must be calibrated annually by a recognizedlaboratory. Test equipment and test leads must not be calibrated in the field.

Do not optimize Motorola Cellular Base Stations with test equipment that isbeyond its calibration due date.

Allow test equipment to warm up for 30 minutes before use.

CAUTION

Preparing for thetest

To set up the equipment to check the 2.048 Mbit/s links:

1. Make sure the site is in call processing mode.

2. Connect the serial A port on the PC to an MCU TTY port using the 9-way to 9-waycable.

3. Start the terminal emulator program at the PC.

The system and the hardware are set up to check the 2.048 Mbit/s links.

Page 194: Drive test.pdf

GSM-100-423Checking the 2.048 Mbit/s link

31st Jul 013–76

Installation & Configuration: BSS Optimization

68P02901W43-J

Checking the2.048 Mbit/s link

To check the 2.048 Mbit/s link:

1. Contact the end point of the 2.048 Mbit/s you want to test, BSC/MSC, and requesta loopback on the relevant Digital Distribution Frame (DDF) port.

Repeat for all NIUs and 2 Mbit/s links.� If the 2.048 Mbit/s link has not been installed, perform this test at the

DDF in the site.

� If No DDF is fitted, do this test at the top of the cabinet

NOTE

2. Ascertain the site number, equipment list and MMS configuration.

3. At the CUST MMI prompt type:

state # MMS * * *

Where: is:

# location

* dev/func id

* dev/func id

* dev/func id

For example, state 1 MMS 1 0 0

The system displays the following message from the MCU:

STATUS INFORMATION

Device: MMS 1 0 0

Administration state : Unlocked

Operational state : Busy

Reason code is : 0

Time of last transition : Wed Jan 5 01:43:13 1994

Related Device/Function:

Assigned to:

END OF STATUS REPORT

� If this display shows Unlocked and Busy, then the NIU port (MMS), T43, cabling andthe 2.048 Mbit/s link are all good.

� If the loop is removed and the command re-entered, the result will be Unlocked andDisabled.

The NIU requires a minimum of 20 seconds after receiving these commandsbefore it registers a change in status.If the display continues to show Unlocked and Busy, this may be because:1. The wrong connection is looped, if the cabling is direct.2. The MMS may be terminated by a device generating a 2.048 Mbit/s link.

NOTE

Page 195: Drive test.pdf

GSM-100-423 Checking serial connections and alarms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–77

Checking serial connections and alarms

Introduction

The alarm tests check the serial connections and alarm status of M-Cell equipment.

There are two stages to the procedure:

� Preparing for the test.

� Testing the PIX connections using the database external alarm system (EAS).

Test equipment

The serial and alarm tests require the following test equipment:

� An IBM compatible personal computer (PC).

� Terminal emulator software.

� A 9-way to 9-way cable (a diagram of this cable is provided in the Testequipment, leads and plugs section.

All test equipment and test leads must be calibrated annually by a recognizedlaboratory. Test equipment and test leads must not be calibrated in the field.

Do not optimize Motorola Cellular Base Stations with test equipment that isbeyond its calibration due date.

Allow test equipment to warm up for 30 minutes before use.

CAUTION

Page 196: Drive test.pdf

GSM-100-423Checking serial connections and alarms

31st Jul 013–78

Installation & Configuration: BSS Optimization

68P02901W43-J

Commands

The following commands are used to test the PIX connections:

� enable_alarm

Preparing for thetest

To prepare for the test:

1. Make sure the software download has been completed.

2. Connect the serial A port on the PC to the master MCU using the 9 to 25 waycable.

3. Start the terminal emulator program at the PC.The system displays the CUST MMI prompt.

4. Enter the password at the CUST MMI prompt.The equipment is set up for the test.

Testing the PIXconnections

The PIX connections may be tested at a live site using the following test procedure:

1. Apply suitable test plug to PIX input on cabinet top panel.

2. Enter at the CUST MMI prompt on the PC:enable_alarm #

where:# = site number.

The system displays all 8 alarms.

The display depends on the database settings, that is, whether a faultcondition is indicated by a closed loop or an open loop.

NOTE

3. Remove the test plug.

The system clears the alarm display.

Page 197: Drive test.pdf

GSM-100-423 Calibrating the MCU (GCLK)

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–79

Calibrating the MCU (GCLK)

Introduction

This procedure explains how to calibrate the Oven Controlled Crystal Oscillator (OCXO)in the GCLK on the MCU in the M-Cell2 and M-Cell6 product at a BSS site. Thecalibration procedure is not applicable to the MCU-micro product.

When to calibratethe GCLK

The calibration procedure is to be used on the following occasions:

� When more than one frame slip per hour is observed at the OMC-R (typically morethan 34/day).

� When ever calibration is required. (Display the active alarms for a site - ifcalibration is required, there will be an alarm stating this).

This procedure should only be carried out by by fully trained, GSM qualifiedpersonnel. Under NO circumstances should this procedure be undertaken,unless all the correct test equipment is readily available.

CAUTION

� The command gclk_cal_mode used in this procedure should only beexecuted at the BTS where the calibration is being carried out.

� No call processing can occur involving the MCU during calibration mode.

� Allow a period of 30 minutes to elapse after switching the OCXO poweron, to give sufficient time for the unit to reach operating temperature.

NOTE

Test equipmentrequired

The test equipment required to carry out the GCLK calibration is as follows:

� An IBM compatible personal computer (PC).

� A 9 to 9 way TTY cable.

� Caesium or Rubidium clock standard with 1 or 10 MHz output frequency.

� Universal counter with external reference, for example, the Hewlett Packard modelHP5385A or equivalent.

� BNC to 3–way MCU test lead, part number 3086144E01

Page 198: Drive test.pdf

GSM-100-423Calibrating the MCU (GCLK)

31st Jul 013–80

Installation & Configuration: BSS Optimization

68P02901W43-J

Setting up forcalibration

To prepare the MCU (GCLK) for calibration, carry out the following steps:

1. Connect the serial A port of the PC to the MCU TTY port using the 9-way to 9-wayTTY cable.

2. Start the terminal emulator program.

3. Connect the output from the 10 MHz standard to the reference input of thefrequency counter, select external standard.

4. Set the frequency gate time to 10 seconds and the display to 10 significant digits.

5. Connect the test cable extracting the 8 kHz output signal from the front of the MCUto the input of the counter.

Pin 3 – Earth (top pin)

Pin 1 – 8 kHz signal (bottom pin)

Figure 3-8 illustrates how the equipment is to be connected to the unit under calibration.

8000.000000

MCU

MCU TTY

8 kHz Out

UNIVERSAL COUNTER

10 MHz REFERENCE

Figure 3-8 GCLK calibration - test connections

Page 199: Drive test.pdf

GSM-100-423 Calibrating the MCU (GCLK)

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 3–81

Test Procedure

This procedure should only be carried out by by fully trained, GSM qualifiedpersonnel. Under NO circumstances should this procedure be undertaken,unless all the correct test equipment is readily available.

CAUTION

� No call processing can occur involving the MCU during calibration mode.

� The command gclk_cal_mode used in this procedure should only beexecuted at the BTS where the calibration is being carried out.

NOTE

1. At the MMI–RAM 1015 prompt type:

gclk_cal_mode

The gclk_cal_mode command is used to tell the sync function and MCUsoftware that a calibration is to be performed.

The gclk_cal_mode command can only be executed at M-Cell sites, outside ofsysgen mode. The command is NOT allowed on a Master MCU when aStandby MCU is available.

NOTE

The system will prompt for the following verification when the command isexecuted:

Site <Local site number> starting GCLK CALIBRATION MODE. If this is asingle MCU site, the site will be down until calibration is complete.

Are you sure (y=yes, n=no)? y

If the user replies with anything other than y, the command is aborted. If theuser replies y, the MCU will begin calibration mode.

2. The user will then be prompted with the following:

Frequency Counter Connected, Enter y when ready, or a to abort test.

If the user replies with anything other than y, the command is aborted, and thecalibration mode exited.

Allow a period of 30 minutes to elapse after switching the OCXO power on, togive sufficient time for the unit to reach operating temperature.

NOTE

3. Adjust the OCXO control voltage using the +/– and 0 to 3 keys until the measuredfrequency is exactly 8000.000000 Hz on the frequency counter.

The values entered here, change the frequency by varying degrees. For example:

– +0 will increase the output by a small amount.

– +1 will increase the frequency by approximately 10 times.

– +2 will increase the frequency by approximately 100 times.

– +3 will increase the frequency by approximately 1000 times.

The above values are not exact as every OCXO has a different gain, this methodgives sufficient control to pull-in the frequency within a short time.

Page 200: Drive test.pdf

GSM-100-423Calibrating the MCU (GCLK)

31st Jul 013–82

Installation & Configuration: BSS Optimization

68P02901W43-J

4. A typical sequence of numbers may look as follows:

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >–3 (7.99999898)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >+3 (8.00000020)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >–0 (8.00000019- 8.00000020)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >–2 (8.00000004)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >+2 (8.00000020)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >–1 (8.00000018)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >–2 (8.00000002-8.00000003)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >–1(8.000000--)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >+0 (8.000000-)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >+0 (8.00000000)

5. Save the results by typing s that is:

Enter a to abort, s to save, +(0..3) to inc, –(0..3) to dec >s CAL OFFSET is 23654 DAC bits.

After calibration, the MCU applies a set of voltages to the DAC that feeds theOCXO, this requires the user to input the corresponding output frequency. This isbecause the OCXO frequency V voltage characteristic is not linear, and by takingreadings across a range of DAC voltages, the MCU can make adjustments fornon-linearity.

6. To calibrate the OCXO gain, enter the measured frequency value from the counterafter the value has settled in response to the MMI prompts.

When taking frequency measurements, ensure that a full gate period elapsesfrom the time the new value is set to reading the counter. This wait may be upto seconds depending on the counter.

NOTE

A typical sequence of frequency measurements may be presented as follows:

Dac set to 1.0 volts, Enter Freq Value or a to abort > 7999.99853

Dac set to 2.0 volts, Enter Freq Value or a to abort > 7999.99915

Dac set to 3.0 volts, Enter Freq Value or a to abort > 7999.99969

Dac set to 4.0 volts, Enter Freq Value or a to abort > 8000.00020

Dac set to 5.0 volts, Enter Freq Value or a to abort > 8000.00070

Dac set to 6.0 volts, Enter Freq Value or a to abort > 8000.00122

Dac set to 7.0 volts, Enter Freq Value or a to abort > 8000.00176

Calibration Gain 3.865560e-01

SYNC>

This completes the calibration procedure. The MCU will now automatically reset.

If the calibration is unsucessful the following message will be displayed:

Computed Gain > Max WILL RETRY GAIN

Repeat step 6 to calibrate the OCXO. If the unit fails 3 attempts to calibrate, the unitmust be replaced.

Page 201: Drive test.pdf

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J i

Chapter 4

Horizonmacro optimization

Page 202: Drive test.pdf

GSM-100-423

31st Jul 01ii

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 203: Drive test.pdf

GSM-100-423

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J iii

Chapter 4Horizonmacro optimization i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Horizonmacro optimization overview 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to optimization 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Test equipment, leads and plugs 4–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 4–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 4–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test lead calibration 4–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test leads 4–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CTU VSWR and cellsite offset information 4–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSWR and cellsite offsite information 4–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test stages 4–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 4–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 4–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test all antennas 4–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for test 4–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Normal CTU VSWR and cellsite power calibration 4–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Normal VSWR information 4–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSWR Method 1 (automatic) 4–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSWR Method 2 (manual) 4–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibrating CTU transmit output power 4–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CTU VSWR and cellsite power calibration for CCBs 4–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . CCB calibration information 4–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibration procedures 4–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Restoring the site 4–23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating Horizonmacro CTU bay level offset tables 4–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 4–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 4–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 4–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparation for bay level calibration 4–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level calibration for branch 1 RX0A 4–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for RX1A 4–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for RX2A 4–33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bay level repeat for Rx1800 0A on 900 (Dualband) SURF 4–34. . . . . . . . . . . . . . . . . . Branch completion 4–35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Branch 2 4–35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking calibration 4–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . End procedure restoring site 4–38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking the database equipage 4–39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 4–39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 4–39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 4–39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for the test 4–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking the database equipage 4–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking the 2.048 Mbit/s link 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for the test 4–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking the 2.048 Mbit/s link 4–43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 204: Drive test.pdf

GSM-100-423

31st Jul 01iv

Installation & Configuration: BSS Optimization

68P02901W43-J

Checking serial connections and alarms 4–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 4–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 4–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 4–45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for the test 4–45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Testing the PIX connections 4–45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating the MCUF (GCLK) 4–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 4–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . When to calibrate the GCLK 4–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment required 4–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setting up for calibration 4–47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Procedure 4–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 205: Drive test.pdf

GSM-100-423 Horizonmacro optimization overview

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–1

Horizonmacro optimization overview

Introduction tooptimization

This chapter provides information required for the hardware optimization of Horizonmacroequipment.

Before starting the hardware optimization, the equipment must be commissioned.

Hardware optimization of Horizonmacro equipment consists of the following procedures:

� Checking the antenna VSWR and calibrating the transmit output power.

� Calibrating the bay level offset tables.

� Checking the database equipage.

� Checking the 2.048 Mbit link.

� Checking the serial connections, power supply module version and alarm status.

The Horizonmacro and all associated site equipment must be completelyoptimized before integrating the base site for operation.

CAUTION

Page 206: Drive test.pdf

GSM-100-423Test equipment, leads and plugs

31st Jul 014–2

Installation & Configuration: BSS Optimization

68P02901W43-J

Test equipment, leads and plugs

Introduction

This section provides information on the test equipment required for the HardwareOptimization procedures in this chapter. The GSM Cellullar Field Installation Tool Kitslisted in Chapter 1 may also be necessary.

Ensure that all test equipment associated with commissioning of MotorolaCellular Base Stations is within calibration date.

CAUTION

Test equipment

Table 4-1 provides details of the test equipment required to perform the HardwareOptimization procedures provided in this chapter:

Table 4-1 Hardware optimization equipment

Quantity Description Comments

1 PC To have a serial comms port forsending or configuring messagesto the BSC and/or BTS

1 Signal generator Up to 2GHz

1 Commercial terminal emulatorsoftware

PC PLUS or similar software

1 Digital multimeter Hewlett Packard E2378A orequivalent

1 30dB attenuator 100 W minimum

1 RF adaptor kit RTLXQ98088 or equivalent

2 N to 7/16 inch adaptor

1 N to N barrel adaptor

1 RF wattmeter with 5W, 10 W 25 Wand 50 W elements

Bird model 43 or equivalent

1 2 metres of N to N male coaxialcable

Must be calibrated

1 4 metres of N to N male coaxialcable

Must be calibrated

2 9-way to 9-way cable Compatible with PC to TTY port onCTU/MCUF

1 9-way to 9-way cable (CTU only) EQCP/RSS cable, connecting PCto CTU TTY port

Page 207: Drive test.pdf

GSM-100-423 Test equipment, leads and plugs

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–3

Test leadcalibration

To minimize variations in test results, ensure that all appropriate test leads used inHardware Optimization procedures are calibrated.

A recognized laboratory must calibrate all test equipment and associated testleads annually. Do not calibrate test equipment or test leads in the field.

CAUTION

Test leads

Connections for a TTY test lead

Figure 4-1 shows the connections for the test lead used in the hardware optimizationprocedures:

TO PC COMMUNICATIONS PORT TO CTU CONNECTOR

PIN NUMBERPIN NUMBER

4 m LONG SCREENED CABLE

2

3

4

5

6

7

8

2

3

5

9 WAY D-TYPE F 9 WAY D-TYPE M

Figure 4-1 9-way to 9-way cable connections

Page 208: Drive test.pdf

GSM-100-423Test equipment, leads and plugs

31st Jul 014–4

Installation & Configuration: BSS Optimization

68P02901W43-J

Connections for a CTU test lead

Figure 4-2 shows the possible connections for the test lead (3086299N01: EQCP/RSScable, CTU) used in the CTU Hardware Optimization procedures:

EQCP PINS

PIN NUMBER

4m SCREENED CABLE

9-WAY D-TYPE

F CONNECTOR

(TO PC COMMUNICATIONS

PORT)

5

2

3

9

2

3

5

8

SELECTOR

SWITCH

RSS PINS

PIN NUMBER

9-WAY D-TYPE

M CONNECTOR

(TO CTU TTY PORT)

Figure 4-2 9-way to 9-way cable connections

TCU-B test lead 3086240N01 may alternatively be used instead of CTU testlead 3086299N01, but adapter (58C86540N01) must then be used to attachthe 25-way cable connector to the 9-way CTU port.

NOTE

Page 209: Drive test.pdf

GSM-100-423 Test equipment, leads and plugs

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–5

Connections for a PIX test lead

Table 4-2 shows pin out details to make a PIX test lead:

Table 4-2 Test plug pin connections

From PIN To PIN

1 20

2 21

3 22

4 23

5 24

6 25

7 26

8 27

9 & 10 not used N/A

11 29

When making the PIX test lead:Normally open (N/O) PIX inputs should be connected through a 50 ohmresistor.Normally closed (N/C) PIX inputs should be connected through a 50 kohmresistor.Details of N/O and N/C site inputs can be found in the equip_eas file in the sitecommissioning database

NOTE

Page 210: Drive test.pdf

GSM-100-423CTU VSWR and cellsite offset information

31st Jul 014–6

Installation & Configuration: BSS Optimization

68P02901W43-J

CTU VSWR and cellsite offset information

VSWR andcellsite offsiteinformation

The objective of the VSWR check and output power calibration procedure is to ensurethat antenna feeders and connectors are properly terminated and then set thepre-defined maximum transmitter output power at the top of the cabinet.

When a radio is manufactured, it undergoes comprehensive transmit and receivecalibration procedures. These procedures aim to produce a radio that exhibits a flatfrequency response over the GSM band. In the case of the transmitter, this is performedby distributing the channels over three detector groups (the detector being the devicethat maintains a steady output power level).

In the field, the procedure for setting the transmit output power involves using a set ofcommands called Cell Site Power (CSPWR). During CSPWR the user can trim thecabinet output power to account for any abnormalities that may occur between the CTUand the top of the cabinet. The offset is effectively subtracted from the requested powerlevel, such that for whatever channel is selected, a steady output is maintained at the topof the cabinet.

There are two sets of procedures available for checking VSWR and cell site power:

� Normal CTU VSWR and cellsite power calibration.

� CTU VSWR and cellsite power calibration for CCBs.

The Preparing for test procedure at the end of this section should be completed beforeattempting the VSWR and cellsite power calibration procedures.

Page 211: Drive test.pdf

GSM-100-423 CTU VSWR and cellsite offset information

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–7

Test stages

There are four stages to the procedure:

� Preparing for test.

� Checking the VSWR.

� Calibrating the transmit output power.

� Restoring the site.

Test equipment

The following test equipment is required during the VSWR and output power calibrationprocedure:

� An IBM compatible personal computer (PC).

� Terminal emulator software.

� A Bird model 43P (Thru-line) wattmeter, or equivalent, with 5 W and 50 WElements.

� A 9-way to 9-way cable (a diagram of this cable is provided in the Testequipment, leads and plugs section).

� A 9-way to 9-way EQCP/RSS cable.

� A 7/16 N-type adaptor.

� A 50 ohm/100 W power attenuator.

All test equipment and test leads must be calibrated annually by a recognizedlaboratory. Test equipment and test leads must not be calibrated in the field.

Do not optimize Motorola Cellular Base Stations with test equipment that isbeyond its calibration due date.

Allow test equipment to warm up for 30 minutes before use.

CAUTION

Page 212: Drive test.pdf

GSM-100-423CTU VSWR and cellsite offset information

31st Jul 014–8

Installation & Configuration: BSS Optimization

68P02901W43-J

CommandsThe following table lists the commands for the VSWR and output power calibrationprocedure:

1. The symbol 0 used in the commands in this procedure is a zero. 2. BSS MMI commands may be entered in upper or lower case. All othercommands must be entered in the case shown.

NOTE

BSS MMI command Function

ins_device Initializes the device, bringing it into service.

lock_device Prevents the device being used.

unlock_device Frees the device for further use.

clear_cal_data Clears previously stored calibration data for a specified radiounit on a per DRI basis

CTU command Function

tcu_clock 0 Stops the CTU hunting between link A and link B and forcesthe CTU to look only at link A.

CTU emulatorcommand

Function

TEST Places the CTU in test mode.

ACT C Activates the Control Processor.

BBH ALARM OFF Inhibits the BBH alarm.

CSPWR Cell Site Power. Allows the Cell Site power to be set to themaximum output power.

HALT C Stops the Control Processor.

TS <T> CHAN XXX Timeslot set up.

Where: <T> = Timeslot No or A = ALL XXX = ARFCN to tune Timeslot to.

TS <T> TXPWR <nn> Timeslot set up.

Where: <T> = Timeslot No or A = ALL nn = Attenuation level from max.

U Used with the CSPWR command to increase the power levelby a factor of 0.2dB.

D Used with the CSPWR command to decrease the power levelby a factor of 0.2dB.

ESC (key)or CTRL-Yor CTRL-C

Used to exit the CSPWR command and store the resultingoffset to RAM.

WRENB Write enables the FLASH EPROM.

SAVE CAL TX Used to store the resulting offset in FLASH EPROM.

WRPTC Write protects the FLASH EPROM.

FR TX Reads Tx offset for FLASH EPROM.

MR TX Reads Tx offset for RAM.

SNDCMB Emulates Combiner Control Processor messaging

Page 213: Drive test.pdf

GSM-100-423 CTU VSWR and cellsite offset information

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–9

Test all antennas

VSWR checks ensure correct antenna matching and can prove the serviceability of theantenna. Repeat the procedures for all antennas on site, including receive antennas.

Preparing for test

To prepare for the VSWR check and output power calibration:

1. If CCBs are fitted, set all DIP switches on the CCB control board to zero (thisassists programming and checksum calculations).

2. Connect the 9-way to 9-way cable from the PC serial A port to MCU TTY port.

3. At the PC start the terminal emulator program.

4. Change to Level 3 and at the MMI-RAM> prompt type:

ins_device # dri A *

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

The radio must be brought into service as there is no Flash EPROM storage ofcode at the radio control processor level.If a connection to the BSC is not available a PCMCIA commissioning cardmust be used.

NOTE

5. Wait for the radio to finish initializing, then type

lock_device # dri A *

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

An RF hazard exists during DRI transmissions. As one antenna may beconnected to a number of DRIs, the lock command must be repeated for allDRIs on the antenna being worked on before connecting the wattmeter.

WARNING

For ease of calibration, all CTUs in a cell should be initialized and then locked.Always lock the transceiver providing the BCCH last, as this prevents theBCCH being switched to alternate transceivers.

NOTE

Page 214: Drive test.pdf

GSM-100-423CTU VSWR and cellsite offset information

31st Jul 014–10

Installation & Configuration: BSS Optimization

68P02901W43-J

6. Type:

clear_cal_data # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

The clear_cal_data command clears all calibration data out of the CMdatabase. This is required to overide the preserve calibration feature, ifenabled.

NOTE

7. Connect port COM1 on the PC to the TTY Interface port on the transceiver usingthe 9-way to 9-way RSS cable.

8. At the MMI-ROM prompt type:

tcu_clock 0

The system will respond with the following:

WARNING: TCU must be reset to get connection to MCU.

Do not reset the CTU at this point. The reset is carried out on completion ofthe CTU VSWR and cellsite power calibration procedure, as detailed in section Restoring the site.

NOTE

9. Remove the 9-way to 9-way RSS cable from the transceiver and replace it with the9-way to 9-way EQCP cable.

Page 215: Drive test.pdf

GSM-100-423 Normal CTU VSWR and cellsite power calibration

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–11

Normal CTU VSWR and cellsite power calibration

Normal VSWRinformation

Two methods available for normal VSWR checking are described in this section; oneautomatic and one manual. The reason for the two methods is as follows:

VSWR Method 1 (automatic)

When typing the CSPWR command at the EQCP prompt, it effectively executes a smallscript containing the following commands:

TS A CHAN 31 Set all timeslots to channel 31(CTU900)

TS A CHAN 700 Set all timeslots to channel 700(CTU1800)

TS A TXP 00 Set all timeslots to full power

MDLTR UC Turn the modulation off

Prior to executing the CSPWR command, it assumes that the synthesizers are in normalmode (not locked), as is the case after the unit is powered up for the first time.

VSWR Method 2 (manual)

To allow a specific channel to be specified (instead of defaulting to channel 31 or 700)additional commands must be entered, rather than using the CSPWR command. Onecommand sets the appropriate channel and the other switches the CTU output power onand off.

Page 216: Drive test.pdf

GSM-100-423Normal CTU VSWR and cellsite power calibration

31st Jul 014–12

Installation & Configuration: BSS Optimization

68P02901W43-J

VSWR Method 1(automatic)

The first method for normal VSWR checking uses automatic channel selection. TheCSPWR command automatically selects a midpoint channel number (channel 31 or 700),but if required a manual process can be performed as shown in method 2.

Checking the VSWR

To check the VSWR of the transmission path:

1. Disconnect antenna. Connect a dummy load to the meter and ensure the meter isfitted with a 50 W element. Connect the meter to the TX output.

2. At the EQCP prompt type:

.GSMFWTESTACT CBBH ALARM OFFCSPWR

3. Monitor and record the wattmeter reading (the forward output power).

4. Press ESC or CTRL-Y or CTRL-C

5. Replace the 50 W element in the wattmeter with a 5 W element and reverse thedirection on the power meter.

6. Remove the dummy load and connect the power meter through to the antenna.

Full power is transmitted during VSWR checks. Ensure all personnel areclear of the antenna. Do not carry out this check unless antenna installation iscomplete.

WARNING

To reduce the possibility of interference with other users, minimize the timethat the radio is powered up.

CAUTION

7. At the EQCP TEST prompt type:

CSPWR

8. Monitor and record the reverse power reading indicated on the power meter.

Readings should show reflected (reverse) power of no more than 5% of theforward power at the point of measurement, but less than 1W.If the ratio of the forward and reverse readings is unacceptable, suspect animproper termination of the antenna feeder and connector.

NOTE

9. Press ESC or CTRL-Y or CTRL-C

10. At the EQCP TEST prompt type:

HALT C

11. Remove the power meter and reconnect antenna.

Page 217: Drive test.pdf

GSM-100-423 Normal CTU VSWR and cellsite power calibration

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–13

VSWR Method 2(manual)

The second method for normal VSWR checking allows the manual selection of achannel.

Checking the VSWR (FWD power check)To check the VSWR of the transmission path through to the antenna:

1. Disconnect antenna. Connect a dummy load to the meter and ensure the meter isfitted with a 50 W element. Connect the meter to the TX output.

2. At the EQCP prompt type:

.GSMFWTESTACT CBBH ALARM OFF

3. Enter the following command:

TS A CHAN nnn

Where: is:

A all timeslots (TS).

nnn the specified channelnumber.

4. To switch the power on, enter the following command:

TS A TXPWR 00

Where: is:

A all timeslots (TS).

00 maximum output power

5. Monitor and record the wattmeter reading (the forward output power).

6. To switch the power off, enter the following command:

TS A TXPWR FF

Where: is:

A all timeslots (TS).

FF zero output power

Checking the VSWR (reverse power check)1. Replace the 50 W element in the wattmeter with a 5 W element and reverse the

direction on the power meter.

2. Remove the dummy load and connect the power meter through to the antenna.

Full power is transmitted during VSWR checks. Ensure all personnel are clearof the antenna. Do not carry out this check unless antenna installation iscomplete.

WARNING

To reduce the possibility of interference with other users, minimize the timethat the radio is powered up.

CAUTION

Page 218: Drive test.pdf

GSM-100-423Normal CTU VSWR and cellsite power calibration

31st Jul 014–14

Installation & Configuration: BSS Optimization

68P02901W43-J

3. To switch the power on, enter:

TS A TXPWR 00

4. Monitor and record the reverse power reading indicated on the power meter.

Readings should show reflected (reverse) power of no more than 5% of theforward power at the point of measurement, but less than 1 W.If the ratio of the forward and reverse readings is unacceptable, suspect animproper termination of the antenna feeder and connector.

NOTE

5. To switch the power off, enter:

TS A TXPWR FF

6. Repeat the forward and reverse power checks for the required number ofchannels.

7. At the EQCP TEST prompt type:

HALT C

8. Remove the power meter and reconnect the antenna.

Calibrating CTUtransmit outputpower

Calibration is not required unless the desired configuration is different to theshipped configuration.

NOTE

To calibrate CTU transmit output power:

1. Disconnect antenna. Connect a dummy load to the meter and ensure the meter isfitted with a 50 W element. Connect the meter to the TX output.

2. At the EQCP prompt type:

.GSMFWTESTACT CBBH ALARM OFF

3. At the EQCP prompt type:

CSPWR

The following message is displayed:

Hit U or D until desired max is measured then

hit ESC, CTRL-Y or CTRL-C

Page 219: Drive test.pdf

GSM-100-423 Normal CTU VSWR and cellsite power calibration

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–15

4. Enter U or D to adjust the CTU Tx power to achieve the appropriate value, asdetailed in Table 4-3:

Table 4-3 Achievable TX RF power output

RF configuration Achievable value

CTU900 CTU1800

Twin Duplexed Filter(TDF)

40 W (46.0 dBm) 32 W (45.1 dBm)

Duplexed Combiningbandpass Filter (DCF)

20 W (43.0 dBm) 16 W (42.1 dBm)

Dual-stage Duplexedcombining Filter (DDF)

8.5 W (39.3 dBm) 7 W (38.5 dBm)

Cavity Combining Block 20 W (43.0 dBm) 16 W (42.1 dBm)

All Or the customer-specified value at the top of thecabinet, taking cable losses into account.

5. As U or D is typed, a message similar to the following example, indicating the CTUoutput power and offset value, is displayed:

D P: 46.8 dBm Cell Site Offset: 1

When the required output level is achieved, press ESC or CTRL-Y or CTRL-C

6. At the EQCP TEST prompt type:

HALT CWRENBSAVE CAL TXWRPTC

The cell site offset can be checked by reading the memory location:Use FR TX to verify writes to FLASHUse MR TX to verify writes to RAM

NOTE

7. Repeat steps 1 to 6 until all transceivers have been calibrated.

8. Remove the power meter and reconnect the antenna.

9. Use the Restoring the site procedure to return the site to service.

Page 220: Drive test.pdf

GSM-100-423CTU VSWR and cellsite power calibration for CCBs

31st Jul 014–16

Installation & Configuration: BSS Optimization

68P02901W43-J

CTU VSWR and cellsite power calibration for CCBs

CCB calibrationinformation

The Cavity Combining Block (CCB) combines the output of up to three radios to acommon output, and up to six radios by use of an additional CCB(extension). TheCCB(extension) output is an input to the CCB(output) for a single-antenna system.Every transmitted frequency will be attenuated by approximately 3.5 dB for a six cavitysystem and 2.7 dB in a three cavity system.

All CCB commands are issued via the TTY port on a CTU.

NOTE

A Horizonmacro(indoor) can support up to two CCB modules. There is a minimum ofone CCB control board. The CCB control board is located at the front of the CCBbeneath a screw down cover. If redundancy of the CCB control board is provided, bothCCB modules will be equipped with a CCB control board. The CCB has an addresswhich is defined in the database using the equip_device COMB command. The addresscan also be displayed by using the disp_equipment COMB command.

The CCB control board has a set of eight DIP switches which are used to provide thebinary representation of the address defined in the database. These switches have allbeen set to zero in the Preparing for test procedure. Once the cellsite power has beenset the DIP switches should be returned to positions for the address defined in thedatabase.

Example of DIP switch setting

If the combiner address is required to be 75 (hex 4B), the DIP switches will be set asTable 4-4.

Table 4-4 Switch settings for example of value 75

Switch 8 7 6 5 4 3 2 1

On/off for value75

off on off off on off on on

Binary value ofeach switch

128 64 32 16 8 4 2 1

� If CCB control board redundancy is supported, the dip switches mustbe set the same on both CCB control boards.

� 255 (all on) is not a valid address.

NOTE

Page 221: Drive test.pdf

GSM-100-423 CTU VSWR and cellsite power calibration for CCBs

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–17

CCB control board details

The CCB control board is equipped with a green LED to indicate the presence of power.

If a single CCB control board is used it must be in position 0, or the right of the cabinetwhen viewed from the front.

If two CCB control boards are used, the one mounted on the right, looking from the front,will normally be the master. If this unit fails, the redundant unit will automatically assumecontrol. The initial main/standby relationship is defined from the power connection to thetop panel of the cabinet. The two CCB control boards receive power from different pins inthe connector, this provides the main/ standby relationship. A fault or problem with theCCB control board is indicated by a red LED, which can be viewed from above.

There is not a master/slave relationship as no CCB control board has any influence overthe other. It is a main/standby relationship where each CCB control board is equallyaware of what is happening with the CCB system, hence the ability for the standby CCBcontrol board to take seamless control in the event of a problem with the main CCBcontrol board.

The CCB control board is sometimes referred to as the Transmit AntennaTransceiver Interface Control Board (TATI Control Board or TCB).

NOTE

Page 222: Drive test.pdf

GSM-100-423CTU VSWR and cellsite power calibration for CCBs

31st Jul 014–18

Installation & Configuration: BSS Optimization

68P02901W43-J

Calibrationprocedures

The procedures Tuning the CCB cavities, VSWR calibration procedure, Calibratingcellsite power and Parking the CCB cavities should be used for VSWR and cellsitecalibration of Horizonmacro cabinets equipped with CTUs and CCB RF combiners.

The four calibration procedures should be completed sequentially, and withoutpause, for each radio.Failure to do so could result in the associated CCB being parked on the wrongchannel.

NOTE

Tuning the CCB cavities

The following procedure details the steps necessary to tune the cavities in preparation forthe VSWR and cellsite power calibration. The CTU radios use channel 31 as the defaultvalue associated with the CSPWR command.

The procedure should be performed on each radio in turn:

1. Disconnect antenna. Connect a dummy load to the meter and ensure the meter isfitted with a 50 W element. Connect the meter to the TX output.

2. Connect a PC to the CTU TTY interface port.

3. At the EQCP prompt type:

.GSMFWTESTACT CBBH ALARM OFF

4. Issue the full tuning command to the CCB. To tune cavity 0, at the EQCP TESTprompt:

For... Type...

CTU900 SNDCMB 02 05 00 01 00 1F 00 27

CTU1800 SNDCMB 02 05 00 01 02 BC 00 C6

Where:

02 is the parameter download message ID.

05 is the number of bytes to follow, excluding final checksum.

00 is the CCB address (as set on the DIP switches).

01 is the hex value of the address of the cavity to be tuned. (set for cavity 0)

00 is the channel high byte for CTU900 (02 for CTU1800).

1F is the channel low byte for a CTU 900 set to channel 31 (BC for a CTU1800 set to channel 700).

00 is the power level – always 00.

27 is the low byte of the checksum 02 + 05 + 00 + 01 + 00 + 1F + 00 for a CTU900 (C6 is the low byte of checksum 02 + 05 + 00 + 01 + 02 + BC + 00 for a CTU1800).

Page 223: Drive test.pdf

GSM-100-423 CTU VSWR and cellsite power calibration for CCBs

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–19

The response should occur in under 12 seconds and begin with 01.

A typical response, if OK, is:

01 04 00 01 00 00 06

A typical failure response is:

F1 0B 00 A0 followed by a repetition of the input bytes.

Table 4-6 (CTU900) and Table 4-7 (CTU1800) details the tuning commands for allpossible cavities.

VSWR calibration procedure

To check the VSWR of the transmission path:

1. At the EQCP TEST prompt type:

CSPWR

2. Monitor and record the wattmeter reading (the forward output power).

3. Press ESC or CTRL-Y or CTRL-C

4. Replace the 50 W element in the wattmeter with a 5 W element and reverse thedirection on the power meter.

5. Remove the dummy load and connect the power meter through to the antenna.

Full power is transmitted during VSWR checks. Ensure all personnel areclear of the antenna. Do not carry out this check unless antenna installation iscomplete.

WARNING

To reduce the possibility of interference with other users, minimize the timethat the radio is powered up.

CAUTION

6. At the EQCP TEST prompt type:

CSPWR

7. Monitor and record the reverse power reading indicated on the power meter.

Readings should show reflected (reverse) power of no more than 5% of theforward power at the point of measurement, but less than 1 W.If the ratio of the forward and reverse readings is unacceptable, suspect animproper termination of the antenna feeder and connector.

NOTE

8. Press ESC or CTRL-Y or CTRL-C

Page 224: Drive test.pdf

GSM-100-423CTU VSWR and cellsite power calibration for CCBs

31st Jul 014–20

Installation & Configuration: BSS Optimization

68P02901W43-J

Calibrating cellsite power

To calibrate the cellsite power:

1. At the MMI prompt type:

CSPWR

The following message is displayed:

Hit U or D until desired max is measured then

hit ESC, CTRL-Y or CTRL-C

2. Enter U or D to adjust the CTU Tx power to achieve the appropriate value, asdetailed in Table 4-5:

Table 4-5 Achievable TX RF power output

RF configuration Achievable value

CTU900 CTU1800

Twin Duplexed Filter(TDF)

40 W (46.0 dBm) 32 W (45.1 dBm)

Duplexed Combiningbandpass Filter (DCF)

20 W (43.0 dBm) 16 W (42.1 dBm)

Dual-stage Duplexedcombining Filter (DDF)

8.5 W (39.3 dBm) 7 W (38.5 dBm)

Cavity Combining Block 20 W (43.0 dBm) 16 W (42.1 dBm)

All Or the customer-specified value at the top of thecabinet, taking cable losses into account.

3. As U or D is typed, a message similar to the following example, indicating the CTUoutput power and offset value, is displayed:

D P: 46.8 dBm Cell Site Offset: 1

When the required output level is achieved, press ESC or CTRL-Y or CTRL-C

4. Save the transmit power calibration. At the EQCP TEST prompt type:

HALT CWRENBSAVE CAL TXWRPTC

Page 225: Drive test.pdf

GSM-100-423 CTU VSWR and cellsite power calibration for CCBs

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–21

Parking the CCB cavities

To prevent cavity interference park the cavity.

To park cavity 0, at the EQCP prompt type:

SNDCMB C2 02 00 01 C5

Where:

C2 is the park request message ID.

02 is the number of bytes to follow, excluding final checksum.

00 is the CCB address (as set on the DIP switches).

01 is the hex value of the address of the cavity to be tuned. (set for cavity 0)

C5 is the low byte of the checksum (C2 + 02 + 00 + 01).

Repeat for remaining cavities

Repeat the procedures Tuning the CCB cavities, VSWR calibration procedure,Calibrating cellsite power and Parking the CCB cavities until all transceivers havetuned the CCB cavity they are connected to and the TX output power has beencalibrated. The cavity tuning commands are detailed in Table 4-6 (CTU900) andTable 4-7 (CTU1800). The cavity parking commands are detailed in Table 4-8, and arethe same for CTU900 and CTU1800.

Table 4-6 CTU900 CCB cavity tuning commands

Cavity to betuned

Cavity tuning command

0 02 05 00 01 00 1F 00 27

1 02 05 00 02 00 1F 00 28

2 02 05 00 04 00 1F 00 2A

3 02 05 00 08 00 1F 00 2E

4 02 05 00 10 00 1F 00 36

5 02 05 00 20 00 1F 00 46

Table 4-7 CTU1800 CCB cavity tuning commands

Cavity to betuned

Cavity tuning command

0 02 05 00 01 02 BC 00 C6

1 02 05 00 02 02 BC 00 C7

2 02 05 00 04 02 BC 00 C9

3 02 05 00 08 02 BC 00 CD

4 02 05 00 10 02 BC 00 D5

5 02 05 00 20 02 BC 00 E5

Page 226: Drive test.pdf

GSM-100-423CTU VSWR and cellsite power calibration for CCBs

31st Jul 014–22

Installation & Configuration: BSS Optimization

68P02901W43-J

Table 4-8 CTU900 and CTU1800 CCB cavityparking commands

Cavity to beparked

Cavity parking command

0 C2 02 00 01 C5

1 C2 02 00 02 C6

2 C2 02 00 04 C8

3 C2 02 00 08 CC

4 C2 02 00 10 D4

5 C2 02 00 20 E4

1. Remove the power meter and reconnect the antenna.

2. Use the Restoring the site procedure to return the site to service.

Page 227: Drive test.pdf

GSM-100-423 CTU VSWR and cellsite power calibration for CCBs

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–23

Restoring thesite

After all installed CTUs have been checked and calibrated, perform the following steps torestore the site: This is done in two stages:

� RF output power check.

� Returning the TCUs to call processing mode.

RF output power check

1. Disconnect antenna. Connect a dummy load to the meter and ensure the meter isfitted with a 50 W element. Connect the meter to the TX output.

2. Return the DIP switches on the CCB control boards to their original positions.

3. Remove the 9-way to 9-way EQCP cable from the TTY port and connect the9-way to 9-way cable to the MCU MMI port.

The following step must be carried out to initialize software and so ensure theCTU is correctly brought into service.

CAUTION

4. Press the reset button on the front panel of the CTU.

5. Unlock the DRI under test using the following commands:

unlock_device # dri A *

state # DRI A *

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

This returns the CTU to the Unlocked_Busy state (confirmed by the statecommand).

6. Monitor and record the wattmeter reading. This should be the same as themaximum power set up in step 3 of Calibrating cellsite power.

7. Lock the CTU by entering:

lock_device # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

Repeat steps 5 to 7 for all CTUs.

Page 228: Drive test.pdf

GSM-100-423CTU VSWR and cellsite power calibration for CCBs

31st Jul 014–24

Installation & Configuration: BSS Optimization

68P02901W43-J

Returning the CTUs to call processing mode

1. Remove the wattmeter and reconnect the antenna lead to the TX port.

2. Unlock all TCUs tested using the command detailed in step 5 of RF output powercheck.

3. Remove the 9 to 9-way cable from the MCU MMI port.

4. Inform the OMC the VSWR and cellsite power calibration has been completed.

Page 229: Drive test.pdf

GSM-100-423 Calibrating Horizonmacro CTU bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–25

Calibrating Horizonmacro CTU bay level offset tables

Introduction

Follow this procedure to calibrate the bay level offset tables to compensate for the lossesor gains due to preselectors and RF cabling from the antenna inputs at the Horizonmacroto the CTU input.

This procedure applies only to the CTU.

The CTU can only be used with software release GSR4 onwards.

NOTE

All units are factory calibrated. This procedure is thus necessary only if one of thefollowing changes occur:

� A CTU is replaced.

� RF front end equipment is changed.

� The site is reconfigured.

� High power duplexers are fitted.

The procedures contained in Calibrating Horizonmacro CTU bay leveloffset tables are to calibrate a single CTU. Repeat the procedures for allCTUs affected by the changes listed above.

NOTE

Test equipment

The following test equipment is required:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A 50 ohm 50 W dummy load.

� A signal generator (0 to 2 GHz).

� A 9-way to 9-way MCUF/CTU cable.

� A 9-way to 9-way EQCP/RSS CTU cable.

All test equipment and test leads must be calibrated annually by a recognizedlaboratory. Test equipment and test leads must not be calibrated in the field.

Do not optimize Motorola Cellular Base Stations with test equipment that isbeyond its calibration due date.

Allow test equipment to warm up for 30 minutes before use.

CAUTION

Page 230: Drive test.pdf

GSM-100-423Calibrating Horizonmacro CTU bay level offset tables

31st Jul 014–26

Installation & Configuration: BSS Optimization

68P02901W43-J

Commands

The following table details the MMI commands that must be used to carry out theprocedure:

1. The symbol 0 used in the commands in this procedure is a zero. 2. BSS MMI commands may be entered in upper or lower case. All othercommands must be entered in the case shown below.CTU passwords are not case sensitive.

NOTE

BSS MMI command Function

ins_device Initializes the device, bringing it into service

lock_device Prevents the device being used

unlock_device Frees the device for further use

clear_cal_data Clears previously stored calibration data for a specified radiounit on a per DRI basis

CTU TTY command Function

TEST Places the CTU into test mode

BBH ALARM OFF Inhibits the BBH alarm

CAL BAY @1/@2 Calibrates the bay level receive equipment

AIC OUT Disables automatic intermodulation compensation

ACT C Activates the Control Processor

TS A CHAN # Sets all timeslots to channel #

TS A ANT # Sets all timeslots to antenna #

SYNTH 1 Stops synthesizer switching with synthesizer 1 permanentlyon

SYNTH NRM Enables synthesizer switching into normal working

SAVE CAL BAY Transfers Bay Level Calibration stored data in RAM to FLASHEPROM

BAYDONE @N Informs control processor that Bay Level Calibration is validfor branch N and sets bay level flag

HALT C Stops the Control Processor

WRENB Write enables the FLASH EPROM

WRPTC Write protects the FLASH EPROM

FR BAY Reads cal bay offsets from FLASH EPROM

MR BAY Reads cal bay offsets from RAM

CTU command Function

tcu_clock 0 Stops the CTU hunting between fibre A and fibre B and forcesthe CTU to look only at fibre A.

Page 231: Drive test.pdf

GSM-100-423 Calibrating Horizonmacro CTU bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–27

Preparation forbay levelcalibration

The RF path has to be prepared for bay level calibration. The radio has to be reset andlocked, a dummy load connected if no antenna and the alarms disabled. Proceed asfollows:

1. Connect the 9-way to 9-way MCUF cable from the PC serial A port to MCUF TTYport.

2. At the PC start the terminal emulator program.

3. Change to Level 3 and at the MMI-RAM> prompt type:

ins_device # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

The radio must be brought into service as there is no Flash EPROM storage ofcode at the radio control processor level.If a connection to the BSC is not available a PCMCIA commissioning cardmust be used.

NOTE

4. Wait for the radio to finish initializing, then type:

Failure to lock the cell could result in the BCCH transmitting into, and causingdamage to the signal generator. The maintenance engineer could receive RFburns when connecting to the antenna socket.

WARNING

lock_device # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

For ease of calibration, all CTUs in a cell should be initialized and then locked.Always lock the transceiver providing the BCCH last as this prevents theBCCH being switched to alternate transceivers.

NOTE

Page 232: Drive test.pdf

GSM-100-423Calibrating Horizonmacro CTU bay level offset tables

31st Jul 014–28

Installation & Configuration: BSS Optimization

68P02901W43-J

5. Type:

clear_cal_data # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

The clear_cal_data command clears all calibration data out of the CMdatabase. This is required to overide the preserve calibration feature, ifenabled.

NOTE

6. Connect port COM1 on the PC to the TTY Interface port on the radio using the9-way to 9-way EQCP/RSS cable.

7. At the MMI-ROM prompt type:

tcu_clock 0

The system responds with the following:

WARNING: CTU must be reset to get connection to MCU.

8. If a tx antenna is not conected to the radio under test, connect a 50 ohm 50 Wdummy load to the Tx port of the radio under test.

Ensure that you have entered the tcu_clock 0 command at the RSSMMI-ROM 0000> prompt, as shown in step 7 before entering call processingto avoid EQCP instability at step 3 of Bay level calibration (next procedure).

CAUTION

9. Switch the 9-way to 9-way EQCP/RSS cable from providing RSS connectivity toproviding EQCP connectivity.

10. At the EQCP prompt type:

.GSMFW

TEST

The system responds with the following:

WARNING: The EQCP is now in test mode.

11. At the EQCP TEST prompt type:

BBH ALARM OFF

The system responds with the following:

The alarm reporting for the BBH connection is turned off

12. At the EQCP TEST prompt type:

AIC OUT

The system responds with the following:

The AIC pad for branch 1 is OUT.

The AIC pad for branch 2 is OUT.

Page 233: Drive test.pdf

GSM-100-423 Calibrating Horizonmacro CTU bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–29

Bay levelcalibration forbranch 1 RX0A

Proceed as follows:

1. Connect the output of the signal generator to branch 1 of the antenna port at thetop of the Horizonmacro cabinet.

It is important to choose the correct number in the TS A ANT command.If RX path is 0A or 0B of SURF then antenna is TS A ANT 1.If RX path is 1A or 1B of SURF then antenna is TS A ANT 2.If RX path is 2A or 2B of SURF then antenna is TS A ANT 3.

For 900 MHz dual band SURF,If RX path is 1800 0A or 1800 0B of SURF then antenna is TS A ANT 2.

NOTE

The antenna number can also be found by using the disp_equipment # DRI A * 0command. The number next to antenna_select is the antenna number.

2. Set the signal generator to provide –65.0 dBm at the antenna port and to the firstchannel test frequency shown in Table 4-9 (EGSM900) or Table 4-10 (DCS1800)

Table 4-9 EGSM900 test frequency table

Channel Frequency (MHz) Channel Frequency (MHz)

979 881.001 43 898.601

987 882.601 51 900.201

995 884.201 59 901.801

1003 885.801 67 903.401

1011 887.401 75 905.001

1019 889.001 83 906.601

03 890.601 91 908.201

11 892.201 99 909.801

19 893.801 107 911.401

27 895.401 115 913.001

35 897.001 123 914.601

Page 234: Drive test.pdf

GSM-100-423Calibrating Horizonmacro CTU bay level offset tables

31st Jul 014–30

Installation & Configuration: BSS Optimization

68P02901W43-J

Table 4-10 DCS1800 test frequencies

Channel Frequency (MHz) Channel Frequency (MHz)

516 1711.001 708 1749.401

524 1712.601 716 1751.001

532 1714.201 724 1752.601

540 1715.801 732 1754.201

548 1717.401 740 1755.801

556 1719.001 748 1757.401

564 1720.601 756 1759.001

572 1722.201 764 1760.601

580 1723.801 772 1762.201

588 1725.401 780 1763.801

596 1727.001 788 1765.401

604 1728.601 796 1767.001

612 1730.201 804 1768.601

620 1731.801 812 1770.201

628 1733.401 820 1771.801

636 1735.001 828 1773.401

644 1736.601 836 1775.001

652 1738.201 844 1776.601

660 1739.801 852 1778.201

668 1741.401 860 1779.801

676 1743.001 868 1781.401

684 1744.601 876 1783.001

692 1746.201 883 1784.401

700 1747.801

3. At the EQCP TEST prompt type:

ACT C

The system responds with the following:

The EQCP is in the Call Processing state

Warning: After locking carrier down, enter CTU_CLOCK 0 command at RSSMMI-ROM 0000> prompt before entering Call Processing to avoid EQCPinstability.

4. At the EQCP TEST prompt type:

TS A ANT 1

The system responds with the following:

All timeslots are under user control.

Page 235: Drive test.pdf

GSM-100-423 Calibrating Horizonmacro CTU bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–31

5. At the EQCP TEST prompt type:

TS A CHAN #

Where: # is: the channel number of theselected frequency, asshown in Table 4-9 orTable 4-10.

The system responds with the following:

The data for all timeslots has been changed.

6. At the EQCP TEST prompt type:

SYNTH 1

The system responds with the following:

Synthesizer 1 is enabled.

7. At the EQCP TEST prompt type:

CAL BAY @1

The system responds with the following:

BAY LEVEL OFFSET = XX

Where XX = The hex value of the bay level reading.

8. At the EQCP TEST prompt type:

SYNTH NRM

The system responds with the following:

The system is under real time control.

9. Set the signal generator to the next frequency and repeat steps 5 and 6 for all thetest frequencies in Table 4-9 or Table 4-10.

Page 236: Drive test.pdf

GSM-100-423Calibrating Horizonmacro CTU bay level offset tables

31st Jul 014–32

Installation & Configuration: BSS Optimization

68P02901W43-J

Bay level repeatfor RX1A

Continue the bay level calibration procedure for the second antenna port as follows:

1. Connect the output of the generator to RX1A.

2. Set the signal generator to provide –65.0 dBm at the antenna port and to the firstchannel test frequency shown in Table 4-9 or Table 4-10.

3. At the EQCP TEST prompt type:

TS A ANT 2

4. At the EQCP TEST prompt type:

TS A CHAN #

Where: # is: the channel number of theselected frequency, asshown in Table 4-9 orTable 4-10.

5. At the EQCP TEST prompt type:

SYNTH 1

CAL BAY @1

SYNTH NRM

6. Set the signal generator to the next frequency and repeat steps 4 and 5 for all thetest frequencies in Table 4-9 or Table 4-10.

Page 237: Drive test.pdf

GSM-100-423 Calibrating Horizonmacro CTU bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–33

Bay level repeatfor RX2A

Continue the bay level calibration procedure for the third antenna port as follows:

1. Connect the output of the generator to RX2A.

2. Set the signal generator to provide –65.0 dBm at the antenna port and to the firstchannel test frequency shown in Table 4-9 or Table 4-10.

3. At the EQCP TEST prompt type:

TS A ANT 3

4. At the EQCP TEST prompt type:

TS A CHAN #

Where: # is: the channel number of theselected frequency, asshown in Table 4-9 orTable 4-10.

5. At the EQCP TEST prompt type:

SYNTH 1

CAL BAY @1

SYNTH NRM

6. Set the signal generator to the next frequency and repeat steps 4 and 5 for all thetest frequencies in Table 4-9 or Table 4-10.

Page 238: Drive test.pdf

GSM-100-423Calibrating Horizonmacro CTU bay level offset tables

31st Jul 014–34

Installation & Configuration: BSS Optimization

68P02901W43-J

Bay level repeatfor Rx1800 0A on900 (Dualband)SURF

For the 900 MHz dualband SURF modules, two additional antenna ports, 1800 0A and1800 0B, are available for 1800 MHz use.

Continue the bay level calibration procedure for the branch 1 1800 antenna port asfollows:

1. Connect the output of the generator to RX1800 0A.

2. Set the signal generator to provide –65.0 dBm at the antenna port and to the firstchannel test frequency shown in Table 4-10.

3. At the EQCP TEST prompt type:

TS A ANT 2

4. At the EQCP TEST prompt type:

TS A CHAN #

Where: # is: the channel number of theselected frequency, asshown in Table 4-10.

5. At the EQCP TEST prompt type:

SYNTH 1

CAL BAY @1

SYNTH NRM

6. Set the signal generator to the next frequency and repeat steps 4 and 5 for all thetest frequencies in Table 4-10.

Page 239: Drive test.pdf

GSM-100-423 Calibrating Horizonmacro CTU bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–35

Branchcompletion

To complete the bay level procedure for the branch:

1. At the EQCP TEST prompt type:

BAYDONE @1

The system responds with the following:

BAY LEVEL CALIBRATION IS DONE

2. At the EQCP TEST prompt type:

HALT C

The system responds with the following:

The EQCP is in the Active Standby state

3. At the EQCP TEST prompt type:

WRENB

The system responds with the following:

Device OK. Flash is now write enabled.

4. At the EQCP TEST prompt type:

SAVE CAL BAY

The system responds with the following:

Save Cal Completed.

5. At the EQCP TEST prompt type:

WRPTC

The system responds with the following:

Flash is now write protected.

Branch 2

Repeat the procedures Bay level calibration branch 1 RX0A, Bay level repeat forRX1A, Bay level repeat for RX2A and Bay level repeat for RX1800 0A for branch 2by connecting to RX0B, RX1B, RX2B and RX1800 0B alternately. Enter @2 instead of@1 in the cal bay and baydone commands.

Page 240: Drive test.pdf

GSM-100-423Calibrating Horizonmacro CTU bay level offset tables

31st Jul 014–36

Installation & Configuration: BSS Optimization

68P02901W43-J

Checkingcalibration

The following procedure should be used to check the bay level calibration has beensuccessful.

1. To verify that the bay level offset values have been stored in EPROM, use the readcommand with the required offset table location as an argument.

FR BAY To verify writes to FLASH

MR BAY To verify writes to RAM

Table 4-11 CTU frequency offset addresses

Bay Level Calibration Storage Flash Address

Branch 1 Valid Flag A000700

Branch 2 Valid Flag A000703

Branch 1 Checksum A000706

Branch 2 Checksum A000709

Bay Level Offsets For Branch 1 Antenna 1 A00070C – A00074D

Bay Level Offsets For Branch 1 Antenna 2 A00074E – A00078F

Bay Level Offsets For Branch 1 Antenna 3 A000790 – A0007D1

Bay Level Offsets For Branch 2 Antenna 1 A0007D2 – A000813

Bay Level Offsets For Branch 2 Antenna 2 A000814 – A000855

Bay Level Offsets For Branch 2 Antenna 3 A000856 – A000897

CTU900s cover the EGSM range and store offsets in 22 locations in each memoryarea per antenna per branch.

CTU1800s cover the DCS range and store offsets in 47 locations in each memoryarea per antenna per branch.

Each location consists of three bytes. For example, the branch 1 valid flagdata is stored in address locations A000700, A000701 and A000702.

NOTE

2. The following is an example of the first line of the FLASH BAY LEVEL OFFSETtable when using the FR BAY command, and a description of the fields displayed:

Address BR1 BR2

flag

BR1

Cksum

BR2

Cksum

BL

offset

BL

offset

BL

offset

BL

offset

A000700 000001 000001 000595 000595 000060 000002 000005 000002

The remaining rows of the table contain BL offset values

Page 241: Drive test.pdf

GSM-100-423 Calibrating Horizonmacro CTU bay level offset tables

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–37

3. If the bay level calibration is successful, each appropriate table location will containvalid offsets, and not the factory default of 80.

The presence of 80 will result in error alarm DRI 218: Invalid TransceiverCalibration Data being reported when the unit is unlocked.However, unused data columns in a site configuration may have value 80; noalarm will be reported as such table locations are inappropriate to the site.

NOTE

4. If the value 80 is present it indicates an unsuccessful calibration procedure or anuncalibrated antenna port. The calibration procedure will have to be repeated afterchecking the configuration and RF cables.

Any value other than 80 is a valid offset, from 81 to FF, and 00 to 7F.Only the value 80 requires investigation.

NOTE

Page 242: Drive test.pdf

GSM-100-423Calibrating Horizonmacro CTU bay level offset tables

31st Jul 014–38

Installation & Configuration: BSS Optimization

68P02901W43-J

End procedurerestoring site

After the bay level calibration procedure is completed, restore the site by the following:

1. Remove the signal generator and dummy load and refit the site RF cables.

2. Remove the 9-way to 9-way cable from the TTY INTERFACE port on the CTU.

3. Connect the 9-way to 9-way cable from the PC serial A port to a MCUF TTY port.

The following step must be carried out to initialize software and so ensure theCTU is correctly brought into service.

CAUTION

4. Press the reset button on the front panel of the CTU.

5. Type:

unlock_device # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

The CTU is now in the unlocked_busy state.

6. Type:

disp_act_alarm # dri A * 0

Where: is:

# the number of the sitelogged into.

A the antenna/relative cellnumber (0 to 5).

* DRI number on theantenna.

Confirm that there is no DRI 218 alarm. If there is a DRI 218 alarm, redo thewhole bay level calibration procedure

7. Remove the 9-way to 9-way cable from the MCUF TTY port.

Page 243: Drive test.pdf

GSM-100-423 Checking the database equipage

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–39

Checking the database equipage

Introduction

The database equipage checks determine what devices and functions have beenequipped in the BSC/Horizonmacro database.

There are two stages to the procedure:

� Preparing for the test.

� Checking the database equipage.

Commands

The following commands are used during the procedure:

The symbol 0 used in the commands in this procedure is a zero.

NOTE

� disp_site

� disp_equipment

Test equipment

The following test equipment is required during the procedure:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A 9-way to 9-way cable (a diagram of this cable is provided in Figure 4-1 of theTest equipment, leads and plugs section).

All test equipment and test leads must be calibrated annually by a recognizedlaboratory. Test equipment and test leads must not be calibrated in the field.

Do not optimize Motorola Cellular Base Stations with test equipment that isbeyond its calibration due date.

Allow test equipment to warm up for 30 minutes before use.

CAUTION

Page 244: Drive test.pdf

GSM-100-423Checking the database equipage

31st Jul 014–40

Installation & Configuration: BSS Optimization

68P02901W43-J

Preparing for thetest

To prepare for the database equipage checks:

1. Ensure that the site is in call processing mode.

2. Connect the serial A port on the PC to a MCUF TTY port using the 9-way to 9-waycable.

3. Start the terminal emulator program at the PC.

Checking thedatabaseequipage

To check the database for devices and functions:

1. At the CUST MMI prompt type:

disp_site

The following message (from the MCU) is displayed:

current site is #where # = the number of the site logged into.

2. At the CUST MMI prompt type:

disp_equipment #

where # = the number of the site logged into.

A complete list of the equipment and functions in the database is displayed, forexample:

GPROC 0 0 0

GPROC 1 0 0

BSP 0 0 0

DRI 0 0 0

DRI 0 1 0

MSI 0 0 0

MMS 0 0 0

MMS 0 1 0

GCLK 0 0 0

KSW 0 0 0

CAB 0 0 0

SITE 0 0 0

RTF 0 0 0

RTF 0 1 0

Page 245: Drive test.pdf

GSM-100-423 Checking the database equipage

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–41

3. To Check the MSI configuration at the CUST MMI prompt type:

disp_equipment # MSI 1 0 0

Where: # = site number.

A message similar to the following example is displayed:

MSI identifier 1Cage number 0Slot number 16MSI type 0 (0 = MSI)

Page 246: Drive test.pdf

GSM-100-423Checking the 2.048 Mbit/s link

31st Jul 014–42

Installation & Configuration: BSS Optimization

68P02901W43-J

Checking the 2.048 Mbit/s link

Introduction

The 2.048 Mbit/s link checks verify the integrity of the 2.048 Mbit/s links back to theBSC/MSC.

There are two stages to the procedure:

� Preparing for the test.

� Checking the 2.048 Mbit/s link.

Commands

The following command is used to carry out the procedure:

� state

Test equipment

The 2.048 Mbit/s link checks require the following test equipment:

� An IBM compatible personal computer (PC).

� Terminal emulator software.

� A 9-way to 9-way cable (a diagram of this cable is provided in Figure 4-1 of theTest equipment, leads and plugs section).

All test equipment and test leads must be calibrated annually by a recognizedlaboratory. Test equipment and test leads must not be calibrated in the field.

Do not optimize Motorola Cellular Base Stations with test equipment that isbeyond its calibration due date.

Allow test equipment to warm up for 30 minutes before use.

CAUTION

Preparing for thetest

To set up the equipment to check the 2.048 Mbit/s links:

1. Make sure the site is in call processing mode.

2. Connect the serial A port on the PC to an MCUF TTY port using the 9-way to9-way cable.

3. Start the terminal emulator program at the PC.

The system and the hardware are set up to check the 2.048 Mbit/s links.

Page 247: Drive test.pdf

GSM-100-423 Checking the 2.048 Mbit/s link

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–43

Checking the2.048 Mbit/s link

To check the 2.048 Mbit/s link:

1. Contact the end point of the 2.048 Mbit/s you want to test, BSC/MSC, and requesta loopback on the relevant Digital Distribution Frame (DDF) port.

Repeat for all NIUs and 2 Mbit/s links.� If the 2.048 Mbit/s link has not been installed, perform this test at the

DDF in the site.

� If no DDF is fitted, do this test at the top of the cabinet

NOTE

2. Ascertain the site number, equipment list and MMS configuration.

3. At the CUST MMI prompt enter:

state # MMS * * *

Where: is:

# location

* dev/func id

* dev/func id

* dev/func id

For example:

state 1 MMS 1 0 0

The system displays the following message from the MCU:

STATUS INFORMATION

Device: MMS 1 0 0

Administration state : Unlocked

Operational state : Busy

Reason code is : 0

Time of last transition : Wed Jan 5 01:43:13 1994

Related Device/Function:

Assigned to:

END OF STATUS REPORT

If this display shows Unlocked and Busy, then the NIU port (MMS), T43, cabling and the2.048 Mbit/s link are all good.

If the loop is removed and the command re-entered, the result will be Unlocked andDisabled.

The NIU requires a minimum of 20 seconds after receiving these commandsbefore it registers a change in status.If the display continues to show Unlocked and Busy, this may be because:1. The wrong connection is looped, if the cabling is direct.2. The MMS may be terminated by a device generating a 2.048 Mbit/s link.

NOTE

Page 248: Drive test.pdf

GSM-100-423Checking serial connections and alarms

31st Jul 014–44

Installation & Configuration: BSS Optimization

68P02901W43-J

Checking serial connections and alarms

Introduction

The alarm tests check the serial connections and alarm status of M-Cell equipment.

There are two stages to the procedure:

� Preparing for the test.

� Testing the PIX connections using the database external alarm system (EAS).

Test equipment

The serial and alarm tests require the following test equipment:

� An IBM compatible personal computer (PC).

� Terminal emulator software.

� A 9-way to 9-way cable (a diagram of this cable is provided in Figure 4-1 of theTest equipment, leads and plugs section.

All test equipment and test leads must be calibrated annually by a recognizedlaboratory. Test equipment and test leads must not be calibrated in the field.

Do not optimize Motorola Cellular Base Stations with test equipment that isbeyond its calibration due date.

Allow test equipment to warm up for 30 minutes before use.

CAUTION

Page 249: Drive test.pdf

GSM-100-423 Checking serial connections and alarms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–45

Commands

The following commands are used to test the PIX connections:

� enable_alarm

Preparing for thetest

To prepare for the test:

1. Make sure the software download has been completed.

2. Connect the serial A port on the PC to the master MCUF using the 9-way to 9-way cable.

3. Start the terminal emulator program at the PC.The system displays the CUST MMI prompt.

4. Enter the password at the CUST MMI prompt.The equipment is set up for the test.

Testing the PIXconnections

The PIX connections may be tested at a live site using the following test procedure:

1. Apply suitable test plug to PIX input on cabinet top panel.

Wait at least six seconds before continuing the testing. The time is required toallow polling to detect the presence of the test plug.

NOTE

2. At the CUST MMI prompt type:

enable_alarm #

Where: # is: site number

The system displays all 8 alarms.

The display depends on the database settings, that is, whether a faultcondition is indicated by a closed loop or an open loop.

NOTE

3. Remove the test plug.

The system clears the alarm display.

Page 250: Drive test.pdf

GSM-100-423Calibrating the MCUF (GCLK)

31st Jul 014–46

Installation & Configuration: BSS Optimization

68P02901W43-J

Calibrating the MCUF (GCLK)

Introduction

This procedure explains how to calibrate the Oven Controlled Crystal Oscillator (OCXO)in the GCLK on the MCUF in the Horizonmacro product at a BSS site.

When to calibratethe GCLK

The calibration procedure is to be used on the following occasions:

� When more than one frame slip per hour is observed at the OMC-R (typically morethan 34/day).

� When ever calibration is required. (Display the active alarms for a site - ifcalibration is required, there will be an alarm stating this).

This procedure should only be carried out by by fully trained, GSM qualifiedpersonnel. Under NO circumstances should this procedure be undertaken,unless all the correct test equipment is readily available.

CAUTION

� The command gclk_cal_mode used in this procedure should only beexecuted at the BTS where the calibration is being carried out.

� No call processing can occur involving the MCU during calibration mode.

� Allow a period of 30 minutes to elapse after switching the OCXO poweron, to give sufficient time for the unit to reach operating temperature.

NOTE

Test equipmentrequired

The test equipment required to carry out the GCLK calibration is as follows:

� An IBM compatible personal computer (PC).

� A 9-way to 9-way TTY cable.

� A Caesium or Rubidium clock standard with 1 or 10 MHz output frequency.

� A Universal counter with external reference, for example, the Hewlett Packardmodel HP5385A or equivalent.

� A BNC to 3-way MCU test lead, part number 3086144E01 (see Figure 3-3).

Page 251: Drive test.pdf

GSM-100-423 Calibrating the MCUF (GCLK)

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–47

Setting up forcalibration

To prepare the MCUF (GCLK) for calibration, carry out the following steps:

1. Connect the serial A port of the PC to the MCU TTY port using the 9-way to 9-wayTTY cable.

2. Start the terminal emulator program.

3. Connect the output from the 10 MHz standard to the reference input of thefrequency counter, select external standard.

4. Set the frequency gate time to 10 seconds and the display to 10 significant digits.

5. Connect the test cable extracting the 8 kHz output signal from the front of theMCUF to the input of the frequency counter.

Pin 3 – Earth (top pin)

Pin 1 – 8 kHz signal (bottom pin)

Figure 4-3 illustrates how the equipment is to be connected to the unit under calibration.

8000.000000

MCU

MCU TTY

8 kHz Out

UNIVERSAL COUNTER

10 MHz REFERENCE

Figure 4-3 GCLK calibration - test connections

Page 252: Drive test.pdf

GSM-100-423Calibrating the MCUF (GCLK)

31st Jul 014–48

Installation & Configuration: BSS Optimization

68P02901W43-J

Test Procedure

This procedure should only be carried out by by fully trained, GSM qualifiedpersonnel. Under NO circumstances should this procedure be undertaken,unless all the correct test equipment is readily available.

CAUTION

� No call processing can occur involving the MCUF during calibrationmode.

� The command gclk_cal_mode used in this procedure should only beexecuted at the BTS where the calibration is being carried out.

NOTE

1. At the MMI–RAM 1015 prompt type:

gclk_cal_mode

The gclk_cal_mode command is used to tell the sync function and MCUFsoftware that a calibration is to be performed.

The gclk_cal_mode command can only be executed at Horizonmacro sites,outside of sysgen mode. The command is NOT allowed on a Master MCUFwhen a Standby MCUF is available.

NOTE

The system will prompt for the following verification when the command isexecuted:

Site <local site number> starting GCLK CALIBRATION MODE. If this is a singleMCU site, the site will be down until calibration is complete.

Are you sure (y=yes, n=no)? y

If the user replies with anything other than y, the command is aborted. If theuser replies y, the MCUF will begin calibration mode.

2. The user will then be prompted with the following message displayed:

Frequency Counter Connected, Enter y when ready, or a to abort test

If the user replies with anything other than y, the command is aborted, and thecalibration mode exited.

Allow a period of 30 minutes to elapse after switching the OCXO power on, togive sufficient time for the unit to reach operating temperature.

NOTE

3. Adjust the OCXO control voltage using the +/– and 0 to 3 keys until the measuredfrequency is exactly 8000,000000 Hz.

The values entered here, change the frequency by varying degrees. For example:

– +0 will increase the output by a small amount.

– +1 will increase the frequency by approximately 10 times.

– +2 will increase the frequency by approximately 100 times.

– +3 will increase the frequency by approximately 1000 times.

The above values are not exact as every OCXO has a different gain, this methodgives sufficient control to pull-in the frequency within a short time.

Page 253: Drive test.pdf

GSM-100-423 Calibrating the MCUF (GCLK)

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 4–49

4. A typical sequence of numbers may look as follows:

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >–3 (7.99999898)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >+3 (8.00000020)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >–0 (8.00000019- 8.00000020)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >–2 (8.00000004)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >+2 (8.00000020)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >–1 (8.00000018)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >–2 (8.00000002-8.00000003)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >–1(8.000000--)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >+0 (8.000000-)

Enter a to abort. s to save, +(0..3) to inc, –(0..3) to dec >+0 (8.00000000)

Save the results by typing s that is:

Enter a to abort, s to save, +(0..3) to inc, –(0..3) to dec >s

A typical response to entering s is:

CAL OFFSET is 23654 DAC bits.

After calibration, the MCUF applies a set of voltages to the DAC that feeds the OCXO,this requires the user to input the corresponding output frequency. This is because theOCXO frequency V voltage characteristic is not linear, and by taking readings across arange of DAC voltages, the MCU can make adjustments for non-linearity.

5. To calibrate the OCXO, gain, enter the measured frequency value from the counterafter the value has settled in response to the MMI prompts.

When taking frequency measurements, ensure that a full gate period elapsesfrom the time the new value is set to reading the counter. This wait may be upto seconds depending on the counter.

NOTE

A typical sequence of frequency measurements may be presented as follows:

Dac set to 1.0 volts, Enter Freq Value or a to abort > 7999.99853

Dac set to 2.0 volts, Enter Freq Value or a to abort > 7999.99915

Dac set to 3.0 volts, Enter Freq Value or a to abort > 7999.99969

Dac set to 4.0 volts, Enter Freq Value or a to abort > 8000.00020

Dac set to 5.0 volts, Enter Freq Value or a to abort > 8000.00070

Dac set to 6.0 volts, Enter Freq Value or a to abort > 8000.00122

Dac set to 7.0 volts, Enter Freq Value or a to abort > 8000.00176

Calibration Gain 3.865560e-01

SYNC>

Page 254: Drive test.pdf

GSM-100-423Calibrating the MCUF (GCLK)

31st Jul 014–50

Installation & Configuration: BSS Optimization

68P02901W43-J

6. On completion ensure that the Calibration Gain is between 0 and 1.5. Values otherthan this may indicate a poor OCXO, or an error in performing the procedure. Themost common error is in reading the counter when locating the decimal point byeye.

Calibration must be performed a second time if the Calibration Gain value is not inthe range specified. If it fails the second time with the same or similar value, theOCXO, may be operating outside of the Motorola specification. If this occurs, theMCU is deemed faulty and should be replaced. Otherwise the calibrationprocedure is complete.

The MCUF will be reset when the calibration is complete.

NOTE

Page 255: Drive test.pdf

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J i

Chapter 5

Preserve calibration procedure

Page 256: Drive test.pdf

GSM-100-423

31st Jul 01ii

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 257: Drive test.pdf

GSM-100-423

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J iii

Chapter 5Preserve calibration procedure i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Preserve transceiver calibration feature 5–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preserve calibration introduction 5–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibration data overview 5–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 5–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 5–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Activating the preserve feature at the OMC-R 5–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Activating the preserve feature at the BSC 5–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing a transceiver using preserved data 5–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Subsequent replacement of calibration data 5–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing a transceiver using new data 5–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Viewing the calibration data in CM database 5–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 258: Drive test.pdf

GSM-100-423

31st Jul 01iv

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 259: Drive test.pdf

GSM-100-423 Preserve transceiver calibration feature

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 5–1

Preserve transceiver calibration feature

Preservecalibrationintroduction

The preserve transceiver calibration feature uses commands to store, display and clearcalibration data. This feature is used on busy systems where there is a need to replace atransceiver quickly and thus reduce system down time during peak hours.

After the transceiver has been replaced, it will still be necessary to revisit thesite at an off-peak period, to carry out bay level and CSPWR calibration to fullyoptimize the hardware. The calibration procedure for a specific transceiver isin the appropriate section in this manual.

The preserve transceiver calibration feature applies only to BTS4/5/6, ExCell,TopCell, M-Cell�2, M-Cell�6 and Horizonmacro equipment.

NOTE

Calibration dataoverview

Once activated with the store_cal_data command, the RX bay level data and the TXCSPWR offset data, referred to as calibration data, is copied from the RAM on thetransceiver. This calibration data is stored in the master CM database at the BSC, whichis then used to update the CM database copy at the BTS only if the data is valid.

When a transceiver is replaced, the calibration data stored in the CM database will bedownloaded into the RAM of the replacement transceiver. The data will also be stored inthe non-volatile transceiver memory if the new transceiver is a CTU, TCU, SCU orDRCU.

Update of non-volatile transceiver memory from CM database does not occurfor DRCUII or DRCU3.

NOTE

If the clear_cal_data command is used, both the CM database at the BSC and thelocal copy of the CM database at the BTS will be cleared of current calibration data forthe specified transceiver. Data is then automatically copied from the RAM of areplacement transceiver, into the master CM database at the BSC, which is then used toupdate the CM database copy at the BTS only if the data is valid.

If the store_cal_data is activated, there is no need to reactivate it, unless anew database is downloaded.Activation of this feature creates a prompt at the OMC-R to update the BSCCM database copies that it holds.A ‘218. DRI: Invalid Transceiver Calibration Data’ alarm stops the CMdatabase being updated with calibration data.

NOTE

Page 260: Drive test.pdf

GSM-100-423Preserve transceiver calibration feature

31st Jul 015–2

Installation & Configuration: BSS Optimization

68P02901W43-J

Test equipment

The following equipment is needed to carry out this procedure:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A 9-way to 9-way cable (Horizon and M-Cell BTS only).

� A 9-way to 25-way cable (BTS4, 5, 6 and BSC only).

Commands

The following commands are required to carry out this procedure:

BTS Command Function

lock_device Prevents the device being used

unlock_device Enables the device to be used

OMC/BSCCommand

Function

store_cal_data Stores calibration data for all transceivers into themaster CM database at the BSC, which is then used toupdate the CM database copy at the BTS.

disp_cal_data When transceiver is locked: Displays calibrationdata in the CM database for the specified transceiver.

When transceiver is unlocked: Displays calibrationdata in the RAM of the specified transceiver.

clear_cal_data Clears calibration data in CM database at BSC andBTS for a specified transceiver.

If there is no RSL from the BTS to the BSC then the command will not beexecuted by the BSC, as the BSC has no knowledge of the command beingentered.

NOTE

All calibration data will be stored in the master CM database at the BSC, which is thenused to update the CM database copy at the BTS only if the data is valid.

Activating thepreserve featureat the OMC-R

Before starting the preserve calibration procedure, consult the site specificdocumentation to determine the BSC/BTS configuration and cage slot allocation.

Proceed as follows:

1. At the operations and maintenance centre (OMC-R) man-machine interface (MMI),log in to the required base site controller (BSC).

2. To initiate the preserve feature type:

store_cal_data <site_id>

All calibration data will be stored in the master CM database at the BSC, which is thenused to update the CM database copy at the BTS only if the data is valid.

Page 261: Drive test.pdf

GSM-100-423 Preserve transceiver calibration feature

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 5–3

Activating thepreserve featureat the BSC

The preserve feature can be activated at the BSC as follows:

1. Connect the 9-way to 25-way cable from the PC serial A port to a GPROC TTYport.

2. At the PC start the terminal emulator program.

3. At the CUST/MMI prompt, enter the appropriate change command and passwords.

4. At the BSP MMI prompt type:

store_cal_data all

All calibration data will be stored in the master CM database at the BSC, which is thenused to update the CM database copy at the BTS only if the data is valid.

Replacing atransceiver usingpreserved data

To replace a transceiver using preserved calibration data, proceed as follows:

1. Lock the DRI of the transceiver to be replaced as follows:

lock_device <location> DRI <device_id1> <device_id2>[<device_id3>]

2. Replace the transceiver with the new transceiver.

3. Unlock the DRI of the transceiver as follows:

unlock_device <location> DRI <device_id1> <device_id2>[<device_id3>]

The calibration data stored in the CM database will be downloaded into the RAM of thenew transceiver. The data will also be stored into the non-volatile transceiver memory ifthe new transceiver is a CTU, TCU, SCU or DRCU. Update of non-volatile transceivermemory from CM database does not occur for DRCUII or DRCU3.

After the transceiver has been replaced, it will still be necessary to revisit thesite at an off-peak hour, to carry out bay level and CSPWR calibration to fullyoptimize the hardware.

NOTE

Page 262: Drive test.pdf

GSM-100-423Preserve transceiver calibration feature

31st Jul 015–4

Installation & Configuration: BSS Optimization

68P02901W43-J

Subsequentreplacement ofcalibration data

To replace the preserved calibration data with new calibration data, proceed as follows:

1. Lock the DRI of the transceiver as follows:

lock_device <location> DRI <device_id1> <device_id2>[<device_id3>]

2. At the OMC or BSC, clear the previously stored calibration from the CM databasefor the specified transceiver:

clear_cal_data <location> DRI <device_id1> <device_id2>[<device_id3>]

3. Confirm the data has been cleared from the CM database for the specifiedtransceiver:

disp_cal_data <location> DRI <device_id1> <device_id2>[<device_id3>]

The response should be:

NO DATA AVAILABLE

4. Carry out bay level and CSPWR procedures, as described in the relevant sectionof this manual.

5. Unlock the DRI of the transceiver as follows:

unlock_device <location> DRI <device_id1> <device_id2>[<device_id3>]

This calibration data will be stored in the master CM database at the BSC, which is thenused to update the CM database copy at the BTS only if the data is valid.

Page 263: Drive test.pdf

GSM-100-423 Preserve transceiver calibration feature

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 5–5

Replacing atransceiver usingnew data

Replace a transceiver using immediate new calibration data as follows:

1. Lock the DRI of the transceiver to be replaced as follows:

lock_device <location> DRI <device_id1> <device_id2>[<device_id3>]

2. At the OMC or BSC, clear the previously stored calibration from the CM databasefor the specified transceiver:

clear_cal_data <location> DRI <device_id1> <device_id2>[<device_id3>]

3. Confirm the data has been cleared from the CM database for the specifiedtransceiver:

disp_cal_data <location> DRI <device_id1> <device_id2>[<device_id3>]

The response should be:

NO DATA AVAILABLE

4. Replace the transceiver with the new transceiver.

5. Carry out bay level and CSPWR procedures, as described in the relevant sectionof this manual.

6. Unlock the DRI of the transceiver as follows:

unlock_device <location> DRI <device_id1> <device_id2>[<device_id3>]

This calibration data will be stored in the master CM database at the BSC, which is thenused to update the CM database copy at the BTS only if the data is valid.

Page 264: Drive test.pdf

GSM-100-423Preserve transceiver calibration feature

31st Jul 015–6

Installation & Configuration: BSS Optimization

68P02901W43-J

Viewing thecalibration datain CM database

View the current calibration data in the CM database as follows:

1. Lock the DRI of the transceiver to be checked:

lock_device <location> DRI <device_id1> <device_id2>[<device_id3>]

2. Display the CM database calibration data.

disp_cal_data <location> DRI <device_id> <device_id2>[<device_id3>]

The response should be:

DRI ID: (device id1) (device id2) (device id3)

Data read from CM database

Calibration data (all values in hex)

Transmit power offset = (CSPWR offset)

Receive system data:

Antenna Number 1 2 3 4 5 6

Six columns of bay level offset calibration data will be displayed as explained below:

Table 5-1 Explanation of offset calibration data presentation per row

Column: 1 2 3 4 5 6

is branch: 1 1 1 2 2 2

and antenna: 1 2 3 1 2 3

The number of rows of offset calibration data are as follows:

� GSM900 – 16 values

� EGSM900 – 22 values

� DCS1800 – 47 values

� PCS1900 – 37 values

Page 265: Drive test.pdf

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J i

Chapter 6

M-Cellcity/M-Cellcity+ optimization

Page 266: Drive test.pdf

GSM-100-423

31st Jul 01ii

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 267: Drive test.pdf

GSM-100-423

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J iii

Chapter 6M-Cellcity/M-Cellcity+ optimization i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M-Cellcity/M-Cellcity+ optimization 6–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Optimization overview 6–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Test equipment and test leads 6–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 6–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 6–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test cable 6–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Code download 6–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 6–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCMCIA card 6–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Code download from PCMCIA 6–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 6–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 6–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for test 6–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCMCIA download procedure 6–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking VSWR and output power 6–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 6–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking the transmit output power 6–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BCCH swap procedure 6–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Download from BSC 6–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Download Procedure with example results 6–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Site status check procedure 6–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Battery check 6–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 6–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 6–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 6–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Battery test 6–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking the E1/T1 link 6–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 6–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 6–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 6–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for the test 6–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Running the test 6–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fitting chassis bottom cover 6–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating an MCU-m GCLK 6–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 6–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equipment 6–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 6–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 268: Drive test.pdf

GSM-100-423

31st Jul 01iv

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 269: Drive test.pdf

GSM-100-423 M-Cellcity/M-Cellcity+ optimization

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 6–1

M-Cellcity/M-Cellcity+ optimization

Optimizationoverview

This chapter provides information required for the optimization of anM-Cell�city/M-Cell�city+ enclosure.

It is likely that some equipment at the site may not be produced by Motorola.Examples of such equipment may include battery chargers, power supplies,and antennas. Refer to site specific documentation and the vendorinstructions provided with non-Motorola equipment.

NOTE

Before starting the optimization, the site should be prepared and the equipment installedas detailed in the appropriate service manual GSM-201-020 Service Manual M-Cellcityand M-Cellcity+ and the site specific documentation.

Whenever there is a reference to M-Cellcity, the procedure is also applicable toM-Cellcity+ except where stated.If the E1/T1 link is not active at the time an M-Cellcity is commissioned, it willnot be possible to download code directly from the BSC.

NOTE

Optimization of an M-Cellcity enclosure consists of the following sections:

Section Description

Test equipment & test leads. Details of the equipment necessary to performcommissioning.

Checking the E1/T1 link. This procedure verifies the integrity of the E1/T1 linkback to the BSC.

Code download. Downloading a BSS software load for testingpurposes.

Checking the VSWR andtransmit output power.

This procedure verifies the transmitter output poweris correct.

Checking the databaseequipage.

Verifying that the just loaded software contains thenecessary features and functions.

Page 270: Drive test.pdf

GSM-100-423Test equipment and test leads

31st Jul 016–2

Installation & Configuration: BSS Optimization

68P02901W43-J

Test equipment and test leads

Introduction

The test equipment listed in Table 6-1 is required to carry out the optimization tests in thischapter. The tool kits listed in the appropriate service manual GSM-201-020 ServiceManual M-Cellcity and M-Cellcity+ may also be necessary.

Calibrate all test leads before using them in the procedures given in this chapter. Thisminimizes variations in test results.

A recognised laboratory must calibrate all test equipment annually. Do notcalibrate test equipment or test leads in the field.

Ensure that all test equipment associated with optimization of Motorola CellularBase Stations is within calibration date.

CAUTION

Page 271: Drive test.pdf

GSM-100-423 Test equipment and test leads

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 6–3

Test equipment

Table 6-1 Required optimization test equipment

Quantity Description Comments

1 IBM compatible 486 DX2 or DX4portable Personal Computer (PC).

The basic requirements are:

� TFT colour screen.

� 170 Mbyte hard drive(minimum).

� Minimum 4 Mbyte RAM(minimum) or 8 Mbyte(recommended).

� 3.5 inch floppy drive.

� Serial port.

� CD-ROM drive(recommended).

� PCMCIA (Type 2)compatible slot.

� Windows 3.1 loaded andrunning in 386 enhancedmode.

� Battery power.

1 Signal generator

1 Rubidium standard Minimum accuracy 1 x 10–10

1 Frequency counter

1 Commercial terminal emulatorsoftware

PC PLUS or similar software

1 Digital multimeter Hewlett Packard E2378A orequivalent

1 RF 50 ohm dummy load 50 W minimum

1 Transportable cellphone

1 ESD protection kit

1 RF adaptor kit RTLXQ98088 or equivalent

1 N to 7/16 adaptor

1 N to N adaptor

1 RF wattmeter with 5W, 10 W, 25 Wand 50 W elements

Bird model 43P or equivalent

1 2 metre N to N male coaxial cable Must be calibrated

1 4 metre N to N male coaxial cable Must be calibrated

1 9-way to 37-way cable TTY cable (See Figure 6-1 for pinconnections)

6 HIM-75 (Type 43) loop-backcables, 9 inches (23 cm) long

1 HIM-120 loop-back plug

Page 272: Drive test.pdf

GSM-100-423Test equipment and test leads

31st Jul 016–4

Installation & Configuration: BSS Optimization

68P02901W43-J

Test cable

Pin connections for the 9-way to 37-way test cable referred to in Table 6-1 are detailed inFigure 6-1.

1

3

4

2

5

6

8

9

7

MMI_TXD

MMI_RXD

GROUND

MMI_RXD

GROUND

1

3

4

2

5

6

8

7

MMI_TXD

(9-way) (37-way)

37

|

Figure 6-1 9-way to 37-way cable pin connections

Page 273: Drive test.pdf

GSM-100-423 Code download

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 6–5

Code download

Introduction

For the purposes of testing, the M-Cellcity must be installed with system software. Howfar overall network installation has progressed will dictate the source of this software.

At initial loading, or when new system software is distributed to the system, the systemsoftware is downloaded from the BSC.

To perform a code download to an M-Cellcity, the BSC must be equipped witha CSFP facilty.

NOTE

Once the BSC has established connection, it will automatically download operationalcode. This procedure takes approximately 30 minutes.

If the BSC is not yet able to perform this download process, the M-Cellcity enclosure isprovided with software loaded on a PCMCIA card.

PCMCIA card

The MCU-m has a PCMCIA socket. A PCMCIA flash card containing data is permanentlyinserted. The use of a flash card containing operational code provides the followingadvantages:

� The time taken to download code from the BSC may be significantly shortened,since the BSC only downloads objects that are missing, corrupted or out of date.

� The MCU-m automatically saves its code on the PCMCIA flash card, which isnon-volatile. The advantage of this is that in the event of a power failure leading tosystem shutdown, the code will not have to be downloaded again from the BSCand so the system may be restored to call processing status as quickly aspossible.

� The M-Cellcity may be commissioned without the presence of an active E1/T1 link,if the necessary code is contained on the PCMCIA flash card.

Page 274: Drive test.pdf

GSM-100-423Code download from PCMCIA

31st Jul 016–6

Installation & Configuration: BSS Optimization

68P02901W43-J

Code download from PCMCIA

Introduction

The PCMCIA downloads the code to the equipment in preparation for optimization of theM-Cellcity.

This method requires a valid software load on a PCMCIA card and that the E1/T1 link isNOT connected.

Test equipment

The following test equipment is required to be connected before proceeding with thetests:

� An IBM compatible Personal Computer (PC).

� Terminal emulator software.

� A Bird model 43P (Thru-line) wattmeter, or equivalent, with 2.5W element.

� A 9-way to 37-way cable (a diagram of this cable is provided in the Testequipment, leads and plugs section).

Preparing for test

The ac-dc PSM must not be powered up during the following preparations.

NOTE

1. Ensure the E1/T1 link is not connected.

This connection will allow monitoring of the download sequence and at the endof a successful download allows input of MMI commands.

NOTE

2. Connect the 9-way to 37-way cable from serial A port to the user TTY MCU-m port(37-way D-type located beside the HIM module).

3. Connect the wattmeter, with 2.5W element in series with the antenna port and theantenna at the bottom of the cabinet.

4. Follow the procedure detailed in PCMCIA download

Page 275: Drive test.pdf

GSM-100-423 Code download from PCMCIA

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 6–7

PCMCIAdownloadprocedure

1. Switch on the ac-dc PSM and observe the download process.

The following example log can be used as a guide.

!!! REBOOT !!!

RSR=0xc0 PA12=0 PA11=1Reset due to power resetChecking DRAM: 16 of 16 MB completeMotorola MCU Boot Software Version 1.4.0.6.5 15–Jul–96Copyright 1996, Motorola IncorporatedBoard type is MCU–microQUICC microcode revision 0x0082PCMCIA: Intel Series 2+ Flash detected in socket 0Turning caches oncaches are ONtaking PCMCIA version of object 2taking PCMCIA version of object 12taking PCMCIA version of object 13taking PCMCIA version of object 32taking PCMCIA version of object 34taking PCMCIA version of object 36taking PCMCIA version of object 48taking PCMCIA version of object 49taking PCMCIA version of object 50taking PCMCIA version of object 51taking PCMCIA version of object 52taking PCMCIA version of object 63taking PCMCIA version of object 67taking PCMCIA version of object 68taking PCMCIA version of object 70taking PCMCIA version of object 71taking PCMCIA version of object 72taking PCMCIA version of object 75taking PCMCIA version of object 76taking PCMCIA version of object 77taking PCMCIA version of object 79taking PCMCIA version of object 97taking PCMCIA version of object 112taking PCMCIA version of object 113taking PCMCIA version of object 145taking PCMCIA version of object 160taking PCMCIA version of object 162taking PCMCIA version of object 163taking PCMCIA version of object 164taking PCMCIA version of object 165taking PCMCIA version of object 166taking PCMCIA version of object 177taking PCMCIA version of object 200taking PCMCIA version of object 201taking PCMCIA version of object 202MMI–ROM 0000 –>MMI–ROM 0000 –> y

2. At the MMI prompt enter:

chg_l

This initiates a security level change.

MMI-ROM 1015 –> chg_lEnter the password for security level you wish to access:

These are the standard level 2 and 3 passwords

Enter password for security level you wish to access:Current security level is 3

Page 276: Drive test.pdf

GSM-100-423Code download from PCMCIA

31st Jul 016–8

Installation & Configuration: BSS Optimization

68P02901W43-J

3. Once level 3 access is confirmed switch to the executive monitor (emon) byselecting keys Ctrl and N together.

At security level 3 the executive monitor (emon) must be selected to view thedownload.

NOTE

MCU:emon_1015 %MCU:emon_0000 %MIP: Starting Micro IPMIP: In slot 0MIP: csfp_swap value is 0MIP: Reset type is x4.MIP: Initializing Codeload structuresMIP: Creating Mailboxes...MIP: Performing Hard Reset.MIP: Now master MCU...MIP: Starting to contact BSC.MIP: Establishing links to NIU frame 0, slot 0MIP: Establishing links to NIU frame 1, slot 0NG EXEC DLSP dl_message_con: Control mailbox opened for channel 1, =c0003120NG EXEC DLSP dl_message_con: Control mailbox opened for channel 3, =c0003120

MCU:emon_1015 % NG EXEC_DLSP process_hdlc_msg: LINK ESTABLISHED for channel1,Link Mailbox id = 1001MIP: HDLC link connected on frame 0, slot 0MIP: CPU assigned ok on frame 0, slot 0MIP: Link state 2MIP: Query of NIU successful on frame 0, slot 0MIP: NIU configured ok on frame 0, slot 0MIP: Establishing second RSL from MCU to the BSC over NIU frame 0, slot 0,span 1MIP: Activated LAPD on frame 0, slot 0MIP: NIU configured ok on frame 0, slot 0, span 1NG EXEC DLSP dl_message_con: Control mailbox opened for channel 5, =c0003120MIP: SAP open ok on frame 0, slot 0NG EXEC_DLSP process_hdlc_msg: LINK ESTABLISHED for channel 5, Link Mailboxid= 9001MIP: HDLC link connected on frame 0, slot 0, span 1MIP: Link state 2MIP: Query of NIU successful on frame 0, slot 0, span 1MIP: Activated LAPD on frame 0, slot 0, span 1MIP: SAP open ok on frame 0, slot 0, span 1MIP: Bad EXEC DLSP return code 1MIP: HDLC link failed to connect on frame 1, slot 0 with code 5MIP: Tag 0x00 indicates nv_write successful!

MCU:emon_1015 %MCU:emon_1015 %MMI–ROM 1015 –> MMI–ROM 1015 –> set_s 1

At this point, the operator should use the set_s <X> command where X is thesite id for the Mcellcity site equipped on the PCMCIA database. This will

never be the value of 0 for Mcell productsSetting subsystem to 2 for site 1

Process 0x95 (Temp CM) requested a self–initiated soft reset

!!! REBOOT !!!

Reset due to self–initiated soft resetPCMCIA: Intel Series 2+ Flash detected in socket 0Turning caches on

Page 277: Drive test.pdf

GSM-100-423 Code download from PCMCIA

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 6–9

caches are ONMMI–ROM 0000 –>MMI–ROM 0000 –> MMI–RAM 1015 –> Waiting for System Initialization to complete.....MMI–RAM 1015 –> chg_l

Enter password for security level you wish to access:These are the standard level 2 and 3 passwords

Enter password for security level you wish to access:Current security level is 3MMI–RAM 1015 –>MCU:emon_1015 %MCU:emon_0000 %MIP: Starting Micro IPMIP: In slot 0MIP: csfp_swap value is 0MIP: Reset type is x2000000.MIP: Current seconds is 31.MIP: Soft reset count read is 0.MIP: Writing time 31, count 1.MIP: Initializing Codeload structuresMIP: Creating Mailboxes...MIP: Performing Soft Reset.

CM: DB size is = 2046040CM: EXEC has just allocated DB spaceCM: Stored DB Checksum = 51a73f4CM: Calculated DB Checksum = 51a73f4CM: DB Validity: 0CM: Send DB Status message to IP process.CM: DB Status response from IP = 0.CM: Site number 1, Subsystem 2MIP: Starting creator

MCU:emon_1015 % MIP: Tag 0x00 indicates nv_write successful!SAP CONFIGUREDNG EXEC DLSP dl_message_con: Control mailbox opened for channel 7, =c0003120NG EXEC_DLSP process_hdlc_msg: LINK ESTABLISHED for channel 7, Link Mailboxid = 1005NG EXEC DLSP dl_message_disc: DL_DISCONNECT_REQ SUCCESSFUL. Waiting for confirm before deleting mbox. Channel = 7.HDLC/set_t2_timer: NO chnls ACTIVE, dev index is 3mSM: POOL SIZE = 95552SM: PORT DATABASE INITIALIZEDSM: HASH TABLES INITIALIZEDmSM: Redundant MSW is OOS

<*><*><*> mSM & MSW(s) CONFIGURED <*><*><*>NG EXEC DLSP dl_message_con: Control mailbox opened for channel 30, =c0003120

NG EXEC DLSP dl_message_con: Control mailbox opened for channel 31, =c0003120NG EXEC DLSP dl_message_con: Control mailbox opened for channel 1, =c0003120NG EXEC_DLSP process_hdlc_msg: LINK ESTABLISHED for channel 30, LinkMailbox id = 2017NG EXEC_DLSP process_hdlc_msg: LINK ESTABLISHED for channel 31, LinkMailbox id = 2018NG EXEC_DLSP process_hdlc_msg: LINK ESTABLISHED for channel 1, Link Mailboxid= 1001NG EXEC DLSP dl_message_con: Control mailbox opened for channel 30, =c0003120NG EXEC DLSP dl_message_con: Control mailbox opened for channel 31, =c0003120HDLC/set_t2_timer: NO chnls ACTIVE, dev index is 0NG EXEC_DLSP process_hdlc_msg: LINK ESTABLISHED for channel 30, LinkMailbox id = 2017NG EXEC_DLSP process_hdlc_msg: LINK ESTABLISHED for channel 31, LinkMailbox id = 2018

Page 278: Drive test.pdf

GSM-100-423Code download from PCMCIA

31st Jul 016–10

Installation & Configuration: BSS Optimization

68P02901W43-J

MIP: Starting codeload; getting list for cpu 0x2017.MIP: Starting codeload; getting list for cpu 0x2018.MIP: Sending download OK no objects to load to CA for CPU 0x2017MIP: Sending download OK no objects to load to CA for CPU 0x2018

MMI–RAM 1015 –>disp_p <site no>

Where <site no> is the site id of the mcellcity in the database.

this will never be a value of 0 for Mcell products.

PROCESSOR STATUS INFORMATION FOR LOCATION 1:OPER STATES: D:Disabled E:Enabled B:BusyADMIN STATES: L:Locked U:Unlocked E:Equipped NE:Not Equipped

CPU#

Processorname

State State reason Relateddevice

Relatedfunction

1015 BTP 00 B–U NO REASON N/A N/A

2017 DRI 0 0 E–U GCLK Not Warm N/A N/A

2018 DRI 0 1 E–U GCLK Not Warm N/A N/A

MCU:emon_1015 % SITE 0 initialization completeMMI–RAM 1015 –> Database display commands accepted.MMI-RAM 1015 –> Initialization complete. All commands accepted.***** The MIP will wait for Gclk warm up timer to elapse beforeproceeding********** This is currently 30 minutes *****MMI-RAM 1015 –>MMI–RAM 1015 –>disp_p <site no>

PROCESSOR STATUS INFORMATION FOR LOCATION 1:OPER STATES: D:Disabled E:Enabled B:BusyADMIN STATES: L:Locked U:Unlocked E:Equipped NE:Not Equipped

Page 279: Drive test.pdf

GSM-100-423 Code download from PCMCIA

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 6–11

CPU#

Processorname

State State reason Relateddevice

Relatedfunction

1015 BTP 00 B–U NO REASON N/A N/A

2017 DRI 0 0 (RTF 0 0)

B–U NO REASON N/A N/A

2018 DRI 0 1(RTF 0 1)

E–U NO REASON N/A N/A

END OF STATUS REPORT

MMI-RAM 1015 –>MMI-RAM 1015 –> Initialization complete. All commands accepted.MMI-RAM 1015 –>MCU:emon_1015 % rlogin 2 2017hTo see the initialization of the transceivers, use the rlogin command, e.g. rlogin <site id + 1> processor id

RSS:emon_2017% dri_activate: rec’d DRI_ACT for dri 0send_abis_dri_act: sending a RSS_ABIS_ACT for DRI 0 to Abis.send_ceb_activate: sending a ACTIVATE_REQ to CEB.send_dri_act_suc: sending a DRI_ACTIV_SUCCESS for DRI 0 to FM.send_chan_create: sending a CHAN_CREATE for DRI 0 to Layer 2.prc_rss_msgs: rec’d INS_CONF: DRI 0, timeslot 7, type: TCH (full rate)prc_rss_msgs: rec’d INS_CONF: DRI 0, timeslot 6, type: TCH (full rate)prc_rss_msgs: rec’d INS_CONF: DRI 0, timeslot 5, type: TCH (full rate)prc_rss_msgs: rec’d INS_CONF: DRI 0, timeslot 4, type: TCH (full rate)prc_rss_msgs: rec’d INS_CONF: DRI 0, timeslot 3, type: TCH (full rate)prc_rss_msgs: rec’d INS_CONF: DRI 0, timeslot 2, type: TCH (full rate)prc_rss_msgs: rec’d INS_CONF: DRI 0, timeslot 1, type: TCH (full rate)prc_rss_msgs: rec’d INS_CONF: DRI 0, timeslot 0, type: BCCH - SDCCH/4combined

This completes the PCMCIA download. Proceed with the Checking VSWRand output power, BCCH swap checks.

NOTE

Page 280: Drive test.pdf

GSM-100-423Checking VSWR and output power

31st Jul 016–12

Installation & Configuration: BSS Optimization

68P02901W43-J

Checking VSWR and output power

Introduction

The objective of the output power check is to verify the predefined maximum transmitteroutput power of an M-Cellcity enclosure.

Checking thetransmit outputpower

The database is configured to emit full power on channel 60. To check the transmitoutput power:

1. Monitor and record the wattmeter reading (the forward power).

2. Replace the 2.5 W element in the wattmeter with an element suitable formeasuring 5 % of maximum power and reverse the direction on the power meter.

3. Monitor and record the reverse power reading.

If the ratio of the forward and reverse readings is unacceptable (>5%), suspectan improper termination of the antenna feeder and connector.

NOTE

4. Steps 5, 6 and 7 cannot be performed unless the RSL is unlocked busy.

Changing frequencies in a live network can cause interference to adjacentsites.

CAUTION

5. For GSM frequencies repeat steps 1 to 3 for Channels 3 and 123.

6. For EGSM frequencies repeat steps 1 to 3 for channels 3, 123, 987 and 1002.

7. Enter the following command:

chg_rtf_freq # <location><rtf_id1><rtf_id2>

Where: is:

# Absolute FrequencyChannel. 1 to 124

location 0 = bsc/ 1 to 50 = bts

rtf_id1 first device id. 0 to 5

rtf_id2 second device id. 0 to 24

An example of this command would be:

chg_rtf_freq 59 1 0 0

This changes the frequency channel to 59 for RTF 0 0 at BTS 1.

8. Repeat steps 1 to 7 for the second carrier by swapping the BCCH carrier, asdescribed next in BCCH swap procedure.

9. Switch off the ac power to the M-Cellcity.

Page 281: Drive test.pdf

GSM-100-423 Checking VSWR and output power

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 6–13

BCCH swapprocedure

To carry out the test proceed as follows:

1. At the MMI-RAM 1015 prompt enter:

disp_site

This will give the site number.

2. At the MMI–RAM 1015 prompt enter:

disp_equip <site no>

This will display the equipment at the specified site as follows:

MMI-RAM 1015 –>CFSP 0 0 0BTP 0 0 0 DRI 0 0 0DRI 0 1 0MSI 0 0 0MMS 0 0 0MMS 01 0RSL 0 0 0GCLK 0 0 0CAB 0 0 0SITE 0 0 0PATH 0 0 0RTF 0 0 0RTF 0 1 0

3. At the MMI-RAM 1015 prompt enter:

LOCK <site no> dri 0 0 0

4. When the command is accepted at the MMI-RAM 1015 prompt enter:

disp_p 1

The processor status for location 1 will be displayed:

PROCESSOR STATUS FOR LOCATION 1:

OPER STATES: D:Disabled E:Enabled B:Busy

ADMIN STATES: L:Locked U:Unlocked E:Equipped NE:Not Equipped

CPU# Processor Name State Reason

Related

Device

Related

Device

–––– –––––––––––––––––– ––––– –––––––––– –––––––––– ––––––––––

1015 BTP 0 0 B – U NO REASON N/A N/A

2017 DRI 0 0 (RTF 0 0) E – L NO REASON N/A N/A

2018 DRI 0 1 (RTF 0 1) B – U NO REASON N/A N/A

END OF STATUS REPORT

Ensure that the RTF on carrier DRI 0 0 has moved to DRI 0 1.

Page 282: Drive test.pdf

GSM-100-423Checking VSWR and output power

31st Jul 016–14

Installation & Configuration: BSS Optimization

68P02901W43-J

5. At the MMI–RAM 1015 prompt enter:

UNLOCK <site no> dri 0 0 0

6. When this command is accepted at the MMI-RAM prompt enter:

Enter: LOCK<site no> dri 0 1 0

7. When this command is accepted at the MMI-RAM prompt enter:

Enter: disp_p 1

The proessor status information for location 1 will be displayed:

PROCESSOR STATUS INFORMATION FOR LOCATION 1:

OPER STATES: D:Disabled E:Enabled B:Busy

ADMIN STATES: L:Locked U:Unlocked E:Equipped NE:Not Equipped

CPU # Processor Name State Reason

Related

Device

Related

Function

–––– –––––––––––––––––– ––––– –––––––––– –––––––––– ––––––––––

1015 BTP 0 0 B - U NO REASON N/A N/A

2017 DRI 0 0 (RTF 0 0) B - E NO REASON N/A N/A

2018 DRI 0 1 (RTF 0 1) E - L NO REASON N/A N/A

END OF STATUS REPORT

Ensure that the RTF on carrier DRI 0 1 has moved to DRI 0 0

8. At the MMI-RAM prompt enter:

UNLOCK<site no> dri 0 1 0

When this command is accepted, ensure that both DRIs are unlocked and busy.

This completes the BCCH swap procedure.

Page 283: Drive test.pdf

GSM-100-423 Download from BSC

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 6–15

Download from BSC

DownloadProcedure withexample results

1. Connect the E1/T1 link to the euipment.

2. Switch on the ac power to the M-Cellcity.

Wait for the equipment to link to the BSC and verify that the normal download fromthe BSC takes place.

The BSC will overwrite the data in the PCMCIA card when it attempts toperform a normal download function.

NOTE

A log of the BSC download is shown following and should be used as a guide

The following will only be seen if there is an E1/T1 link to the BSC and theBSC holds a database for the M-Cellcity site. The download will takeapproximately 30 minutes.

NOTE

!!! REBOOT !!!

RSR =0xc0 PA12=0 PA11=1Reset due to power resetChecking DRAM: 16 of 16 MB completeMotorola MCU Boot Software Version 1.4.0.6.5 15-Jul-96Copyright 1996, Motorola IncorporatedBoard type is MCU-microQUICC microcode revision 0x0082PCMCIA: Socket 0 emptyTurning caches oncaches are ONMMI–ROM 0000 –>MMI–ROM 0000 –> y

3. At the MMI prompt enter:

chg_l

This initiates a security level change.

MMI–ROM 1015 –> chg_lEnter password for security level you wish to access:

These are the standard level 2 and 3 passwords

Enter password for security level you wish to access:Current security level is 3

Page 284: Drive test.pdf

GSM-100-423Download from BSC

31st Jul 016–16

Installation & Configuration: BSS Optimization

68P02901W43-J

4. Once level 3 access is confirmed switch to the executive monitor (emon) byselecting keys Ctrl and N together.

At security level 3 the executive monitor (emon) must be selected to view thedownload.

NOTE

MCU:emon_1015 %MCU:emon_0000 %MIP: Starting Micro IPMIP: In slot 0MIP: csfp_swap value is 0MIP: Reset type is x4.MIP: Initializing Codeload structuresMIP: Creating Mailboxes...MIP: Performing Hard Reset.MIP: Now master MCU...MIP: Starting to contact BSC.MIP: Establishing links to NIU frame 0, slot 0MIP: Establishing links to NIU frame 1, slot 0NG EXEC DLSP dl_message_con: Control mailbox opened for channel 1,= c0003120NG EXEC DLSP dl_message_con: Control mailbox opened for channel 3,= c0003120

MCU:emon_1015 % NG EXEC_DLSP process_hdlc_msg: LINK ESTABLISHED forchannel 1,Link Mailbox id = 1001MIP: HDLC link connected on frame 0, slot 0MIP: CPU assigned ok on frame 0, slot 0MIP: Link state 2MIP: Query of NIU successful on frame 0, slot 0MIP: NIU configured ok on frame 0, slot 0MIP: Establishng second RSL from MCU to the BSC over NIU frame 0,slot 0, span 1MIP: Activated LAPD on frame 0, slot 0MIP: NIU configured ok on frame 0, slot 0, span 1NG EXEC DLSP dl_message_con: Control mailbox opened for channel 5,= c0003120MIP: SAP open ok on frame 0, slot 0NG EXEC_DLSP process_hdlc_msg: LINK ESTABLISHED for channel 5, LinkMailbox id= 9001MIP: HDLC link connected on frame 0, slot 0, span 1MIP: Link state 2MIP: Query of NIU successful on frame 0, slot 0, span 1MIP: Activated LAPD on frame 0, slot 0, span 1MIP: SAP open ok on frame 0, slot 0, span 1MIP: Sending CA polling messageMIP: Bad EXEC DLSP return code 1MIP: HDLC link failed to connect on frame 1, slot 0 with code 5MIP: Tag 0x00 indicates nv_write successful!MIP: Received Subsystem State Query message. Subsystem = 2, levelnumber 263eMIP: BSC-MCELL Code Downloading in Progress...MIP: Tag 0x00 indicates nv_write successful!

MCU:emon_1015 %

Load version information not present

MCU:emon_1015 % Uncompressing MCU used objectsMIP: Code Downloading complete

Page 285: Drive test.pdf

GSM-100-423 Download from BSC

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 6–17

MIP: Creating CM and MMIMIP: Disconnecting RSLNG EXEC DLSP dl_message_disc: DL_DISCONNECT_REQ SUCCESSFUL. Waitingfor confirm before deleting mbox. Channel = 1.NG EXEC DLSP dl_message_disc: DL_DISCONNECT_REQ SUCCESSFUL. Waitingfor confirm before deleting mbox. Channel = 5.MIP: Terminate HDLC frame 1 slot 0 receivedNG EXEC DLSP dl_message_disc: DL_DISCONNECT_REQ SUCCESSFUL. Waitingfor confirm before deleting mbox. Channel = 1.MMI–RAM 1015 –>MMI–RAM 1015 –>MMI-RAM 1015 –> Waiting for System Initialization to complete.MMI-RAM 1015 –> Database display commands accepted.MMI-RAM 1015 –> Initialization complete. All commands accepted.MMI-RAM 1015 –>MMI–RAM 1015 –>chg_lEnter password for security level you wish to access:

These are the standard level 2 and level 3 passwords.

Enter password for security level you wish to access:Current security level is 3MMI-RAM 1015 –>

Once level 3 access is confirmed switch to the executive monitor (emon) byselecting keys Ctrl and N together.

MCU:emon_1015 % fore deleting mbox. Channel 3.MIP: Leaving RSL threadMIP: HDLC Link to the NIU disconnected successfullyMIP: Leaving second RSL thread

CM: DB size is 2046040CM: EXEC has just allocated DB spaceCM: Stored DB Checksum =51a701dCM: Calculated DB Checksum =51a701dCM: DB Validity: 0CM: Send DB Status message to IP processCM: DB status response from IP =11

CM: Set level number to x0 x0 x26 x3e per IP.CM: Site number 1, Subsystem 2CM: Reassigning DB for the site.HDLC/sabm_timeout_func: Channel 3 not being established or SABMs areoutstanding

Skipping transmit of SABM. Channel state is 0HDLS/set_t2_timer: NO chnls ACTIVE, dev index is 1MIP: Starting creatorNG EXEC DLSP dl_message_con: Control mailbox opened for channel 2,=c0003120.NG EXEC DLSP dl_message_con: Control mailbox opened for channel 4,=c0003120NG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 4, LinkMailbox id = 104NG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 2, LinkMailbox id = 102NG EXEC DLSP dl_message_disc: DL_DISCONNECTP_REQ SUCCESSFUL. Waitingfor confirm before deleting mbox. Channel = 2NG EXEC DLSP dl_message_disc: DL_DISCONNECTP_REQ SUCCESSFUL. Waitingfor confirm before deleting mbox. Channel = 4NG EXEC DLSP dl_message_con: Control mailbox opened for channel 6,=c0003120.NG EXEC DLSP dl_message_con: Control mailbox opened for channel 7,=c0003120.

Page 286: Drive test.pdf

GSM-100-423Download from BSC

31st Jul 016–18

Installation & Configuration: BSS Optimization

68P02901W43-J

NG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 7, LinkMailbox id = 107NG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 6, LinkMailbox id = 106NG EXEC DLSP dl_message_disc: DL_DISCONNECTP_REQ SUCCESSFUL. Waitingfor confirm before deleting mbox. Channel = 6NG EXEC DLSP dl_message_disc: DL_DISCONNECTP_REQ SUCCESSFUL. Waitingfor confirm before deleting mbox. Channel = 7HDLS/set_t2_timer: NO chnls ACTIVE, dev index is 3NG EXEC DLSP dl_message_con: Control mailbox opened for channel 8,=c0003120.NG EXEC DLSP dl_message_con: Control mailbox opened for channel 9,=c0003120.NG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 9, LinkMailbox id = 109NG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 8, LinkMailbox id = 108NG EXEC DLSP dl_message_disc: DL_DISCONNECTP_REQ SUCCESSFUL. Waitingfor confirm before deleting mbox. Channel =8NG EXEC DLSP dl_message_disc: DL_DISCONNECTP_REQ SUCCESSFUL. Waitingfor confirm before deleting mbox. Channel = 9NG EXEC DLSP dl_message_con: Control mailbox opened for channel 14,=c0003120.NG EXEC DLSP dl_message_con: Control mailbox opened for channel 15,=c0003120.NG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 15, LinkMailbox id = 10fNG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 14, LinkMailbox id = 10eNG EXEC DLSP dl_message_disc: DL_DISCONNECTP_REQ SUCCESSFUL. Waitingfor confirm before deleting mbox. Channel =14NG EXEC DLSP dl_message_disc: DL_DISCONNECTP_REQ SUCCESSFUL. Waitingfor confirm before deleting mbox. Channel =15NG EXEC DLSP dl_message_con: Control mailbox opened for channel 20,=c0003120.NG EXEC DLSP dl_message_con: Control mailbox opened for channel 21,=c0003120.NG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 21, LinkMailbox id = 115NG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 20, LinkMailbox id = 114NG EXEC DLSP dl_message_disc: DL_DISCONNECTP_REQ SUCCESSFUL. Waitingfor confirm before deleting mbox. Channel =20NG EXEC DLSP dl_message_disc: DL_DISCONNECTP_REQ SUCCESSFUL. Waitingfor confirm before deleting mbox. Channel =21NG EXEC DLSPNG EXEC DLSP dl_message_con: Control mailbox opened for channel 31,=c0003120.NG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 31, LinkMailbox id = 11fNG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 30, LinkMailbox id = 11eNG EXEC DLSP dl_message_disc: DL_DISCONNECTP_REQ SUCCESSFUL. Waitingfor confirm before deleting mbox. Channel =30NG EXEC DLSP dl_message_disc: DL_DISCONNECTP_REQ SUCCESSFUL. Waitingfor confirm before deleting mbox. Channel =31SAP CONFIGUREDNG EXEC DLSP dl_message_con: Control mailbox opened for channel 7,=c0003120.NG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 7, LinkMailbox id = 1005NG EXEC DLSP dl_message_disc: DL_DISCONNECTP_REQ SUCCESSFUL. Waitingfor confirm before deleting mbox. Channel =7HDLS/set_t2_timer: NO chnls ACTIVE, dev index is 3

Page 287: Drive test.pdf

GSM-100-423 Download from BSC

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 6–19

mSM: POOL SIZE = 95552SM: PORT DATABASE INITIALISEDSM: HASH TABLES INITIALISEDmSM: Redundant MSW is OOS

<*><*>mSM &MSW(s) CONFIGURED <*><*>NG EXEC dl_message_con: Control mailbox opened for channel 30,=c0003120.NG EXEC dl_message_con: Control mailbox opened for channel 31,=c0003120.NG EXEC dl_message_con: Control mailbox opened for channel 1,=c0003120.NG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 30, LinkMailbox id = 2017NG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 31, LinkMailbox id = 2018NG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 1, LinkMailbox id = 1001NG EXEC dl_message_con: Control mailbox opened for channel 30,=c0003120.NG EXEC dl_message_con: Control mailbox opened for channel 31,=c0003120.NG EXEC DLSP dl_message_disc: DL_DISCONNECTP_REQ SUCCESSFUL. Waitingfor confirm before deleting mbox. Channel =1HDLS/set_t2_timer: NO chnls ACTIVE, dev index is 0HDLS/set_t2_timer: NO chnls ACTIVE, dev index is 1NG EXEC dl_message_con: Control mailbox opened for channel 1,=c0003120.NG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 1, LinkMailbox id = 1001CA –>RSL | received link CONNECT Indication, site=0NG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 30, LinkMailbox id = 2017MIP: Starting codeload; getting list for cpu 0x2017.NG EXEC DLSP process_hdlc_msg: LINK ESTABLISHED for channel 31, LinkMailbox id = 2018MIP: Starting codeload; getting list for cpu 0x2018.MIP: Sending download OK no objects to CA for CPU 0x2017MIP: Sending download OK no objects to CA for CPU 0x2018SITE 0 initialization complete

MCU:emon_1015 %MCU:emon_1015 %

Once site initialization is complete code objects can be viewed by entering o atthe emon prompt.

NOTE

Page 288: Drive test.pdf

GSM-100-423Download from BSC

31st Jul 016–20

Installation & Configuration: BSS Optimization

68P02901W43-J

5. At the emon prompt type:

MCU:emon_1015 % o

Object

Name Version Date Time Checksum Size S Ty

Object

Specific

000 exec 04.00.06.05 15-Jul-96 17:45 0x012e06b9 0028654 1 09 c8

002 dbase 00.00.03.fd 10-Jan 80 08:40 0x051ad904 02046040 1 03 00263e 0000

003 null 04.00.06.05 15-Jul-96 17:45 0x0003450c 00004024 2 09 c8

006 ec_com 04.00.06.05 15-Jul-96 17:51 0x0018c166 00020451 2 09 c8

007 btask 04.00.06.05 15-Jul-96 17:53 0x0010e287 00014853 2 09 8f

008 mcuboot 04.00.06.05 15-Jul-96 18:03 0x026312ec 00541226 1 09 8f

012 rssboot 04.00.06.05 30-Jul-96 14:09 0x0173c859 00206403 1 12 a0

013 options 04.00.00.00. 16-Jul-96 02:39 0x0002239a 00001144 1 04

018 ex_disp 04.00.06.05 15-Jul-96 17:50 0x00106313 00014317 2 09 c8

020 ex_tty 04.00.06.05 15-Jul-96 17:46 0x00116d64 00014888 2 09 c8

022 ex_ftr 04.00.06.05 15-Jul-96 17:50 0x00109635 00015118 2 09 c8

023 emon 04.00.06.05 15-Jul-96 17:48 0x004cc384 00060259 2 09 c8

032 cp_rrsm 04.00.06.05 15-Jul-96 16:13 0x00d81eac 00183994 2 05 b8

034 cp_crm 04.00.06.05 15-Jul-96 15:48 0x0121d8e8 00238273 2 05 b8

036 cp_cbs 04.00.06.05 15-Jul-96 15:15 0x005eede2 00082377 2 05 b8

048 rs_cfm 04.00.06.05 16-Jul-96 01:30 0x00425c4b 00055194 1 07 b8

049 rs_ho 04.00.06.05 16-Jul-96 01:36 0x005d8826 00077849 1 07 b8

050 rs_lyr1 04.00.06.05 16-Jul-96 01:46 0x00ad05d0 00140093 1 07 b8

051 rs_abis 04.00.06.05 16-Jul-96 01:26 0x007e1df2 00102699 1 07 b8

052 rrs_lyr2 04.00.06.05 16-Jul-96 01:50 0x0031ebab 00043973 1 07 b8

062 mcu_dsp 04.00.06.05 15-Jul-96 17:56 0x00276e74 00033334 2 09 8f

063 fm_msm 04.00.06.05 15-Jul-96 20:53 0x00851f35 00107633 2 09 bf

067 ffm_rtrp 04.00.06.05 15-Jul-96 20:54 0x0012f579 00017236 2 06 f8

068 fm_crtr 04.00.06.05 15-Jul-96 20:16 0x0011210d 00020349 2 06 f8

070 fm_mvp 04.00.06.05 15-Jul-96 21:12 0x0019a77a 00021747 2 09 bf

071 fm_mca 04.00.06.05 16-Jul-96 10:37 0x0230ceac 00443092 2 09 bf

072 fm_sync 04.00.06.5a 19-Jul-96 09:59 0x003a77b6 00046659 2 09 bf

075 fm_ftp 04.00.06.05 15-Jul-96 20:43 0x013269c1 00254001 2 05 f8

076 fm_mmf 04.00.06.05 15-Jul-96 20:49 0x00396ff3 00046977 2 05 b8

077 fm_sap 04.00.06.05 15-Jul-96 20:59 0x005c3ad7 00076969 2 05 f8

079 fm_fcp 04.00.06.05 15-Jul-96 20:22 0x0071b478 00092863 2 17 bf

080 mip 04.00.06.05 15-Jul-96 18:01 0x004b1e00 00057774 2 09 c8

097 st_ssp 04.00.06.05 16-Jul-96 01:53 0x0010488c 00014060 2 05 b8

111 mmi_rom 04.00.06.05 15-Jul-96 18:03 0x0016205d 00019705 1 09 8f

112 om_mmi 04.00.06.05 15-Jul-96 23:58 0x02577383 00502329 2 05 f8

113 om_cm 04.00.06.05 15-Jul-96 22:27 0x026702ad 00485032 2 05 f8

145 ex_tdsm 04.00.06.05 15-Jul-96 17:21 0x001d00a5 00025044 1 06 f8

160 uboot 07.23.00.01 10-Jul-96 15:02 0x000c634e 00008557 1 13 b80000 0000

162 ccdsp e0.01.03.00 25-Jul-96 16:27 0x006f0a97 00060084 1 13 b00001 0220

Page 289: Drive test.pdf

GSM-100-423 Download from BSC

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 6–21

Object

SpecificTySSizeChecksumTimeDateVersion

Object

Name

163 orac_os 24.07.96.01 24-Jul-96 16:13 0x013e41a3 00169637 1 15 b7e401 0090

164 orac_eq 07.23.00.01 23-Jul-96 14:56 0x003650a7 00029550 1 15 b70001 0900

165 TSM_FEP 04.00.06.02 27-Mar-96 17:59 0x00223596 00018752 1 16 b00401 0d00

166 TSM_CC 04.00.06.03 31-May-96 11:26 0x003a2c9f 00032152 1 16 b00400 0d00

177 niu 04.00.06.05 15-Jul-96 10:03 0x00ef3d12 00224870 1 10 bf0004 0d00

200 sync_fw 04.00.06.5a 18-Jul-96 18:15 0x00555515 00076843 1 10 bf0002 0200

201 SCP 04.00.06.04 24-Jun-96 09:35 0x00a644da 00155539 1 08 b80304 0900

202 SEQ 04.00.06.02 01-Feb-96 14:55 0x00168326 00022446 1 08 b80302 0f00

Load version information not presentMCU:emon_1015 %MCU:emon_1015 %

6. At the emon prompt type:

disp_p 1

This displays the processor status information for location 1.

PROCESSOR STATUS INFORMATION FOR LOCATION 1:

OPER STATES: D:Disabled E:Enabled B:Busy

ADMIN STATES: L:Locked U:Unlocked E:Equipped NE:Not Equipped

CPU# Processor Name State Reason

Related

Device

Related

Device

–––– –––––––––––––––––– ––––– ––––––––––––– –––––––– ––––––––

1015 BTP 0 0 B – U NO REASON N/A N/A

2017 DRI 0 0 E – U GCLK Not Warm N/A N/A

2018 DRI 0 1 E – U GCLK Not Warm N/A N/A

END OF STATUS REPORT

***** The MIP will wait for Gclk warm up timer to elapse beforeproceeding********** This is currently 30 minutes*****

MMI-RAM 1015 –>MMI-RAM 1015 –>

Page 290: Drive test.pdf

GSM-100-423Download from BSC

31st Jul 016–22

Installation & Configuration: BSS Optimization

68P02901W43-J

7. At the MMI prompt type:

disp_p 1

The processor status for location 1 will be displayed.

Entering this command after 30 minutes confirms if the GCLK warm-up time haselapsed.

PROCESSOR STATUS FOR LOCATION 1:

OPER STATES: D:Disabled E:Enabled B:Busy

ADMIN STATES: L:Locked U:Unlocked E:Equipped NE:Not Equipped

CPU# Processor Name State Reason

Related

Device

Related

Device

–––– –––––––––––––––––– ––––– ––––––––––––– –––––––– ––––––––

1015 BTP 0 0 B – U NO REASON N/A N/A

2017 DRI 0 0 (RTF 0 0) B – U NO REASON N/A N/A

2018 DRI 0 1 (RTF 0 1) B – U NO REASON N/A N/A

END OF STATUS REPORT

MMI-RAM 1015 –>

This completes the log of the download.

Site status checkprocedure

To check the site status once it is fully operational proceed as follows:

1. At the MMI prompt type:

disp_bss

High level information of all sites supported in the BSS is displayed.

OPER STATES: D:Disabled E:Enabled B:Busy

ADMIN STATES: L:Locked U:Unlcoked E:Equipped NE:Not Equipped S:Shutdown

Site

Site

Status

# of

sectors MCC MNC LAC CI D

0 B - U 0

1 B - U 1 543 21 61713

(F111h)

4368

(1110h)

10

Page 291: Drive test.pdf

GSM-100-423 Download from BSC

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 6–23

2. At the MMI prompt type:

disp_cell_status 1

The cell status for location 1 will be displayed:

Start of report for LOCATION 1:

GSM CELL ID MCC 543 MNC 21

LAC CI

(dec) 61713 1368

(hex) f111h 1110h

–––––––––––––––––––––––––––––––––––––––––––––––––––

Status Barred

Reset in Prog No

SPI in Prog Yes

BSS BSSAP Prhb Yes

MSC BSSAP Prhb No

SPI/MSC SCCP Prhb N/A

Free SDCCH 3

Free TCH/F 15

Free TCH/H 0

In Use SDCCH 1

In Use TCH/F 0

In Use TCH/H 0

End of Report

Page 292: Drive test.pdf

GSM-100-423Download from BSC

31st Jul 016–24

Installation & Configuration: BSS Optimization

68P02901W43-J

3. At the MMI prompt type:

state 1

Device status information for location 1 is displayed.

PROCESSOR STATUS FOR LOCATION 1:

OPER STATES: D:Disabled E:Enabled B:Busy

ADMIN STATES: L:Locked U:Unlocked E:Equipped S:Shutdown

Device State State reason

Last transition related

dd/mm hh:mm:ss Function

CSFP 0 0 0 D - U NO REASON 19/08 10:13:44 None

BTP 0 0 0 B - U NO REASON 19/08 10:13:48 None

DRI 0 0 0 B - U NO REASON 19/08 10:30:29 RTF 0 0 0

DRI 0 1 0 B - U NO REASON 19/08 10:31:18 RTF 0 1 0

MSI 0 0 0 B - U NO REASON 19/08 10:13:50 None

MMS 0 0 0 B - U NO REASON 19/08 10:13:51 None

MMS 0 1 0 D - U Synch Loss OSS

Timer

19/08 10:13:51 None

RSL 0 0 0 B - U NO REASON 22/08 10:58:18 None

GCLK 0 0 0 B - U GCLK in Set

Freq. Mode

19/08 10:24:44 None

CAB 0 0 0 B - U NO REASON 19/08 10:13:44 None

SITE 0 0 0 B - U NO REASON 19/08 10:15:20 None

PATH 0 0 0 B – U NO REASON 22/08 10:58:33 None

FUNCTION STATUS INFORMATION FOR LOCATION 1

OPER STATES: E:Enabled B:Busy ADMIN STATES: E:Equipped

Device State State reason

Last transition related

dd/mm hh:mm:ss Function

RTF 0 0 0 B – E NO REASON 19/08 10:30:09 DRI 0 0 0

RTF 0 1 0 B - E NO REASON 19/08 10:31:04 DRI 0 0 0

END OF STATUS REPORT

Page 293: Drive test.pdf

GSM-100-423 Battery check

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 6–25

Battery check

Introduction

The objective of the battery check is to verify the serviceability of the battery in the eventof an ac mains power supply failure.

Before performing the battery test it is imperative that the battery is fullycharged.The battery takes a minimum of 12 hours to fully charge.

NOTE

Test equipment

The Battery check requires the following test equippment:

� An IBM compatible personal computer (PC).

� Terminal emulator software.

� A 9-way to 37-way cable (a diagram of this cable is provided in the Testequipment and test leads section).

Commands

The following command is to be used to carry out the procedure:

Command Function

state Displays the status of specified devices orfunctions.

Battery test

To test the battery proceed as follows:

1. Ensure the 9-way to 37-way cable from serial A port (on the PC) to the user TTYMCU-m port (37-way D-type located beside the HIM module) is connected

2. Switch off the ac mains supply to the M-Cellcity.

3. With the terminal emulater software running on the PC, at the MMI prompt enter:

state #

Where: # is: location id

An example of this command would be:

state 1

Device status information for location 1 is displayed.

PROCESSOR STATUS FOR LOCATION 1:

OPER STATES: D:Disabled E:Enabled B:Busy

ADMIN STATES: L:Locked U:Unlocked E:Equipped S:Shutdown

Page 294: Drive test.pdf

GSM-100-423Battery check

31st Jul 016–26

Installation & Configuration: BSS Optimization

68P02901W43-J

Device State State reason

Last transition related

dd/mm hh:mm:ss Function

CSFP 0 0 0 D - U NO REASON 19/08 10:13:44 None

BTP 0 0 0 B - U NO REASON 19/08 10:13:48 None

DRI 0 0 0 B - U NO REASON 19/08 10:30:29 RTF 0 0 0

DRI 0 1 0 B - U NO REASON 19/08 10:31:18 RTF 0 1 0

MSI 0 0 0 B - U NO REASON 19/08 10:13:50 None

MMS 0 0 0 B - U NO REASON 19/08 10:13:51 None

MMS 0 1 0 D - U Synch Loss OSS

Timer

19/08 10:13:51 None

RSL 0 0 0 B - U NO REASON 22/08 10:58:18 None

GCLK 0 0 0 B - U GCLK in Set

Freq. Mode

19/08 10:24:44 None

CAB 0 0 0 B - U NO REASON 19/08 10:13:44 None

SITE 0 0 0 B - U NO REASON 19/08 10:15:20 None

PATH 0 0 0 B – U NO REASON 22/08 10:58:33 None

FUNCTION STATUS INFORMATION FOR LOCATION 1

OPER STATES: E:Enabled B:Busy ADMIN STATES: E:Equipped

Device State State reason

Last transition related

dd/mm hh:mm:ss Function

RTF 0 0 0 B – E NO REASON 19/08 10:30:09 DRI 0 0 0

RTF 0 1 0 B - E NO REASON 19/08 10:31:04 DRI 0 0 0

END OF STATUS REPORT

Ensure that responses that should be busy and unlocked are showing B - U.

4. Switch on the ac mains supply.

5. Disconnect the serial cable from the TTY port.

This completes the test.

Page 295: Drive test.pdf

GSM-100-423 Checking the E1/T1 link

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 6–27

Checking the E1/T1 link

Introduction

The E1/T1 link checks verify the integrity of the E1/T1 link back to the BSC/MSC.

Test equipment

The E1/T1 link checks require the following test equipment:

� An IBM compatible personal computer (PC).

� Terminal emulator software.

� A 9-way to 37 way-cable (a diagram of this cable is provided in the Testequipment and test leads section).

Commands

The following command is to be used to carry out the procedure:

Command Function

state Displays the status of specified devices orfunctions.

Preparing for thetest

To set up the equipment to check the E1/T1 link:

1. Make sure the site is in call processing mode.

2. Ensure the 9-way to 37-way cable from serial A port (on the PC) to the user TTYMCU-m port (37-way D-type located beside the HIM module) is connected.

3. Start the terminal emulator program at the PC.

The system and the hardware are set up to check the E1/T1 link.

Page 296: Drive test.pdf

GSM-100-423Checking the E1/T1 link

31st Jul 016–28

Installation & Configuration: BSS Optimization

68P02901W43-J

Running the test

To check the E1/T1 links:

1. Contact the end point of the E1/T1 link to be tested (BSC/MSC) and request aloopback on the relevant Digital Distribution Frame (DDF) port.

2. Determine the site number, equipment list and MMS configuration.

3. At the CUST MMI prompt enter:

state # MMS * * *

Where: is:

# location

* dev/func id

* dev/func id

* dev/func id

An example of this command would be:

state 0 MMS 1 0 0

The system displays the following message from the MCU-m for location 0:

STATUS INFORMATIONDevice: MMS 1 0 0Administration state : UnlockedOperational state : BusyReason code is : NO REASONTime of last transition : Wed Jan 5 01:43:13 1994Related Device/Function: NONE

END OF STATUS REPORT

If this display shows Unlocked and Busy, then the NIU-m port (MMS),HIM-75/HIM-120, cabling and the E1/T1 link are all good.

If the loop is removed and the command re-entered, the result should beUnlocked and Disabled.

The NIU-m requires a minimum of 20 seconds after receiving thesecommands before it registers a change in status.

NOTE

Fitting chassisbottom cover

Having completed all necessary configuration checks fit the chassis bottom cover:

1. Using a clean, dry cloth, wipe out the inside of the chassis bottom cover to removeany excess moisture.

2. Fit the chassis bottom cover onto the lower compartment, taking care not todamage to the gasket seal.

3. Tighten the 11 M4 bolts around the edge of the chassis bottom cover.

Page 297: Drive test.pdf

GSM-100-423 Calibrating an MCU-m GCLK

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 6–29

Calibrating an MCU-m GCLK

Introduction

Follow this procedure for the M-Cellcity MCU-m to calibrate the GCLK.

Equipment

MCU-m GCLK calibration requires the following test equipment:

� A 9-way to 37 way-cable (a diagram of this cable is provided in the Testequipment and test leads section).

� A frequency counter referenced to a 1.25 ppb (parts per billion) or better reference.

� A PC with terminal emulator software running.

Procedure

1. Ensure the 9-way to 37-way cable from serial A port (on the PC) to the user TTYMCU-m port (37-way D-type located beside the HIM module) is connected.

At the PC running the terminal emulator software the prompt SYNC-MMI shouldappear.

2. Connect the frequency counter to the 8 kHz (ref_125 �s) BNC connector of theMCU TTY cable.

3. Attach a 10 MHz reference signal to the 10 MHz BNC input connector on thefrequency counter.

Allow the MCU-m to warm up for 30 minutes or the OCXO will not be stable.

4. If the module is reset for any reason, this restarts the module 30 minute counter. Ifthis happens, type the following command to force the sync section into thewarmed-up state:

SYNC-MMI>dwarm

5. Type

SYNC-MMI>dcal

8000Hz source Connected, Enter ’y’ when ready, ’a’ to abort test>y

The frequency measured will be approximately but not exactly 8000.00000 Hz.

6. Adjust the OCXO control voltage by typing +3...+2...+1...+0...–0...–1...–2...–3until the frequency is exactly 8000.00000 Hz:

Enter ’a’ to abort, ’s’ to save, ’+[0..3]’ to inc, –[0..3] to dec>+2

Enter ’a’ to abort, ’s’ to save, ’+[0..3]’ to inc, –[0..3] to dec>+1

Enter ’a’ to abort, ’s’ to save, ’+[0..3]’ to inc, –[0..3] to dec>+1

These numbers as entered relate to orders of magnitude. For example, typing+3 causes an increase ten times bigger than that caused by typing +2. Theentries +0 and –0 are both valid.

NOTE

Page 298: Drive test.pdf

GSM-100-423Calibrating an MCU-m GCLK

31st Jul 016–30

Installation & Configuration: BSS Optimization

68P02901W43-J

7. When the ref_125 �s frequency is exactly 8000.00000 Hz, specify save as follows:

Enter ’a’ to abort, ’s’ to save, ’+[0..3]’ to inc, –[0..3] to dec>s

The calibration program sets the output frequencies to various different valuesand now requests that you type in the values of the output frequency at variouspoints:

Dac set to 1.0 volts, Enter Freq value or ’a’ to abort>7999.99673

Dac set to 2.0 volts, Enter Freq value or ’a’ to abort>7999.99838

Dac set to 3.0 volts, Enter Freq value or ’a’ to abort>7999.99970

Dac set to 4.0 volts, Enter Freq value or ’a’ to abort>8000.00033

Dac set to 5.0 volts, Enter Freq value or ’a’ to abort>8000.00133

Dac set to 6.0 volts, Enter Freq value or ’a’ to abort>8000.00271

Dac set to 7.0 volts, Enter Freq value or ’a’ to abort>8000.00379

Calibration Gain 0.37345 RETURN

SYNC–MMI>

This ends the calibration procedure.

Page 299: Drive test.pdf

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J i

Chapter 7

M-Cellaccess and Horizonoffice

optimization

Page 300: Drive test.pdf

GSM-100-423

31st Jul 01ii

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 301: Drive test.pdf

GSM-100-423

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J iii

Chapter 7M-Cellaccess and Horizonoffice optimization i. . . . . . . . . . . . . . . . . . . . . . . . .

M-Cellaccess and Horizonoffice optimization 7–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Optimization overview 7–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Code download 7–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Test equipment, leads and plugs 7–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to test equipment, leads and plugs 7–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . Requirements 7–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-way to 9-way cable (M-Cellaccess) 7–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-way to 25-way cable (M-Cellaccess and Horizonoffice) 7–4. . . . . . . . . . . . . . . . . . . Test plugs for M-Cellaccess and Horizonoffice 7–5. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Testing the dc power supply 7–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 7–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 7–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 7–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 7–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit breakers 7–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking the database for devices and functions 7–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 7–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 7–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 7–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 7–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Checking the E1 link 7–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 7–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 7–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Command 7–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 7–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Verifying PSM version 7–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 7–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 7–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 7–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 7–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Integrating the transcoder 7–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 7–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 7–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 7–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 7–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CIC checklist 7–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calibrating the M-Cellaccess or Horizonoffice GCLK 7–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 7–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 7–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 7–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure 7–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GCLK calibration record form 7–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 302: Drive test.pdf

GSM-100-423

31st Jul 01iv

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 303: Drive test.pdf

GSM-100-423 M-Cellaccess and Horizonoffice optimization

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 7–1

M-Cellaccess and Horizonoffice optimization

Optimizationoverview

This chapter provides information required to optimize Motorola M-Cell�access BSSequipment and Horizonoffice equipment For information about equipment not suppliedby Motorola, for example battery chargers, power supplies and antennas, refer to the sitespecific documentation and the vendor instructions provided with the equipment.

Hazardous voltages in excess of 50 V dc exist inside –48 V and –60 Vcabinets.

Use extreme caution when working on a cabinet with power applied. Removeall rings, watches and other jewellery.

WARNING

Code download

At initial loading, or when new system software is distributed to the system, the systemsoftware is downloaded from the OMC-R. If a new load is required at a site, request adownload from the OMC-R to that site.

If the existing software detects a corrupted segment in the current load, itautomatically requests a download from the OMC-R.

NOTE

Page 304: Drive test.pdf

GSM-100-423Test equipment, leads and plugs

31st Jul 017–2

Installation & Configuration: BSS Optimization

68P02901W43-J

Test equipment, leads and plugs

Introduction totest equipment,leads and plugs

Various test equipment and test leads are required to carry out the optimization tests.Tools required for installation are listed in Chapter 1.

All test equipment and test leads must be calibrated annually by a recognizedlaboratory, not in the field. Do not use test equipment that is beyond its duecalibration date.

CAUTION

Allow test equipment to warm up for 30 minutes before use.

NOTE

Requirements

Table 7-1 lists the equipment required for system optimization.

Table 7-1: System optimization equipment

Quantity Item

1 IBM-compatible personal computer (PC) with:At least a 386 processor.At least a 60 Mbit/s hard drive.At least 4 Mbit/s of RAM.PCMCIA type 2 slot.

1 Frequency counter (1.25 parts per billion (ppb) or betterreference. 10 digit display required. Some types can be usedwith rubidium standard for extra accuracy).

1 Rubidium standard (minimum accuracy 1x10–10).

1 Commercial terminal emulator software (PC Plus or similar).

1 Digital multimeter (HP E2378A or equivalent).

1 Mobile phone.

1 ESD protection kit.

1 9-way to 9-way cable (PC to PCU).

2 9-way to 25-way cable (PC to GPROC).

6 Type 43 loopback cables 23 cm (9 in) long.

1 BIB loopback plug.

1 each Test plugs A, B and C.

Page 305: Drive test.pdf

GSM-100-423 Test equipment, leads and plugs

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 7–3

9-way to 9-waycable(M-Cellaccess)

The diagram shows the cable for PC to PCU connection:

TO PC COMMUNICATIONS PORT TO PCU CONNECTOR

PIN NUMBERPIN NUMBER

4 m LONG SCREENED CABLE

2

3

4

5

6

7

8

2

3

7

9-WAY D-TYPE FEMALE 9-WAY D-TYPE MALE

5

Page 306: Drive test.pdf

GSM-100-423Test equipment, leads and plugs

31st Jul 017–4

Installation & Configuration: BSS Optimization

68P02901W43-J

9-way to 25-waycable(M-CellaccessandHorizonoffice)

The diagram shows the cable for PC to GPROC connection:

PIN NUMBER

9-WAY D-TYPE FEMALE 25-WAY D-TYPE MALE

PIN NUMBER

4 m LONG SCREENED CABLE

1

2

3

4

5

6

7

8

9

3

8

2

20

7

6

4

5

22

Page 307: Drive test.pdf

GSM-100-423 Test equipment, leads and plugs

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 7–5

Test plugs forM-CellaccessandHorizonoffice

Test plug A

The table lists the pin connections for test plug A:

From pin To pin Connection

1 2 Connect with a 1 kohm resistor

4 5 Connect with a 1 kohm resistor

7 8 Connect with a 1 kohm resistor

10 11 Connect with a 1 kohm resistor

44 45 Connect with a 10 kohm resistor

47 48 Connect with a 10 kohm resistor

50 51 Connect with a 10 kohm resistor

53 54 Connect with a 10 kohm resistor

Test plug B

The table lists the pin connections for test plug B:

From pin To pin Connection

1 2 Connect with a 10 kohm resistor

4 5 Connect with a 10 kohm resistor

7 8 Connect with a 10 kohm resistor

10 11 Connect with a 10 kohm resistor

44 45 Connect with a 1 kohm resistor

47 48 Connect with a 1 kohm resistor

50 51 Connect with a 1 kohm resistor

53 54 Connect with a 1 kohm resistor

Test plug C

The table lists the pin connections for test plug C:

From pin To pin Connection

1 2 Connect with a wire link

4 5 Connect with a wire link

7 8 Connect with a wire link

10 11 Connect with a wire link

44 45 Connect with a wire link

47 48 Connect with a wire link

50 51 Connect with a wire link

53 54 Connect with a wire link

Page 308: Drive test.pdf

GSM-100-423Testing the dc power supply

31st Jul 017–6

Installation & Configuration: BSS Optimization

68P02901W43-J

Testing the dc power supply

Introduction

The person carrying out these tests must be accompanied by a secondperson acting in a safety capacity.

WARNING

The objective of the dc power supply tests is to verify that the main dc supply and powersupply modules are operating.

Test equipment

No special test equipment is required to carry out the dc power supply tests.

Commands

No special software commands are required for the dc power supply tests.

Procedure

To carry out the dc power supply tests:

1. Ensure that none of the full size modules, half size modules or power supplymodules (IPSMs or EPSMs) are seated in their backplane connectors.

2. Set all cabinet power supply circuit breakers to the OFF position.

3. Apply power to the cabinet.

4. Check that the cabinet fans are operating.If the fans are not operating:

Step Action

a. Check that dc power is connected to the cabinet (if not, suspect the dcpower supply, the power cabling and the cabinet power inputconnections).

b. Check the fan fuses and the dc power cabling to the fans.

c. Correct the problem and repeat step 3 to step 5.

The fans must be operating before IPSM/EPSMs can be switched on.

NOTE

5. Firmly seat all IPSMs/EPSMs in their backplane connectors.

6. Set the circuit breaker for each IPSM/EPSM in turn to ON.Check that the green LED active indicator for the chosen IPSM/EPSM lights.

7. Insert all processor cards into their backplane connectors.

8. Insert all other modules into their backplane connectors.

Page 309: Drive test.pdf

GSM-100-423 Testing the dc power supply

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 7–7

Circuit breakers

The tables list the cabinet circuit breaker assignments:

–48/60 V dc PCC cabinets (M-Cellaccess)

Table 7-2 Circuit breakers

CB Protects

11 Not fitted

10 IPSM2L

9 IPSM1L

8 IPSM0L

7 IPSM2U

6 IPSM1U

5 IPSM0U

4 Not used

3 Not used

2 Not used

1 DAB

24 V dc PCC cabinets(M-Cellaccess)

Table 7-3 Circuit breakers

CB Protects

11 Not fitted

10 EPSM2L

9 EPSM1L

8 EPSM0L

7 EPSM2U

6 EPSM1U

5 EPSM0U

4 Not used

3 Not used

2 Not used

1 DAB

Page 310: Drive test.pdf

GSM-100-423Testing the dc power supply

31st Jul 017–8

Installation & Configuration: BSS Optimization

68P02901W43-J

–48/60 V dc Horizonoffice cabinet

Table 7-4 Circuit breakers

CB Protects

10 Not fitted

9 Not fitted

8 Not fitted

7 DAB

6 HDSL

5 CPB

4 IPSM

3 IPSM

2 IPSM

1 CPB

Page 311: Drive test.pdf

GSM-100-423 Checking the database for devices and functions

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 7–9

Checking the database for devices and functions

Introduction

Follow this procedure to check which devices and functions are contained in theBSC/BTS database. This procedure can be used by M-Cellaccess and Horizonoffice.

Test equipment

The following test equipment is required to carry out the procedure:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A 9-way to 25-way cable.

Commands

The following commands must be used to carry out the procedure:

Command Function

disp-site Displays the site number.

disp-equipment Displays the active equipment at a specifiedsite.

state Displays the status of specified devices orfunctions.

Procedure

To check the database for devices and functions:

1. Ensure that the site is in call processing mode.

2. Connect the serial A port on the PC to a GPROC TTY port using the 9-way to25-way cable.

3. At the PC start the terminal emulator program.

4. At the CUST MMI prompt type:

disp_site

The following message (from the GPROC) is displayed:

current site is # where # = the number of the site logged into.

Page 312: Drive test.pdf

GSM-100-423Checking the database for devices and functions

31st Jul 017–10

Installation & Configuration: BSS Optimization

68P02901W43-J

This is an example of M-Cellaccess database equipage.

NOTE

5. Type:

disp_equipment #

Where: # is: location

A complete list of the equipment and functions in the database is displayed, forexample:

GPROC 0 0 0

GPROC 1 0 0

BSP 0 0 0

DRI 0 0 0

DRI 0 1 0

MSI 1 0 0

MMS 1 0 0

MMS 1 1 0

MTL 1 0 0

OML 1 0 0

GCLK 0 0 0

KSW 0 0 0

CAGE 0 0 0

CAB 0 0 0

SITE 0 0 0

BTF 0 0 0

RTF 0 0 0

RTF 1 0 0

RTF 2 0 0

RTF 3 0 0

RTF 0 1 0

Page 313: Drive test.pdf

GSM-100-423 Checking the database for devices and functions

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 7–11

6. To check the MSI configuration type:

state # MSI * * *

Where: is:

# location

* dev/func id

* dev/func id

* dev/func id

An example of the command would be:

state 0 MSI 1 0 0

A message similar to the following example is displayed:

MSI identifier 1

Cage number 0

Slot number 16

MSI type 0 (0 = MSI and 1 = XCDR)

Page 314: Drive test.pdf

GSM-100-423Checking the E1 link

31st Jul 017–12

Installation & Configuration: BSS Optimization

68P02901W43-J

Checking the E1 link

Introduction

Follow this procedure to verify the integrity of the E1 links to the BSC/MSC. Thisprocedure can be used by M-Cellaccess and Horizonoffice.

Test equipment

The following test equipment is required:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A 9-way to 25-way cable.

Command

The following command must be used to carry out the procedure:

Command Function

state Displays the status of specified devices orfunctions.

Procedure

To check the E1 link:

1. Ensure that the site is in call processing mode.

2. Connect the serial A port on the PC to a GPROC TTY port using the 9-way to25-way cable.

3. At the PC start the terminal emulator program.

4. Contact the end point of the E1 link to be tested (BSC/MSC) and request aloopback on the relevant distribution frame (DDF) port.

Repeat for all MSIs and E1 links. If the E1 link has not been installed, performthis test at the digital distribution frame (DDF) in the site, or at the top of thecabinet if no DDF is fitted.

NOTE

5. Determine the site number, equipment list and MMS configuration.

Page 315: Drive test.pdf

GSM-100-423 Checking the E1 link

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 7–13

6. At the CUST MMI prompt type:

state # MMS * * *

Where: is:

# location

* dev/func id

* dev/func id

* dev/func id

For example:

state 0 MMS 1 0 0

The following message (from the GPROC) is displayed:

Status Information

Administration state : Unlocked

Operational state : Busy

Reason code is : 0

Time of last transition : Wed Jan 5 01:43:13 1994

Other identification : 255 255 255 255

End of status report

If this display shows Unlocked and Busy, then the MSI port (MMS)T43/BIB/HIM75/HIM-120 cabling and the E1 link are all good. If the loop isremoved and the command reentered, the result is Unlocked and Disabled.

The MSI requires at least 20 seconds to register a change in status after thesecommands are entered.

NOTE

Page 316: Drive test.pdf

GSM-100-423Verifying PSM version

31st Jul 017–14

Installation & Configuration: BSS Optimization

68P02901W43-J

Verifying PSM version

Introduction

Follow this procedure to verify the PSM version. This procedure can be used byM-Cellaccess and Horizonoffice.

Test equipment

The following test equipment is required:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A 9-way to 25-way cable.

Commands

The following commands must be used to carry out the procedure:

Command Function

enable_alarm Enables alarm reporting for a specified site.

serial_cmd RAM EMON query command.

Procedure

To check power supply module (PSM) version and alarm status:

1. At the RAM EMON prompt type:

serial_cmd 080h 0 (for PSM 0)

serial_cmd 081h 0 (for PSM 1)

serial_cmd 082h 0 (for PSM 2)

2. The following message is displayed:

ss xx nv aa

Where: is:

ss slot address inhexadecimal (80, 81 or 82)

xx irrelevant to this test

n version number (2, 3 or 4)

v cabinet supply voltage (8= + 27 V, 9 = –48/60 V)

aa an alarm code (03 =over-temp fail, 05 = inputpower fail, 06 = unit fail,07 = no alarms)

Page 317: Drive test.pdf

GSM-100-423 Integrating the transcoder

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 7–15

Integrating the transcoder

Introduction

Follow this procedure to ensure that all allocated circuit identification codes (CICs) arecarrying good quality voice traffic. This procedure can be used by M-Cellaccess andHorizonoffice.

Transcoders may be in the form of XCDR boards, or an enhanced versionutilising a Generic Digital Signal Processor Board (GDP). If you use GDPs inXCDR slots, as XCDRs, the procedure is the same as for XCDRs, exceptwhere stated.

NOTE

Test equipment

The following test equipment is required:

� An IBM-compatible personal computer (PC).

� Terminal emulator software.

� A 9-way to 25-way cable.

� A GSM mobile with a registered SIM card.

Commands

The following commands are required to carry out this procedure:

Command Function

disp_mms_ts_usage Displays the timeslot usage on an MMS span.

disp_channel Displays the BSC–MSC connectivity.

fil list Lists active filters.

fil create Creates a filter.

fil start Starts a filter.

fil stop Stops a filter.

fil delete Deletes filters.

Procedure

Before starting the transcoder integration procedure, consult the site specificdocumentation to determine the BSC/XCDR configuration and cage slot allocation(conventionally, timeslots 00 and 16 on XCDR boards are not allocated to voice/trafficchannels).

Proceed as follows:

Displaying circuit mapping

1. At the operations and maintenance centre (OMC) man-machine interface (MMI),log in to the required base site controller (BSC).

Page 318: Drive test.pdf

GSM-100-423Integrating the transcoder

31st Jul 017–16

Installation & Configuration: BSS Optimization

68P02901W43-J

2. To display the circuit mapping, type:

disp_mms_ts_usage X Y

where X = MSI, Y = MSI port

The following message is displayed:

Circuit ID = 1 Group Number = 3 Timeslot Number = 2

Circuit ID = 2 Group Number = 2 Timeslot Number = 2

Circuit ID = 3 Group Number = 1 Timeslot Number = 2

Circuit ID = 4 Group Number = 0 Timeslot Number = 2

Circuit ID = 5 Group Number = 3 Timeslot Number = 3

Circuit ID = 6 Group Number = 2 Timeslot Number = 3

Circuit ID = 7 Group Number = 1 Timeslot Number = 3

Circuit ID = 8 Group Number = 0 Timeslot Number = 3

3. Repeat step 2 for all MMSs.

4. Log out from the BSC.

Displaying CEPT nailed connections

1. Log on to the required XCDR.

2. To display all CEPT nailed connections, type:

disp_channel

The following message is displayed:

Incoming MMS id 6 1, timeslot: – 2 group : – 3 Outgoing MMS id 24 0, timeslot: – 1

Incoming MMS id 6 1, timeslot: – 2 group : – 2 Outgoing MMS id 24 0, timeslot: – 2

Incoming MMS id 6 1, timeslot: – 2 group : – 1 Outgoing MMS id 24 0, timeslot: – 3

Incoming MMS id 6 1, timeslot: – 2 group : – 0 Outgoing MMS id 24 0, timeslot: – 4

Incoming MMS id 6 1, timeslot: – 3 group : – 3 Outgoing MMS id 24 0, timeslot: – 5

Incoming MMS id 6 1, timeslot: – 3 group : – 2 Outgoing MMS id 24 0, timeslot: – 6

Incoming MMS id 6 1, timeslot: – 3 group : – 1 Outgoing MMS id 24 0, timeslot: – 7

Incoming MMS id 6 1, timeslot: – 3 group : – 0 Outgoing MMS id 24 0, timeslot: – 8

3. The information in the messages displayed in steps 2 and 2, together withBSC/XCDR site documentation,contain the CIC mapping.Two examples are:

Circuit ID = 3 Group Number = 1 Timeslot Number = 2

Incoming MMS id 6 1, timeslot: – 2 group : – 1 Outgoing MMS id 24 0, timeslot: – 3

Circuit ID = 91 Group Number = 2 Timeslot Number = 24

Incoming MMS id 6 1, timeslot: – 24 group : – 2 Outgoing MMS id 24 0, timeslot: – 3

Page 319: Drive test.pdf

GSM-100-423 Integrating the transcoder

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 7–17

4. Log out from the XCDR.

Displaying and testing CICs

1. Log on to the required BSC.

2. At the RAM EMON prompt type:

fil list

If any filters are shown delete them using the fil delete command.

3. Remotely log in to the GPROC running the LCF that supports the site under testusing the rlogin command.

4. At the prompt Type:

fil create tag 10501h

Filter 10501h is created.

5. Type:

fil start *

Filter * is started.

6. Set up a mobile to land or land to mobile call and monitor the filter output.

The following message is displayed:

FILTER: SRC: pid: 10 mbid: 0002 cpu: 0119 subsys: 01 tag: 00010501 len:0014

DEST: function: 0009 instance: 001b mbid: 0003 TIME: 96942.975s

data:00.7b.60.00.0f.00.0d.01.0b.03.01.08.01.07.02.06.00.06.01.00.05

The last two bytes of the data displayed (in hexadecimal) indicate the CIC in use.

Check the quality of the call and, if good, check off the CIC number on thechecklist on the next page. If the quality is bad, note the CIC number and retest.The last two bytes in the example show a call on CIC 05 (hexadecimal).

Repeat this step until all CICs have been tested.

7. At the RAM EMON prompt type:

fil stop *

Filter * is stopped.

8. At the RAM EMON prompt type:

fil delete *

Filter * is deleted.

9. At the RAM EMON prompt type:

fil list

If any filters are shown delete them using the fil delete command.

10. Log out of the BSC.

11. Report the result of the integration and any anomalies to the OMC operator.

Page 320: Drive test.pdf

GSM-100-423Integrating the transcoder

31st Jul 017–18

Installation & Configuration: BSS Optimization

68P02901W43-J

CIC checklist

Check off good quality calls on the CIC checklist:

Slot no.

Slot no.

Slot no.

Slot no.

Slot no.

Slot no.

Slot no.

Slot no.

Slot no.

Slot no.

00 01 00 21 00 41 00 61 00 81 00 A1 00 C1 00 E1 01 01 01 21

00 02 00 22 00 42 00 62 00 82 00 A2 00 C2 00 E2 01 02 01 22

00 03 00 23 00 43 00 63 00 83 00 A3 00 C3 00 E3 01 03 01 23

00 04 00 24 00 44 00 64 00 84 00 A4 00 C4 00 E4 01 04 01 24

00 05 00 25 00 45 00 65 00 85 00 A5 00 C5 00 E5 01 05 01 25

00 06 00 26 00 46 00 66 00 86 00 A6 00 C6 00 E6 01 06 01 26

00 07 00 27 00 47 00 67 00 87 00 A7 00 C7 00 E7 01 07 01 27

00 08 00 28 00 48 00 68 00 88 00 A8 00 C8 00 E8 01 08 01 28

00 09 00 29 00 49 00 69 00 89 00 A9 00 C9 00 E9 01 09 01 29

00 0A 00 2A 00 4A 00 6A 00 8A 00 AA 00 CA 00 EA 01 0A 01 2A

00 0B 00 2B 00 4B 00 6B 00 8B 00 AB 00 CB 00 EB 01 0B 01 2B

00 0C 00 2C 00 4C 00 6C 00 8C 00 AC 00 CC 00 EC 01 0C 01 2C

00 0D 00 2D 00 4D 00 6D 00 8D 00 AD 00 CD 00 ED 01 0D 01 2D

00 0E 00 2E 00 4E 00 6E 00 8E 00 AE 00 CE 00 EE 01 0E 01 2E

00 0F 00 2F 00 4F 00 6F 00 8F 00 AF 00 CF 00 EF 01 0F 01 2F

00 11 00 31 00 51 00 71 00 91 00 B1 00 D1 00 F1 01 11 01 31

00 12 00 32 00 52 00 72 00 92 00 B2 00 D2 00 F2 01 12 01 32

00 13 00 33 00 53 00 73 00 93 00 B3 00 D3 00 F3 01 13 01 33

00 14 00 34 00 54 00 74 00 94 00 B4 00 D4 00 F4 01 14 01 34

00 15 00 35 00 55 00 75 00 95 00 B5 00 D5 00 F5 01 15 01 35

00 16 00 36 00 56 00 76 00 96 00 B6 00 D6 00 F6 01 16 01 36

00 17 00 37 00 57 00 77 00 97 00 B7 00 D7 00 F7 01 17 01 37

00 18 00 38 00 58 00 78 00 98 00 B8 00 D8 00 F8 01 18 01 38

00 19 00 39 00 59 00 79 00 99 00 B9 00 D9 00 F9 01 19 01 39

00 1A 00 3A 00 5A 00 7A 00 9A 00 BA 00 DA 00 FA 01 1A 01 3A

00 1B 00 3B 00 5B 00 7B 00 9B 00 BB 00 DB 00 FB 01 1B 01 3B

00 1C 00 3C 00 5C 00 7C 00 9C 00 BC 00 DC 00 FC 01 1C 01 3C

00 1D 00 3D 00 5D 00 7D 00 9D 00 BD 00 DD 00 FD 01 1D 01 3D

00 1E 00 3E 00 5E 00 7E 00 9E 00 BE 00 DE 00 FE 01 1E 01 3E

00 1F 00 3F 00 5F 00 7F 00 9F 00 BF 00 DF 00 FF 01 1F 01 3F

Page 321: Drive test.pdf

GSM-100-423 Calibrating the M-Cellaccess or Horizonoffice GCLK

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 7–19

Calibrating the M-Cellaccess or Horizonoffice GCLK

Introduction

Follow this procedure to calibrate the GCLK in the field. The GCLK must be calibratedwhen more than one frame slip per hour is observed or when the GCLK is phase lockedto the E1/T1 serial data stream and the system requests calibration.

The GCLK must be calibrated only by fully trained GSM qualified staff. Do notattempt this procedure under any circumstances unless the test equipmentlisted below is available.

CAUTION

Test equipment

The following test equipment is required:

� An IBM-compatible personal computer (PC).

� A 9-way to 25-way cable.

� A Rubidium standard.

� A universal counter – Hewlett Packard Model HP5385A or equivalent.

� A screened coaxial cable – BNC to 2 mm multicontact AG connector.

� New calibration sticker(s).

� A non-ferrous tuning tool.

Commands

The following commands must be used to calibrate the GCLK:

Command Function

disp_equipment Displays the active equipment at a specifiedsite.

state Displays the status of specified devices orfunctions.

disp_elementphase_lock_gclk #

Shows the status of the phase lock function.# is the site id.

chg_elementphase_lock_gclk * #

Turns the phase lock function on or off, where *is the flag and is 0 for off and 1 for on, and # isthe site id.

clear_gclk_avgs # * Clears LTA values in memory for a specifiedGCLK. Where # is location and * is the gclk id.

Page 322: Drive test.pdf

GSM-100-423Calibrating the M-Cellaccess or Horizonoffice GCLK

31st Jul 017–20

Installation & Configuration: BSS Optimization

68P02901W43-J

Procedure

Before attempting this procedure record the board serial number, date of last calibrationand present frequency on the calibration record shown at the end of this section, andremove the old calibration stickers from the GCLK front panels.

Consult the site specific documentation to determine the BSC/BTS configuration andcage slot allocation.

Test preparation

Proceed as follows:

1. Log in to the required BSC, either at the BSC or via the OMC.

2. If all commands are to be made at the OMC MMI, go to step 5.

3. Connect the serial A port on the PC to a GPROC/GPROC2 TTY port using the 9to 25-way cable.

4. At the PC start the terminal emulator program.

5. Connect the output from the 10 MHz standard to the reference input of thefrequency counter, select external standard.

6. Set the frequency gate time to 10 second and set the display to give 10 significantdigits.

Phase-lock check

1. Check to see if phase lock is on, at the CUST MMI prompt type:

disp_element phase_lock_gclk #

Where: # is: location (0 to 100, or bsc)

This gives the status of phase lock at the site, 0 is shown for phase lock off and 1is shown for phase lock on.

2. If phase lock is on, at the OMC/BSC CUST MMI prompt type:

This command can only be made at the BSC or OMC.

NOTE

chg_element phase_lock_gclk 0 #

Where: # is: location (0 to 100, or bsc)

This turns off the phase lock to the selected site.

Clearing Long Term Average (LTA) values

1. At the CUST MMI prompt type:

disp_equipment #

Where: # is: location (0 to 100, or bsc)

This gives the device id of the GCLKs.

Page 323: Drive test.pdf

GSM-100-423 Calibrating the M-Cellaccess or Horizonoffice GCLK

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 7–21

2. At the OMC/BSC CUST MMI prompt type:

state # GCLK * * *

Where: is:

# location (0 to 100, or bsc)

* dev/func id

* dev/func id

* dev/func id

This displays the status for the GCLK.

3. At the OMC/BSC CUST MMI prompt type:

This command can only be made at the BSC or OMC.

NOTE

clear_gclk_avgs #

Where: # is: location (0 to 100, or bsc)

The system will respond with:

Enter the gclk_id:

Type in 0 or 1.

This clears the LTA values for the specified GCLK.

GCLK frequency adjustment

1. Connect the frequency counter to the front panel 16.384 MHz connection of theGCLK.

2. Connect the cable to the input port of the frequency counter and the jack plug endto the front panel of the GCLK 16.384 MHz output and ground respectively.

3. Using a non-ferrous tuning tool, adjust the potentiometer labelled FREQ ADJUSTon the GCLK to 16.384 MHz. The GSM specified tolerance is +/– 0.8 Hz, althoughit is desirable (and should be possible) to adjust the frequency more accuratelythan this. This reads as 16.384 000 00 on the frequency counter. Adjusting thepotentiometer clockwise increases the frequency and anticlockwise decreases thefrequency.

Repeat step 1 to step 3 if the other GCLK is to be calibrated.

4. If phase locking of the GCLK(S) at the site is required type at the OMC or BSC:

This command can only be made at the BSC or OMC.

NOTE

chg_element phase_lock_gclk 1 #

Where: # is: location (0 to 100, or bsc)

This turns the phase lock on for the specified location.

5. Place a new calibration sticker, indicating the date of calibration, over thepotentiometer labelled FREQ ADJUST on each calibrated GCLK.

Page 324: Drive test.pdf

GSM-100-423Calibrating the M-Cellaccess or Horizonoffice GCLK

31st Jul 017–22

Installation & Configuration: BSS Optimization

68P02901W43-J

GCLK calibrationrecord form

The GCLK calibration record form is shown below:

SITE NAME ........................................

SITE ID ..............................................

SERIALNUMBER

OFBOARD

DATE

DATEOF

LASTCALIBRATION

FREQUENCYBEFORE

CALIBRATION

TESTER’S NAMES

.....................................

.....................................

Page 325: Drive test.pdf

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J i

Chapter 8

Base site integration

Page 326: Drive test.pdf

GSM-100-423

31st Jul 01ii

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 327: Drive test.pdf

GSM-100-423

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J iii

Chapter 8Base site integration i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Introduction to base site integration 8–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reason for base site integration 8–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . In this chapter 8–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Integrating the base site using logging software 8–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 8–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 8–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 8–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparation for integration 8–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtaining channel/timeslot information 8–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intra/inter-cell handover tests 8–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Integrating the base site without logging software 8–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 8–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 8–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 8–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparation for integration 8–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtaining channel/timeslot information 8–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intra/inter-cell handover tests 8–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Integrating the base site with no connection to the MSC 8–8. . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 8–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equipment 8–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands 8–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparation for integration 8–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtaining channel/timeslot information 8–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intra/inter-cell handover tests 8–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 328: Drive test.pdf

GSM-100-423

31st Jul 01iv

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 329: Drive test.pdf

GSM-100-423 Introduction to base site integration

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 8–1

Introduction to base site integration

Reason for basesite integration

Once a base site has been installed and its hardware optimized, the base site callhandling qualities must be tested and all traffic channels available for call processingmust be established.

Hazardous voltages in excess of 50 V dc exist inside –48 V and –60 Vcabinets.

Use extreme caution when working on a cabinet with power applied. Removeall rings, watches and other jewellery.

WARNING

In this chapter

This chapter details three ways of integrating a GSM base site:

� When logging software such as LOMS is available.

� When logging software is not available.

� When the base site is not connected to a mobile switching centre (MSC).

In this chapter transceiver is used to mean DRCU, DRCUII, DRCU3, SCU,TCU, TCU-B or CTU.

NOTE

Page 330: Drive test.pdf

GSM-100-423Integrating the base site using logging software

31st Jul 018–2

Installation & Configuration: BSS Optimization

68P02901W43-J

Integrating the base site using logging software

Introduction

Follow this procedure to integrate a base site using logging software such as LOMS orTEMS.

Test equipment

The following test equipment is required when the base site is connected to an MSC:

� An IBM-compatible personal computer (PC).

� Appropriate logging software such as LOMS or TEMS. The logging software mustbe compatible with the test mobile used.

� An interface cable to connect the test mobile to the PC.

� A suitable test mobile such as Orbitel 901 or Ericsson EH337 with a registeredSIM card.

� Site integration forms.

Commands

No special commands are required.

Preparation forintegration

To prepare for integration:

1. Contact the OMC and verify the frequencies and base station identity code (BSIC)allocated to the base site under test and ensure that the base site is active andtransmitting.

2. Ensure that both members of the team have:

– The base site landline telephone number.

– Each other’s test mobile telephone numbers.

3. Position one member of the team at the base site.

4. Connect the PC to the test mobile and start the logging software. Consult thesoftware manufacturer’s user guide before using the logging software. Set thelogging software to show:

– Serving cell.

– Serving and neighbouring cells.

– Dedicated channel.

– Radio environment.

Page 331: Drive test.pdf

GSM-100-423 Integrating the base site using logging software

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 8–3

5. Open a log file before initiating any tests. The format for the log file filename is:

4 digit site id 4 character sitename.LOG

For example:

0037stre.LOG

Test calls must not be made by the driver of a motor vehicle while the vehicleis in motion.

WARNING

6. Ensure that the engineer making the test calls (the mobile calling party) isstationed at least 1 km away from the base site(100 m from an M-Cell� site) and,on a sectored site, within the correct cell coverage area.

Obtainingchannel/timeslotinformation

To obtain channel/timeslot information:

1. Using the serving cell and serving and neighbouring cell displays, ensure that:

– The mobile is locked to sector A absolute radio frequency channel number(ARFCN).

– Sectors B and C ARFCNs and base station identity codes (BSIC) aredisplayed.

2. Note all sector’s Rx levs on the site integration form.

3. Set up a MS to land call.

4. Using the dedicated channel display, note the following on the site integration form:

– ARFCN.

– Timeslot number.

– Subchannel number.

– Channel type.

– Channel mode.

5. Using the radio environment display, note the following on the site integration form:

– Rx lev.

– Rx qual (in range 0 to 7, 0 = good 7 = bad).

– Timing advance (in range 0 to 2).

– Tx power (in range 0 to 15, 15 = minimum MS power).

Page 332: Drive test.pdf

GSM-100-423Integrating the base site using logging software

31st Jul 018–4

Installation & Configuration: BSS Optimization

68P02901W43-J

6. Repeat steps 3 to 5 until all SD subchannels and TCH timeslots have beenverified.

Timeslot 0 of the BCCH carrier will not be allocated as a traffic channel.Timeslot 1 of the BCCH carrier may be configured as an SDCCH, in whichcase it will not be allocated as a traffic channel.

Carrier 00 is on transceiver 0 (first transceiver in sector A or in omni-site).Carrier 01 is on transceiver 1 (second transceiver in sector A or in omni-site, orfirst transceiver in sector B).

On sectors with more than one transceiver ensure that all transceiver timeslotsare tested, non BCCH transceivers will be seen as next carrier in sequence.

NOTE

7. If the cell has more than one transceiver carry out step 8 to step 10. If not, go tostep 1.

8. Request the OMC to take the transceiver with the BCCH carrier out of service.

9. Check that the BCCH carrier is now available on another transceiver.

10. Request the OMC to put the transceiver taken out of service in step 8 back intoservice.

Intra/inter-cellhandover tests

To carry out handover tests:

1. Request the OMC to call the test mobile to verify correct cell allocation.

Test calls must not be made by the driver of a motor vehicle while the vehicleis in motion.

WARNING

2. If the base site under test is sectored, continue the call made in step 1 whilewalking/driving into the next sector and verify that intra-cell handover is achievedand that the call is assigned to the correct carrier.

3. Repeat step 1 to step 2 for all sectors. When all sectors have been tested,walk/drive in the opposite direction to ensure that handovers are correct to/from allcells.

4. Make a call from the test mobile to the emergency operator and, whereappropriate, request a record (for example a zone code). Note this on the siteintegration form.

5. Make a call from the test mobile to the base site landline telephone, thenwalk/drive towards a neighbouring base site and verify, using the logging software,that an inter-cell handover is achieved.

6. Once the handover has been achieved, walk/drive back towards the base siteunder test and verify that a handover is achieved.

7. Verify that handovers are possible to all neighbouring sites. The OMC can supplyARFCN and BSIC of any neighbouring sites.

8. When the test is complete, inform the OMC of any problems.

Page 333: Drive test.pdf

GSM-100-423 Integrating the base site without logging software

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 8–5

Integrating the base site without logging software

Introduction

Follow this procedure to integrate a base site without using logging software.

Test equipment

The following test equipment is required when logging software is not available:

� A test mobile with a registered SIM card.

� An engineering SIM card.

� Site integration forms.

Commands

No special commands are required.

Preparation forintegration

To prepare for integration:

1. Contact the OMC and verify the frequencies and base station identity code (BSIC)allocated to the base site under test and ensure that the base site is active andtransmitting.

2. Ensure that both members of the team have:

– The base site landline telephone number.

– Each other’s test mobile telephone numbers.

3. Request the OMC to remotely log in (rlogin) to the base site under test and set:

iir_mod 32 0Fch filter

4. Position one member of the team at the base site.

Test calls must not be made by the driver of a motor vehicle while the vehicleis in motion.

WARNING

5. Ensure that the engineer making the test calls (the mobile calling party) isstationed at least 1 km away from the base site (100 m from an M-Cell site) and,on a sectored site, within the correct cell coverage area.

Page 334: Drive test.pdf

GSM-100-423Integrating the base site without logging software

31st Jul 018–6

Installation & Configuration: BSS Optimization

68P02901W43-J

Obtainingchannel/timeslotinformation

To obtain channel/timeslot information:

1. Insert the engineering SIM card into the test mobile.

2. Check that the MS can synchronize to the BCCH.

3. Check that the frequency allocation is correct.

4. Measure the signal strength of each BCCH carrier on the BTS.

5. Replace the engineering SIM card with the registered SIM card.

6. Set up a mobile to land call.

7. Request the OMC to display and note:

– Carrier number.

– Timeslot number.

– Subchannel number.

– Channel type.

8. Repeat step 6 and step 7 until all SD subchannels and TCH timeslots have beenverified.

Timeslot 0 of the BCCH carrier will not be allocated as a traffic channel.Timeslot 1 of the BCCH carrier may be configured as an SDCCH, in whichcase it will not be allocated as a traffic channel.

Carrier 00 is on transceiver 0 (first transceiver in sector A or in omni-site) Carrier 01 is on transceiver 1 (second transceiver in sector A or in omni-site orfirst transceiver in sector B).

On sectors with more than one transceiver ensure that all transceiver timeslotsare tested, non BCCH transceivers will be seen as next carrier in sequence.

NOTE

9. If the cell has more than one transceiver carry out steps 9 to 12. If not, go to step1.

10. Request the OMC to take the transceiver with the BCCH carrier out of service.

11. Check that the BCCH carrier is now available on another transceiver.

12. Request the OMC to put the transceiver taken out of service in step 10 back intoservice.

Page 335: Drive test.pdf

GSM-100-423 Integrating the base site without logging software

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 8–7

Intra/inter-cellhandover tests

To carry out handover tests:

1. Request the OMC to call the test mobile to verify correct cell allocation.

Test calls must not be made by the driver of a motor vehicle while the vehicleis in motion.

WARNING

2. If the base site under test is sectored, continue the call made in step 1 whilewalking/driving into the next sector and verify that intra-cell handover is achievedand that the call is assigned to the correct carrier.

3. Repeat step 2 to step 2 for all sectors. On completion of the testing of all sectors,walk/drive in the reverse direction to ensure that handovers are correct to/from allcells.

4. Make a call from the test mobile to the emergency operator and, whereappropriate, request a record, for example, a zone code. Record this on the siteintegration form.

5. If neighbour sites are available carry out step 6 to step 8. If not, go to step 9.

6. Make a call from the test mobile to the base site landline telephone, the mobilecalling party should then walk/drive toward a neighbouring base site and verify thatan inter-cell handover is achieved.

7. Use the engineering SIM card to verify neighbour site frequencies.

8. Once the handover has been achieved, the mobile calling party should walk/driveback toward the base site under test and verify that a hand over is achieved.

9. Request the OMC to remote login (rlogin) to the base site under test and set:

iir_mod 32 00

10. On completion of the test, inform the OMC of any problems.

Page 336: Drive test.pdf

GSM-100-423Integrating the base site with no connection to the MSC

31st Jul 018–8

Installation & Configuration: BSS Optimization

68P02901W43-J

Integrating the base site with no connection to the MSC

Introduction

Follow this procedure to integrate a base site when the base site is not connected to amobile switching centre (MSC).

Test equipment

The following test equipment is required when the base site is not connected to an MSC:

� A test mobile with a registered SIM card.

� An engineering SIM card.

� A Tekelec switch simulator.

� Site integration forms.

Commands

No special commands are required.

Preparation forintegration

To prepare for integration:

1. Contact the OMC or BSC and verify the frequencies and base station identity code(BSIC) allocated to the base site under test and ensure that the base site is activeand transmitting.

2. Ensure that both members of the team have:

– The base site landline telephone number.

– Each other’s test mobile telephone numbers.

3. Request the OMC to connect the E1/T1 lines from the BSC to a Tekelec so thatthe Tekelec can simulate the operation of an MSC.

4. Request the OMC to remote login (rlogin) to the base site under test and set:

iir_mod 32 0Fch

5. Position one member of the team at the base site.

Test calls must not be made by the driver of a motor vehicle while the vehicleis in motion.

WARNING

6. Ensure that the engineer making the test calls (the mobile calling party) isstationed at least 1 km away from the base site (100 m from an M-Cell site) and,on a sectored site, within the correct cell coverage area.

Page 337: Drive test.pdf

GSM-100-423 Integrating the base site with no connection to the MSC

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 8–9

Obtainingchannel/timeslotinformation

To obtain channel/timeslot information:

1. Insert the engineering SIM card into the test mobile.

2. Check that the MS can synchronize to the BCCH.

3. Check that the frequency allocation is correct.

4. Measure the signal strength of each BCCH carrier on the BTS.

5. Replace the engineering SIM card with the registered SIM card.

6. Set up a mobile to land call.

7. Request the OMC to display and note:

– Carrier number.

– Timeslot number.

– Subchannel number.

– Channel type.

8. Repeat step 6 and step 7 until all SD subchannels and TCH timeslots have beenverified.

Timeslot 0 of the BCCH carrier will not be allocated as a traffic channel.Timeslot 1 of the BCCH carrier may be configured as an SDCCH, in whichcase it will not be allocated as a traffic channel.

Carrier 00 is on transceiver 0 (first transceiver in sector A or in omni-site) Carrier 01 is on transceiver 1 (second transceiver in sector A or in omni-site orfirst transceiver in sector B).

On sectors with more than one transceiver ensure that all transceiver timeslotsare tested, non BCCH transceivers will be seen as next carrier in sequence.

NOTE

9. If the cell has more than one transceiver carry out step 10 to step 12. If not, go tostep 1.

10. Request the OMC to take the transceiver with the BCCH carrier out of service.

11. Check that the BCCH carrier is now available on another transceiver.

12. Request the OMC to put the transceiver taken out of service in step 10 back intoservice.

Page 338: Drive test.pdf

GSM-100-423Integrating the base site with no connection to the MSC

31st Jul 018–10

Installation & Configuration: BSS Optimization

68P02901W43-J

Intra/inter-cellhandover tests

To carry out handover tests:

1. Request the OMC to call the test mobile to verify correct cell allocation.

Test calls must not be made by the driver of a motor vehicle while the vehicleis in motion.

WARNING

2. If the base site under test is sectored, continue the call made in step 1 whilewalking/driving into the next sector and verify that intra-cell handover is achievedand that the call is assigned to the correct carrier.

3. Repeat steps 2 to 2 for all sectors. On completion of the testing of all sectors,walk/drive in the reverse direction to ensure that handovers are correct to/from allcells.

4. Make a call from the test mobile to the emergency operator and, whereappropriate, request a record, for example, a zone code. Record this on the siteintegration form.

5. If neighbour sites are available carry out steps 6 to 8. If not, go to step 9.

6. Make a call from the test mobile to the base site landline telephone, the mobilecalling party should then walk/drive toward a neighbouring base site and verify thatan inter-cell handover is achieved.

7. Use the engineering SIM card to verify neighbour site frequencies.

8. Once the handover has been achieved, the mobile calling party should walk/driveback toward the base site under test and verify that a handover is achieved.

9. Request the OMC to remote login (rlogin) to the base site under test and set:

iir_mod 32 00

10. On completion of the test inform the OMC of any problems.

Page 339: Drive test.pdf

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J i

Chapter 9

Channel numbers and frequencies

Page 340: Drive test.pdf

GSM-100-423

31st Jul 01ii

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 341: Drive test.pdf

GSM-100-423

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J iii

Chapter 9Channel numbers and frequencies i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Channels and frequencies 9–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 9–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PGSM channel numbers and frequencies 9–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Channels 9–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extended GSM channel numbers and frequencies 9–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Channels 9–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DCS1800 channel numbers and frequencies 9–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Channels 9–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PCS1900 channel numbers and frequencies 9–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Channels 9–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 342: Drive test.pdf

GSM-100-423

31st Jul 01iv

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 343: Drive test.pdf

GSM-100-423 Channels and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–1

Channels and frequencies

Introduction

This chapter lists all channels and frequencies for each of the four channel types:

� PGSM The standard GSM frequency range.

� EGSM The extended GSM frequency range.

� DCS1800 The standard 1800MHz frequency range.

� PCS1900 The higher frequency range allocated in countries such as the USA.

Page 344: Drive test.pdf

GSM-100-423PGSM channel numbers and frequencies

31st Jul 019–2

Installation & Configuration: BSS Optimization

68P02901W43-J

PGSM channel numbers and frequencies

Channels

This section lists all the frequencies used in PGSM, with their channel numbers in bothdecimal and hexadecimal notation.

Channels 1–10

Table 9-1 shows the frequencies for PGSM channels 1 to 10.

Table 9-1: PGSM channels 1 to 10

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

1 01 890.20 935.20

2 02 890.40 935.40

3 03 890.60 935.60

4 04 890.80 935.80

5 05 891.00 936.00

6 06 891.20 936.20

7 07 891.40 936.40

8 08 891.60 936.60

9 09 891.80 936.80

10 0A 892.00 937.00

Channels 11–20

Table 9-2 shows the frequencies for PGSM channels 11 to 20.

Table 9-2: PGSM channels 11 to 20

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

11 0B 892.20 937.20

12 0C 892.40 937.40

13 0D 892.60 937.60

14 0E 892.80 937.80

15 0F 893.00 938.00

16 10 893.20 938.20

17 11 893.40 938.40

18 12 893.60 938.60

19 13 893.80 938.80

20 14 894.00 939.00

Page 345: Drive test.pdf

GSM-100-423 PGSM channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–3

Channels 21–30

Table 9-3 shows the frequencies for PGSM channels 21 to 30.

Table 9-3: PGSM channels 21 to 30

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

21 15 894.20 939.20

22 16 894.40 939.40

23 17 894.60 939.60

24 18 894.80 939.80

25 19 895.00 940.00

26 1A 895.20 940.20

27 1B 895.40 940.40

28 1C 895.60 940.60

29 1D 895.80 940.80

30 1E 896.00 941.00

Channels 31–40

Table 9-4 shows the frequencies for PGSM channels 31 to 40.

Table 9-4: PGSM channels 31 to 40

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

31 1F 896.20 941.20

32 20 896.40 941.40

33 21 896.60 941.60

34 22 896.80 941.80

35 23 897.00 942.00

36 24 897.20 942.20

37 25 897.40 942.40

38 26 897.60 942.60

39 27 897.80 942.80

40 28 898.00 943.00

Page 346: Drive test.pdf

GSM-100-423PGSM channel numbers and frequencies

31st Jul 019–4

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 41–50

Table 9-5 shows the frequencies for PGSM channels 41 to 50.

Table 9-5: PGSM channels 41 to 50

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

41 29 898.20 943.20

42 2A 898.40 943.40

43 2B 898.60 943.60

44 2C 898.80 943.80

45 2D 899.00 944.00

46 2E 899.20 944.20

47 2F 899.40 944.40

48 30 899.60 944.60

49 31 899.80 944.80

50 32 900.00 945.00

Channels 51–60

Table 9-6 shows the frequencies for PGSM channels 51 to 60.

Table 9-6: PGSM channels 51 to 60

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

51 33 900.20 945.20

52 34 900.40 945.40

53 35 900.60 945.60

54 36 900.80 945.80

55 37 901.00 946.00

56 38 901.20 946.20

57 39 901.40 946.40

58 3A 901.60 946.60

59 3B 901.80 946.80

60 3C 902.00 947.00

Page 347: Drive test.pdf

GSM-100-423 PGSM channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–5

Channels 61–70

Table 9-7 shows the frequencies for PGSM channels 61 to 70.

Table 9-7: PGSM channels 61 to 70

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

61 3D 902.20 947.20

62 3E 902.40 947.40

63 3F 902.60 947.60

64 40 902.80 947.80

65 41 903.00 948.00

66 42 903.20 948.20

67 43 903.40 948.40

68 44 903.60 948.60

69 45 903.80 948.80

70 46 904.00 949.00

Channels 71–80

Table 9-8 shows the frequencies for PGSM channels 71 to 80.

Table 9-8: PGSM channels 71 to 80

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

71 47 904.20 949.20

72 48 904.40 949.40

73 49 904.60 949.60

74 4A 904.80 949.80

75 4B 905.00 950.00

76 4C 905.20 950.20

77 4D 905.40 950.40

78 4E 905.60 950.60

79 4F 905.80 950.80

80 50 906.00 951.00

Page 348: Drive test.pdf

GSM-100-423PGSM channel numbers and frequencies

31st Jul 019–6

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 81–90

Table 9-9 shows the frequencies for PGSM channels 81 to 90.

Table 9-9: PGSM channels 81 to 90

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

81 51 906.20 951.20

82 52 906.40 951.40

83 53 906.60 951.60

84 54 906.80 951.80

85 55 907.00 952.00

86 56 907.20 952.20

87 57 907.40 952.40

88 58 907.60 952.60

89 59 907.80 952.80

90 5A 908.00 953.00

Channels 91–100

Table 9-10 shows the frequencies for PGSM channels 91 to 100.

Table 9-10: PGSM channels 91 to 100

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

91 5B 908.20 953.20

92 5C 908.40 953.40

93 5D 908.60 953.60

94 5E 908.80 953.80

95 5F 909.00 954.00

96 60 909.20 954.20

97 61 909.40 954.40

98 62 909.60 954.60

99 63 909.80 954.80

100 64 910.00 955.00

Page 349: Drive test.pdf

GSM-100-423 PGSM channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–7

Channels 101–110Table 9-11 shows the frequencies for PGSM channels 101 to 110.

Table 9-11: PGSM channels 101 to 110

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

101 65 910.20 955.20

102 66 910.40 955.40

103 67 910.60 955.60

104 68 910.80 955.80

105 69 911.00 956.00

106 6A 911.20 956.20

107 6B 911.40 956.40

108 6C 911.60 956.60

109 6D 911.80 956.80

110 6E 912.00 957.00

Channels 111–120Table 9-12 shows the frequencies for PGSM channels 111 to 120.

Table 9-12: PGSM channels 111 to 120

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

111 6F 912.20 957.20

112 70 912.40 957.40

113 71 912.60 957.60

114 72 912.80 957.80

115 73 913.00 958.00

116 74 913.20 958.20

117 75 913.40 958.40

118 76 913.60 958.60

119 77 913.80 958.80

120 78 914.00 959.00

Channels 121–124Table 9-13 shows the frequencies for PGSM channels 121 to 124.

Table 9-13: PGSM channels 121 to 124

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

121 79 914.20 959.20

122 7A 914.40 959.40

123 7B 914.60 959.60

124 7C 914.80 959.80

Page 350: Drive test.pdf

GSM-100-423Extended GSM channel numbers and frequencies

31st Jul 019–8

Installation & Configuration: BSS Optimization

68P02901W43-J

Extended GSM channel numbers and frequencies

Channels

This section lists all the extra frequencies used in Extended GSM (EGSM), with theirchannel numbers in both decimal and hexadecimal notation. EGSM also uses allfrequencies listed in GSM channel numbers and frequencies.

Channels 975–984

Table 9-14 shows the frequencies for EGSM channels 975 to 984.

Table 9-14: EGSM channels 975 to 984

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

975 3CF 880.20 925.20

976 3D0 880.40 925.40

977 3D1 880.60 925.60

978 3D2 880.80 925.80

979 3D3 881.00 926.00

980 3D4 881.20 926.20

981 3D5 881.40 926.40

982 3D6 881.60 926.60

983 3D7 881.80 926.80

984 3D8 882.00 927.00

Channels 985–994

Table 9-15 shows the frequencies for EGSM channels 985 to 994.

Table 9-15: EGSM channels 985 to 994

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

985 3D9 882.20 927.20

986 3DA 882.40 927.40

987 3DB 882.60 927.60

988 3DC 882.80 927.80

989 3DD 883.00 928.00

990 3DE 883.20 928.20

991 3DF 883.40 928.40

992 3E0 883.60 928.60

993 3E1 883.80 928.80

994 3E2 884.00 929.00

Page 351: Drive test.pdf

GSM-100-423 Extended GSM channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–9

Channels 995–1004

Table 9-16 shows the frequencies for EGSM channels 995 to 1004.

Table 9-16: EGSM channels 995 to 1004

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

995 3E3 884.20 929.20

996 3E4 884.40 929.40

997 3E5 884.60 929.60

998 3E6 884.80 929.80

999 3E7 885.00 930.00

1000 3E8 885.20 930.20

1001 3E9 885.40 930.40

1002 3EA 885.60 930.60

1003 3EB 885.80 930.80

1004 3EC 886.00 931.00

Channels 1005–1014

Table 9-17 shows the frequencies for EGSM channels 1005 to 1014.

Table 9-17: EGSM channels 1005 to 1014

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

1005 3ED 886.20 931.20

1006 3EE 886.40 931.40

1007 3EF 886.60 931.60

1008 3F0 886.80 931.80

1009 3F1 887.00 932.00

1010 3F2 887.20 932.20

1011 3F3 887.40 932.40

1012 3F4 887.60 932.60

1013 3F5 887.80 932.80

1014 3F6 888.00 933.00

Page 352: Drive test.pdf

GSM-100-423Extended GSM channel numbers and frequencies

31st Jul 019–10

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 1015–0

Table 9-18 shows the frequencies for EGSM channels 1015 to 0.

Table 9-18: EGSM channels 1015 to 0

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

1015 3F7 888.20 933.20

1016 3F8 888.40 933.40

1017 3F9 888.60 933.60

1018 3FA 888.80 933.80

1019 3FB 889.00 934.00

1020 3FC 889.20 934.20

1021 3FD 889.40 934.40

1022 3FE 889.60 934.60

1023 3FF 889.80 934.80

0 0 890.00 935.00

Page 353: Drive test.pdf

GSM-100-423 DCS1800 channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–11

DCS1800 channel numbers and frequencies

Channels

This section lists the frequencies used in DCS1800, with their channel numbers in bothdecimal and hexadecimal notation.

Channels 512–520

Table 9-19 shows the frequencies for DCS1800 channels 512 to 520.

Table 9-19: DCS 1800 channels 512 to 520

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

512 200 1710.2 1805.2

513 201 1710.4 1805.4

514 202 1710.6 1805.6

515 203 1710.8 1805.8

516 204 1711.0 1806.0

517 205 1711.2 1806.2

518 206 1711.4 1806.4

519 207 1711.6 1806.6

520 208 1711.8 1806.8

Channels 521–530

Table 9-20 shows the frequencies for DCS1800 channels 521 to 530.

Table 9-20: DCS 1800 channels 521 to 530

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

521 209 1712.0 1807.0

522 20A 1712.2 1807.2

523 20B 1712.4 1807.4

524 20C 1712.6 1807.6

525 20D 1712.8 1807.8

526 20E 1713.0 1808.0

527 20F 1713.2 1808.2

528 210 1713.4 1808.4

529 211 1713.6 1808.6

530 212 1713.8 1808.8

Page 354: Drive test.pdf

GSM-100-423DCS1800 channel numbers and frequencies

31st Jul 019–12

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 531–540

Table 9-21 shows the frequencies for DCS1800 channels 531 to 540.

Table 9-21: DCS 1800 channels 531 to 540

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

531 213 1714.0 1809.0

532 214 1714.2 1809.2

533 215 1714.4 1809.4

534 216 1714.6 1809.6

535 217 1714.8 1809.8

536 218 1715.0 1810.0

537 219 1715.2 1810.2

538 21A 1715.4 1810.4

539 21B 1715.6 1810.6

540 21C 1715.8 1810.8

Channels 541–550

Table 9-22 shows the frequencies for DCS1800 channels 541 to 550.

Table 9-22: DCS 1800 channels 541 to 550

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

541 21D 1716.0 1811.0

542 21E 1716.2 1811.2

543 21F 1716.4 1811.4

544 220 1716.6 1811.6

545 221 1716.8 1811.8

546 222 1717.0 1812.0

547 223 1717.2 1812.2

548 224 1717.4 1812.4

549 225 1717.6 1812.6

550 226 1717.8 1812.8

Page 355: Drive test.pdf

GSM-100-423 DCS1800 channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–13

Channels 551–560

Table 9-23 shows the frequencies for DCS1800 channels 551 to 560.

Table 9-23: DCS 1800 channels 551 to 560

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

551 227 1718.0 1813.0

552 228 1718.2 1813.2

553 229 1718.4 1813.4

554 22A 1718.6 1813.6

555 22B 1718.8 1813.8

556 22C 1719.0 1814.0

557 22D 1719.2 1814.2

558 22E 1719.4 1814.4

559 22F 1719.6 1814.6

560 230 1719.8 1814.8

Channels 561–570

Table 9-24 shows the frequencies for DCS1800 channels 561 to 570.

Table 9-24: DCS 1800 channels 561 to 570

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

561 231 1720.0 1815.0

562 232 1720.2 1815.2

563 233 1720.4 1815.4

564 234 1720.6 1815.6

565 235 1720.8 1815.8

566 236 1721.0 1816.0

567 237 1721.2 1816.2

568 238 1721.4 1816.4

569 239 1721.6 1816.6

570 23A 1721.8 1816.8

Page 356: Drive test.pdf

GSM-100-423DCS1800 channel numbers and frequencies

31st Jul 019–14

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 571–580

Table 9-25 shows the frequencies for DCS1800 channels 571 to 580.

Table 9-25: DCS 1800 channels 571 to 580

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

571 23B 1722.0 1817.0

572 23C 1722.2 1817.2

573 23D 1722.4 1817.4

574 23E 1722.6 1817.6

575 23F 1722.8 1817.8

576 240 1723.0 1818.0

577 241 1723.2 1818.2

578 242 1723.4 1818.4

579 243 1723.6 1818.6

580 244 1723.8 1818.8

Channels 581–590

Table 9-26 shows the frequencies for DCS1800 channels 581 to 590.

Table 9-26: DCS 1800 channels 581 to 590

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

581 245 1724.0 1819.0

582 246 1724.2 1819.2

583 247 1724.4 1819.4

584 248 1724.6 1819.6

585 249 1724.8 1819.8

586 24A 1725.0 1820.0

587 24B 1725.2 1820.2

588 24C 1725.4 1820.4

589 24D 1725.6 1820.6

590 24E 1725.8 1820.8

Page 357: Drive test.pdf

GSM-100-423 DCS1800 channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–15

Channels 591–600

Table 9-27 shows the frequencies for DCS1800 channels 591 to 600.

Table 9-27: DCS 1800 channels 591 to 600

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

591 24F 1726.0 1821.0

592 250 1726.2 1821.2

593 251 1726.4 1821.4

594 252 1726.6 1821.6

595 253 1726.8 1821.8

596 254 1727.0 1822.0

597 255 1727.2 1822.2

598 256 1727.4 1822.4

599 257 1727.6 1822.6

600 258 1727.8 1822.8

Channels 601–610

Table 9-28 shows the frequencies for DCS1800 channels 601 to 610.

Table 9-28: DCS 1800 channels 601 to 610

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

601 259 1728.0 1823.0

602 25A 1728.2 1823.2

603 25B 1728.4 1823.4

604 25C 1728.6 1823.6

605 25D 1728.8 1823.8

606 25E 1729.0 1824.0

607 25F 1729.2 1824.2

608 260 1729.4 1824.4

609 261 1729.6 1824.6

610 262 1729.8 1824.8

Page 358: Drive test.pdf

GSM-100-423DCS1800 channel numbers and frequencies

31st Jul 019–16

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 611–620

Table 9-29 shows the frequencies for DCS1800 channels 611 to 620.

Table 9-29: DCS 1800 channels 611 to 620

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

611 263 1730.0 1825.0

612 264 1730.2 1825.2

613 265 1730.4 1825.4

614 266 1730.6 1825.6

615 267 1730.8 1825.8

616 268 1731.0 1826.0

617 269 1731.2 1826.2

618 26A 1731.4 1826.4

619 26B 1731.6 1826.6

620 26C 1731.8 1826.8

Channels 621–630

Table 9-30 shows the frequencies for DCS1800 channels 621 to 630.

Table 9-30: DCS 1800 channels 621 to 630

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

621 26D 1732.0 1827.0

622 26E 1732.2 1827.2

623 26F 1732.4 1827.4

624 270 1732.6 1827.6

625 271 1732.8 1827.8

626 272 1733.0 1828.0

627 273 1733.2 1828.2

628 274 1733.4 1828.4

629 275 1733.6 1828.6

630 276 1733.8 1828.8

Page 359: Drive test.pdf

GSM-100-423 DCS1800 channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–17

Channels 631–640

Table 9-31 shows the frequencies for DCS1800 channels 631 to 640.

Table 9-31: DCS 1800 channels 631 to 640

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

631 277 1734.0 1829.0

632 278 1734.2 1829.2

633 279 1734.4 1829.4

634 27A 1734.6 1829.6

635 27B 1734.8 1829.8

636 27C 1735.0 1830.0

637 27D 1735.2 1830.2

638 27E 1735.4 1830.4

639 27F 1735.6 1830.6

640 280 1735.8 1830.8

Channels 641–650

Table 9-32 shows the frequencies for DCS1800 channels 641 to 650.

Table 9-32: DCS 1800 channels 641 to 650

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

641 281 1736.0 1831.0

642 282 1736.2 1831.2

643 283 1736.4 1831.4

644 284 1736.6 1831.6

645 285 1736.8 1831.8

646 286 1737.0 1832.0

647 287 1737.2 1832.2

648 288 1737.4 1832.4

649 289 1737.6 1832.6

650 28A 1737.8 1832.8

Page 360: Drive test.pdf

GSM-100-423DCS1800 channel numbers and frequencies

31st Jul 019–18

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 651–660

Table 9-33 shows the frequencies for DCS1800 channels 650 to 660.

Table 9-33: DCS 1800 channels 650 to 660

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

651 28B 1738.0 1833.0

652 28C 1738.2 1833.2

653 28D 1738.4 1833.4

654 28E 1738.6 1833.6

655 28F 1738.8 1833.8

656 290 1739.0 1834.0

657 291 1739.2 1834.2

658 292 1739.4 1834.4

659 293 1739.6 1834.6

660 294 1739.8 1834.8

Channels 661–670

Table 9-34 shows the frequencies for DCS1800 channels 661 to 670.

Table 9-34: DCS 1800 channels 661 to 670

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

661 295 1740.0 1835.0

662 296 1740.2 1835.2

663 297 1740.4 1835.4

664 298 1740.6 1835.6

665 299 1740.8 1835.8

666 29A 1741.0 1836.0

667 29B 1741.2 1836.2

668 29C 1741.4 1836.4

669 29D 1741.6 1836.6

670 29E 1741.8 1836.8

Page 361: Drive test.pdf

GSM-100-423 DCS1800 channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–19

Channels 671–680

Table 9-35 shows the frequencies for DCS1800 channels 671 to 680.

Table 9-35: DCS 1800 channels 671 to 680

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

671 29F 1742.0 1837.0

672 2A0 1742.2 1837.2

673 2A1 1742.4 1837.4

674 2A2 1742.6 1837.6

675 2A3 1742.8 1837.8

676 2A4 1743.0 1838.0

677 2A5 1743.2 1838.2

678 2A6 1743.4 1838.4

679 2A7 1743.6 1838.6

680 2A8 1743.8 1838.8

Channels 681–690

Table 9-36 shows the frequencies for DCS1800 channels 681 to 690.

Table 9-36: DCS 1800 channels 681 to 690

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

681 2A9 1744.0 1839.0

682 2AA 1744.2 1839.2

683 2AB 1744.4 1839.4

684 2AC 1744.6 1839.6

685 2AD 1744.8 1839.8

686 2AE 1745.0 1840.0

687 2AF 1745.2 1840.2

688 2B0 1745.4 1840.4

689 2B1 1745.6 1840.6

690 2B2 1745.8 1840.8

Page 362: Drive test.pdf

GSM-100-423DCS1800 channel numbers and frequencies

31st Jul 019–20

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 691–700

Table 9-37 shows the frequencies for DCS1800 channels 691 to 700.

Table 9-37: DCS 1800 channels 691 to 700

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

691 2B3 1746.0 1841.0

692 2B4 1746.2 1841.2

693 2B5 1746.4 1841.4

694 2B6 1746.6 1841.6

695 2B7 1746.8 1841.8

696 2B8 1747.0 1842.0

697 2B9 1747.2 1842.2

698 2BA 1747.4 1842.4

699 2BB 1747.6 1842.6

700 2BC 1747.8 1842.8

Channels 701–710

Table 9-38 shows the frequencies for DCS1800 channels 701 to 710.

Table 9-38: DCS 1800 channels 701 to 710

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

701 2BD 1748.0 1843.0

702 2BE 1748.2 1843.2

703 2BF 1748.4 1843.4

704 2C0 1748.6 1843.6

705 2C1 1748.8 1843.8

706 2C2 1749.0 1844.0

707 2C3 1749.2 1844.2

708 2C4 1749.4 1844.4

709 2C5 1749.6 1844.6

710 2C6 1749.8 1844.8

Page 363: Drive test.pdf

GSM-100-423 DCS1800 channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–21

Channels 711–720

Table 9-39 shows the frequencies for DCS1800 channels 711 to 720.

Table 9-39: DCS 1800 channels 711 to 720

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

711 2C7 1750.0 1845.0

712 2C8 1750.2 1845.2

713 2C9 1750.4 1845.4

714 2CA 1750.6 1845.6

715 2CB 1750.8 1845.8

716 2CC 1751.0 1846.0

717 2CD 1751.2 1846.2

718 2CE 1751.4 1846.4

719 2CF 1751.6 1846.6

720 2D0 1751.8 1846.8

Channels 721–730

Table 9-40 shows the frequencies for DCS1800 channels 721 to 730.

Table 9-40: DCS 1800 channels 721 to 730

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

721 2D1 1752.0 1847.0

722 2D2 1752.2 1847.2

723 2D3 1752.4 1847.4

724 2D4 1752.6 1847.6

725 2D5 1752.8 1847.8

726 2D6 1753.0 1848.0

727 2D7 1753.2 1848.2

728 2D8 1753.4 1848.4

729 2D9 1753.6 1848.6

730 2DA 1753.8 1848.8

Page 364: Drive test.pdf

GSM-100-423DCS1800 channel numbers and frequencies

31st Jul 019–22

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 731–740

Table 9-41 shows the frequencies for DCS1800 channels 731 to 740.

Table 9-41: DCS 1800 channels 731 to 740

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

731 2DB 1754.0 1849.0

732 2DC 1754.2 1849.2

733 2DD 1754.4 1849.4

734 2DE 1754.6 1849.6

735 2DF 1754.8 1849.8

736 2E0 1755.0 1850.0

737 2E1 1755.2 1850.2

738 2E2 1755.4 1850.4

739 2E3 1755.6 1850.6

740 2E4 1755.8 1850.8

Channels 741–750

Table 9-42 shows the frequencies for DCS1800 channels 741 to 750.

Table 9-42: DCS 1800 channels 741 to 750

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

741 2E5 1756.0 1851.0

742 2E6 1756.2 1851.2

743 2E7 1756.4 1851.4

744 2E8 1756.6 1851.6

745 2E9 1756.8 1851.8

746 2EA 1757.0 1852.0

747 2EB 1757.2 1852.2

748 2EC 1757.4 1852.4

749 2ED 1757.6 1852.6

750 2EE 1757.8 1852.8

Page 365: Drive test.pdf

GSM-100-423 DCS1800 channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–23

Channels 751–760

Table 9-43 shows the frequencies for DCS1800 channels 751 to 760.

Table 9-43: DCS 1800 channels 751 to 760

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

751 2EF 1758.0 1853.0

752 2F0 1758.2 1853.2

753 2F1 1758.4 1853.4

754 2F2 1758.6 1853.6

755 2F3 1758.8 1853.8

756 2F4 1759.0 1854.0

757 2F5 1759.2 1854.2

758 2F6 1759.4 1854.4

759 2F7 1759.6 1854.6

760 2F8 1759.8 1854.8

Channels 761–770

Table 9-44 shows the frequencies for DCS1800 channels 761 to 770.

Table 9-44: DCS 1800 channels 761 to 770

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

761 2F9 1760.0 1855.0

762 2FA 1760.2 1855.2

763 2FB 1760.4 1855.4

764 2FC 1760.6 1855.6

765 2FD 1760.8 1855.8

766 2FE 1761.0 1856.0

767 2FF 1761.2 1856.2

768 300 1761.4 1856.4

769 301 1761.6 1856.6

770 302 1761.8 1856.8

Page 366: Drive test.pdf

GSM-100-423DCS1800 channel numbers and frequencies

31st Jul 019–24

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 771–780

Table 9-45 shows the frequencies for DCS1800 channels 771 to 780.

Table 9-45: DCS 1800 channels 771 to 780

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

771 303 1762.0 1857.0

772 304 1762.2 1857.2

773 305 1762.4 1857.4

774 306 1762.6 1857.6

775 307 1762.8 1857.8

776 308 1763.0 1858.0

777 309 1763.2 1858.2

778 30A 1763.4 1858.4

779 30B 1763.6 1858.6

780 30C 1763.8 1858.8

Channels 781–790

Table 9-46 shows the frequencies for DCS1800 channels 781 to 790.

Table 9-46: DCS 1800 channels 781 to 790

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

781 30D 1764.0 1859.0

782 30E 1764.2 1859.2

783 30F 1764.4 1859.4

784 310 1764.6 1859.6

785 311 1764.8 1859.8

786 312 1765.0 1860.0

787 313 1765.2 1860.2

788 314 1765.4 1860.4

789 315 1765.6 1860.6

790 316 1765.8 1860.8

Page 367: Drive test.pdf

GSM-100-423 DCS1800 channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–25

Channels 791–800

Table 9-47 shows the frequencies for DCS1800 channels 791 to 800.

Table 9-47: DCS 1800 channels 791 to 800

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

791 317 1766.0 1861.0

792 318 1766.2 1861.2

793 319 1766.4 1861.4

794 31A 1766.6 1861.6

795 31B 1766.8 1861.8

796 31C 1767.0 1862.0

797 31D 1767.2 1862.2

798 31E 1767.4 1862.4

799 31F 1767.6 1862.6

800 320 1767.8 1862.8

Channels 801–810

Table 9-48 shows the frequencies for DCS1800 channels 801 to 810.

Table 9-48: DCS 1800 channels 801 to 810

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

801 321 1768.0 1863.0

802 322 1768.2 1863.2

803 323 1768.4 1863.4

804 324 1768.6 1863.6

805 325 1768.8 1863.8

806 326 1769.0 1864.0

807 327 1769.2 1864.2

808 328 1769.4 1864.4

809 329 1769.6 1864.6

810 32A 1769.8 1864.8

Page 368: Drive test.pdf

GSM-100-423DCS1800 channel numbers and frequencies

31st Jul 019–26

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 811–820

Table 9-49 shows the frequencies for DCS1800 channels 811 to 820.

Table 9-49: DCS 1800 channels 811 to 820

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

811 32B 1770.0 1865.0

812 32C 1770.2 1865.2

813 32D 1770.4 1865.4

814 32E 1770.6 1865.6

815 32F 1770.8 1865.8

816 330 1771.0 1866.0

817 331 1771.2 1866.2

818 332 1771.4 1866.4

819 333 1771.6 1866.6

820 334 1771.8 1866.8

Channels 821–830

Table 9-50 shows the frequencies for DCS1800 channels 821 to 830.

Table 9-50: DCS 1800 channels 821 to 830

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

821 335 1772.0 1867.0

822 336 1772.2 1867.2

823 337 1772.4 1867.4

824 338 1772.6 1867.6

825 339 1772.8 1867.8

826 33A 1773.0 1868.0

827 33B 1773.2 1868.2

828 33C 1773.4 1868.4

829 33D 1773.6 1868.6

830 33E 1773.8 1868.8

Page 369: Drive test.pdf

GSM-100-423 DCS1800 channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–27

Channels 831–840

Table 9-51 shows the frequencies for DCS1800 channels 831 to 840.

Table 9-51: DCS 1800 channels 831 to 840

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

831 33F 1774.0 1869.0

832 340 1774.2 1869.2

833 341 1774.4 1869.4

834 342 1774.6 1869.6

835 343 1774.8 1869.8

836 344 1775.0 1870.0

837 345 1775.2 1870.2

838 346 1775.4 1870.4

839 347 1775.6 1870.6

840 348 1775.8 1870.8

Channels 841–850

Table 9-52 shows the frequencies for DCS1800 channels 841 to 850.

Table 9-52: DCS 1800 channels 841 to 850

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

841 349 1776.0 1871.0

842 34A 1776.2 1871.2

843 34B 1776.4 1871.4

844 34C 1776.6 1871.6

845 34D 1776.8 1871.8

846 34E 1777.0 1872.0

847 34F 1777.2 1872.2

848 350 1777.4 1872.4

849 351 1777.6 1872.6

850 352 1777.8 1872.8

Page 370: Drive test.pdf

GSM-100-423DCS1800 channel numbers and frequencies

31st Jul 019–28

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 851–860

Table 9-53 shows the frequencies for DCS1800 channels 851 to 860.

Table 9-53: DCS 1800 channels 851 to 860

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

851 353 1778.0 1873.0

852 354 1778.2 1873.2

853 355 1778.4 1873.4

854 356 1778.6 1873.6

855 357 1778.8 1873.8

856 358 1779.0 1874.0

857 359 1779.2 1874.2

858 35A 1779.4 1874.4

859 35B 1779.6 1874.6

860 35C 1779.8 1874.8

Channels 861–870

Table 9-54 shows the frequencies for DCS1800 channels 861 to 870.

Table 9-54: DCS 1800 channels 861 to 870

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

861 35D 1780.0 1875.0

862 35E 1780.2 1875.2

863 35F 1780.4 1875.4

864 360 1780.6 1875.6

865 361 1780.8 1875.8

866 362 1781.0 1876.0

867 363 1781.2 1876.2

868 364 1781.4 1876.4

869 365 1781.6 1876.6

870 366 1781.8 1876.8

Page 371: Drive test.pdf

GSM-100-423 DCS1800 channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–29

Channels 871–880

Table 9-55 shows the frequencies for DCS1800 channels 871 to 880.

Table 9-55: DCS 1800 channels 871 to 880

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

871 367 1782.0 1877.0

872 368 1782.2 1877.2

873 369 1782.4 1877.4

874 36A 1782.6 1877.6

875 36B 1782.8 1877.8

876 36C 1783.0 1878.0

877 36D 1783.2 1878.2

878 36E 1783.4 1878.4

879 36F 1783.6 1878.6

880 370 1783.8 1878.8

Channels 881–885

Table 9-56 shows the frequencies for DCS1800 channels 881 to 885.

Table 9-56: DCS 1800 channels 881 to 885

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

881 371 1784.0 1879.0

882 372 1784.2 1879.2

883 373 1784.4 1879.4

884 374 1784.6 1879.6

885 375 1784.8 1879.8

Page 372: Drive test.pdf

GSM-100-423PCS1900 channel numbers and frequencies

31st Jul 019–30

Installation & Configuration: BSS Optimization

68P02901W43-J

PCS1900 channel numbers and frequencies

Channels

This section lists the frequencies used in PCS1900, with their channel numbers in bothdecimal and hexadecimal notation.

Channels 512–520

Table 9-57 shows the frequencies for PCS1900 channels 512 to 520.

Table 9-57: PCS 1900 channels 512 to 520

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

512 200 1850.2 1930.2

513 201 1850.4 1930.4

514 202 1850.6 1930.6

515 203 1850.8 1930.8

516 204 1851.0 1931.0

517 205 1851.2 1931.2

518 206 1851.4 1931.4

519 207 1851.6 1931.6

520 208 1851.8 1931.8

Channels 521–530

Table 9-58 shows the frequencies for PCS1900 channels 521 to 530.

Table 9-58: PCS 1900 channels 521 to 530

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

521 209 1852.0 1932.0

522 20A 1852.2 1932.2

523 20B 1852.4 1932.4

524 20C 1852.6 1932.6

525 20D 1852.8 1932.8

526 20E 1853.0 1933.0

527 20F 1853.2 1933.2

528 210 1853.4 1933.4

529 211 1853.6 1933.6

530 212 1853.8 1933.8

Page 373: Drive test.pdf

GSM-100-423 PCS1900 channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–31

Channels 531–540

Table 9-59 shows the frequencies for PCS1900 channels 531 to 540.

Table 9-59: PCS 1900 channels 531 to 540

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

531 213 1854.0 1934.0

532 214 1854.2 1934.2

533 215 1854.4 1934.4

534 216 1854.6 1934.6

535 217 1854.8 1934.8

536 218 1855.0 1935.0

537 219 1855.2 1935.2

538 21A 1855.4 1935.4

539 21B 1855.6 1935.6

540 21C 1855.8 1935.8

Channels 541–550

Table 9-60 shows the frequencies for PCS1900 channels 541 to 550.

Table 9-60: PCS 1900 channels 541 to 550

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

541 21D 1856.0 1936.0

542 21E 1856.2 1936.2

543 21F 1856.4 1936.4

544 220 1856.6 1936.6

545 221 1856.8 1936.8

546 222 1857.0 1937.0

547 223 1857.2 1937.2

548 224 1857.4 1937.4

549 225 1857.6 1937.6

550 226 1857.8 1937.8

Page 374: Drive test.pdf

GSM-100-423PCS1900 channel numbers and frequencies

31st Jul 019–32

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 551–560

Table 9-61 shows the frequencies for PCS1900 channels 551 to 560.

Table 9-61: PCS 1900 channels 551 to 560

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

551 227 1858.0 1938.0

552 228 1858.2 1938.2

553 229 1858.4 1938.4

554 22A 1858.6 1938.6

555 22B 1858.8 1938.8

556 22C 1859.0 1939.0

557 22D 1859.2 1939.2

558 22E 1859.4 1939.4

559 22F 1859.6 1939.6

560 230 1859.8 1939.8

Channels 561–570

Table 9-62 shows the frequencies for PCS1900 channels 561 to 570.

Table 9-62: PCS 1900 channels 561 to 570

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

561 231 1860.0 1940.0

562 232 1860.2 1940.2

563 233 1860.4 1940.4

564 234 1860.6 1940.6

565 235 1860.8 1940.8

566 236 1861.0 1941.0

567 237 1861.2 1941.2

568 238 1861.4 1941.4

569 239 1861.6 1941.6

570 23A 1861.8 1941.8

Page 375: Drive test.pdf

GSM-100-423 PCS1900 channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–33

Channels 571–580

Table 9-63 shows the frequencies for PCS1900 channels 571 to 580.

Table 9-63: PCS 1900 channels 571 to 580

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

571 23B 1862.0 1942.0

572 23C 1862.2 1942.2

573 23D 1862.4 1942.4

574 23E 1862.6 1942.6

575 23F 1862.8 1942.8

576 240 1863.0 1943.0

577 241 1863.2 1943.2

578 242 1863.4 1943.4

579 243 1863.6 1943.6

580 244 1863.8 1943.8

Channels 581–590

Table 9-64 shows the frequencies for PCS1900 channels 581 to 590.

Table 9-64: PCS 1900 channels 581 to 590

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

581 245 1864.0 1944.0

582 246 1864.2 1944.2

583 247 1864.4 1944.4

584 248 1864.6 1944.6

585 249 1864.8 1944.8

586 24A 1865.0 1945.0

587 24B 1865.2 1945.2

588 24C 1865.4 1945.4

589 24D 1865.6 1945.6

590 24E 1865.8 1945.8

Page 376: Drive test.pdf

GSM-100-423PCS1900 channel numbers and frequencies

31st Jul 019–34

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 591–600

Table 9-65 shows the frequencies for PCS1900 channels 591 to 600.

Table 9-65: PCS 1900 channels 591 to 600

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

591 24F 1866.0 1946.0

592 250 1866.2 1946.2

593 251 1866.4 1946.4

594 252 1866.6 1946.6

595 253 1866.8 1946.8

596 254 1867.0 1947.0

597 255 1867.2 1947.2

598 256 1867.4 1947.4

599 257 1867.6 1947.6

600 258 1867.8 1947.8

Channels 601–610

Table 9-66 shows the frequencies for PCS1900 channels 601 to 610.

Table 9-66: PCS 1900 channels 601 to 610

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

601 259 1868.0 1948.0

602 25A 1868.2 1948.2

603 25B 1868.4 1948.4

604 25C 1868.6 1948.6

605 25D 1868.8 1948.8

606 25E 1869.0 1949.0

607 25F 1869.2 1949.2

608 260 1869.4 1949.4

609 261 1869.6 1949.6

610 262 1869.8 1949.8

Page 377: Drive test.pdf

GSM-100-423 PCS1900 channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–35

Channels 611–620

Table 9-67 shows the frequencies for PCS1900 channels 611 to 620.

Table 9-67: PCS 1900 channels 611 to 620

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

611 263 1870.0 1950.0

612 264 1870.2 1950.2

613 265 1870.4 1950.4

614 266 1870.6 1950.6

615 267 1870.8 1950.8

616 268 1871.0 1951.0

617 269 1871.2 1951.2

618 26A 1871.4 1951.4

619 26B 1871.6 1951.6

620 26C 1871.8 1951.8

Channels 621–630

Table 9-68 shows the frequencies for PCS1900 channels 621 to 630.

Table 9-68: PCS 1900 channels 621 to 630

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

621 26D 1872.0 1952.0

622 26E 1872.2 1952.2

623 26F 1872.4 1952.4

624 270 1872.6 1952.6

625 271 1872.8 1952.8

626 272 1873.0 1953.0

627 273 1873.2 1953.2

628 274 1873.4 1953.4

629 275 1873.6 1953.6

630 276 1873.8 1953.8

Page 378: Drive test.pdf

GSM-100-423PCS1900 channel numbers and frequencies

31st Jul 019–36

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 631–640

Table 9-69 shows the frequencies for PCS1900 channels 631 to 640.

Table 9-69: PCS 1900 channels 631 to 640

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

631 277 1874.0 1954.0

632 278 1874.2 1954.2

633 279 1874.4 1954.4

634 27A 1874.6 1954.6

635 27B 1874.8 1954.8

636 27C 1875.0 1955.0

637 27D 1875.2 1955.2

638 27E 1875.4 1955.4

639 27F 1875.6 1955.6

640 280 1875.8 1955.8

Channels 641–650

Table 9-70 shows the frequencies for PCS1900 channels 641 to 650.

Table 9-70: PCS 1900 channels 641 to 650

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

641 281 1876.0 1956.0

642 282 1876.2 1956.2

643 283 1876.4 1956.4

644 284 1876.6 1956.6

645 285 1876.8 1956.8

646 286 1877.0 1957.0

647 287 1877.2 1957.2

648 288 1877.4 1957.4

649 289 1877.6 1957.6

650 28A 1877.8 1957.8

Page 379: Drive test.pdf

GSM-100-423 PCS1900 channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–37

Channels 651–660

Table 9-71 shows the frequencies for PCS1900 channels 651 to 660.

Table 9-71: PCS 1900 channels 651 to 660

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

651 28B 1878.0 1958.0

652 28C 1878.2 1958.2

653 28D 1878.4 1958.4

654 28E 1878.6 1958.6

655 28F 1878.8 1958.8

656 290 1879.0 1959.0

657 291 1879.2 1959.2

658 292 1879.4 1959.4

659 293 1879.6 1959.6

660 294 1879.8 1959.8

Channels 661–670

Table 9-72 shows the frequencies for PCS1900 channels 661 to 670.

Table 9-72: PCS 1900 channels 661 to 670

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

661 295 1880.0 1960.0

662 296 1880.2 1960.2

663 297 1880.4 1960.4

664 298 1880.6 1960.6

665 299 1880.8 1960.8

666 29A 1881.0 1961.0

667 29B 1881.2 1961.2

668 29C 1881.4 1961.4

669 29D 1881.6 1961.6

670 29E 1881.8 1961.8

Page 380: Drive test.pdf

GSM-100-423PCS1900 channel numbers and frequencies

31st Jul 019–38

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 671–680

Table 9-73 shows the frequencies for PCS1900 channels 671 to 680.

Table 9-73: PCS 1900 channels 671 to 680

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

671 29F 1882.0 1962.0

672 2A0 1882.2 1962.2

673 2A1 1882.4 1962.4

674 2A2 1882.6 1962.6

675 2A3 1882.8 1962.8

676 2A4 1883.0 1963.0

677 2A5 1883.2 1963.2

678 2A6 1883.4 1963.4

679 2A7 1883.6 1963.6

680 2A8 1883.8 1963.8

Channels 681–690

Table 9-74 shows the frequencies for PCS1900 channels 681 to 690.

Table 9-74: PCS 1900 channels 681 to 690

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

681 2A9 1884.0 1964.0

682 2AA 1884.2 1964.2

683 2AB 1884.4 1964.4

684 2AC 1884.6 1964.6

685 2AD 1884.8 1964.8

686 2AE 1885.0 1965.0

687 2AF 1885.2 1965.2

688 2B0 1885.4 1965.4

689 2B1 1885.6 1965.6

690 2B2 1885.8 1965.8

Page 381: Drive test.pdf

GSM-100-423 PCS1900 channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–39

Channels 691–700

Table 9-75 shows the frequencies for PCS1900 channels 691 to 700.

Table 9-75: PCS 1900 channels 691 to 700

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

691 2B3 1886.0 1966.0

692 2B4 1886.2 1966.2

693 2B5 1886.4 1966.4

694 2B6 1886.6 1966.6

695 2B7 1886.8 1966.8

696 2B8 1887.0 1967.0

697 2B9 1887.2 1967.2

698 2BA 1887.4 1967.4

699 2BB 1887.6 1967.6

700 2BC 1887.8 1967.8

Channels 701–710

Table 9-76 shows the frequencies for PCS1900 channels 701 to 710.

Table 9-76: PCS 1900 channels 701 to 710

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

701 2BD 1888.0 1968.0

702 2BE 1888.2 1968.2

703 2BF 1888.4 1968.4

704 2C0 1888.6 1968.6

705 2C1 1888.8 1968.8

706 2C2 1889.0 1969.0

707 2C3 1889.2 1969.2

708 2C4 1889.4 1969.4

709 2C5 1889.6 1969.6

710 2C6 1889.8 1969.8

Page 382: Drive test.pdf

GSM-100-423PCS1900 channel numbers and frequencies

31st Jul 019–40

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 711–720

Table 9-77 shows the frequencies for PCS1900 channels 711 to 720.

Table 9-77: PCS 1900 channels 711 to 720

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

711 2C7 1890.0 1970.0

712 2C8 1890.2 1970.2

713 2C9 1890.4 1970.4

714 2CA 1890.6 1970.6

715 2CB 1890.8 1970.8

716 2CC 1891.0 1971.0

717 2CD 1891.2 1971.2

718 2CE 1891.4 1971.4

719 2CF 1891.6 1971.6

720 2D0 1891.8 1971.8

Channels 721–730

Table 9-78 shows the frequencies for PCS1900 channels 721 to 730.

Table 9-78: PCS 1900 channels 721 to 730

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

721 2D1 1892.0 1972.0

722 2D2 1892.2 1972.2

723 2D3 1892.4 1972.4

724 2D4 1892.6 1972.6

725 2D5 1892.8 1972.8

726 2D6 1893.0 1973.0

727 2D7 1893.2 1973.2

728 2D8 1893.4 1973.4

729 2D9 1893.6 1973.6

730 2DA 1893.8 1973.8

Page 383: Drive test.pdf

GSM-100-423 PCS1900 channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–41

Channels 731–740

Table 9-79 shows the frequencies for PCS1900 channels 731 to 740.

Table 9-79: PCS 1900 channels 731 to 740

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

731 2DB 1894.0 1974.0

732 2DC 1894.2 1974.2

733 2DD 1894.4 1974.4

734 2DE 1894.6 1974.6

735 2DF 1894.8 1974.8

736 2E0 1895.0 1975.0

737 2E1 1895.2 1975.2

738 2E2 1895.4 1975.4

739 2E3 1895.6 1975.6

740 2E4 1895.8 1975.8

Channels 741–750

Table 9-80 shows the frequencies for PCS1900 channels 741 to 750.

Table 9-80: PCS 1900 channels 741 to 750

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

741 2E5 1896.0 1976.0

742 2E6 1896.2 1976.2

743 2E7 1896.4 1976.4

744 2E8 1896.6 1976.6

745 2E9 1896.8 1976.8

746 2EA 1897.0 1977.0

747 2EB 1897.2 1977.2

748 2EC 1897.4 1977.4

749 2ED 1897.6 1977.6

750 2EE 1897.8 1977.8

Page 384: Drive test.pdf

GSM-100-423PCS1900 channel numbers and frequencies

31st Jul 019–42

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 751–760

Table 9-81 shows the frequencies for PCS1900 channels 751 to 760.

Table 9-81: PCS 1900 channels 751 to 760

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

751 2EF 1898.0 1978.0

752 2F0 1898.2 1978.2

753 2F1 1898.4 1978.4

754 2F2 1898.6 1978.6

755 2F3 1898.8 1978.8

756 2F4 1899.0 1979.0

757 2F5 1899.2 1979.2

758 2F6 1899.4 1979.4

759 2F7 1899.6 1979.6

760 2F8 1899.8 1979.8

Channels 761–770

Table 9-82 shows the frequencies for PCS1900 channels 761 to 770.

Table 9-82: PCS 1900 channels 761 to 770

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

761 2F9 1900.0 1980.0

762 2FA 1900.2 1980.2

763 2FB 1900.4 1980.4

764 2FC 1900.6 1980.6

765 2FD 1900.8 1980.8

766 2FE 1901.0 1981.0

767 2FF 1901.2 1981.2

768 300 1901.4 1981.4

769 301 1901.6 1981.6

770 302 1901.8 1981.8

Page 385: Drive test.pdf

GSM-100-423 PCS1900 channel numbers and frequencies

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 9–43

Channels 771–780

Table 9-83 shows the frequencies for PCS1900 channels 771 to 780.

Table 9-83: PCS 1900 channels 771 to 780

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

771 303 1902.0 1982.0

772 304 1902.2 1982.2

773 305 1902.4 1982.4

774 306 1902.6 1982.6

775 307 1902.8 1982.8

776 308 1903.0 1983.0

777 309 1903.2 1983.2

778 30A 1903.4 1983.4

779 30B 1903.6 1983.6

780 30C 1903.8 1983.8

Channels 781–790

Table 9-84 shows the frequencies for PCS1900 channels 781 to 790.

Table 9-84: PCS 1900 channels 781 to 790

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

781 30D 1904.0 1984.0

782 30E 1904.2 1984.2

783 30F 1904.4 1984.4

784 310 1904.6 1984.6

785 311 1904.8 1984.8

786 312 1905.0 1985.0

787 313 1905.2 1985.2

788 314 1905.4 1985.4

789 315 1905.6 1985.6

790 316 1905.8 1985.8

Page 386: Drive test.pdf

GSM-100-423PCS1900 channel numbers and frequencies

31st Jul 019–44

Installation & Configuration: BSS Optimization

68P02901W43-J

Channels 791–800

Table 9-85 shows the frequencies for PCS1900 channels 791 to 800.

Table 9-85: PCS 1900 channels 791 to 800

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

791 317 1906.0 1986.0

792 318 1906.2 1986.2

793 319 1906.4 1986.4

794 31A 1906.6 1986.6

795 31B 1906.8 1986.8

796 31C 1907.0 1987.0

797 31D 1907.2 1987.2

798 31E 1907.4 1987.4

799 31F 1907.6 1987.6

800 320 1907.8 1987.8

Channels 801–810

Table 9-86 shows the frequencies for PCS1900 channels 801 to 810.

Table 9-86: PCS 1900 channels 801 to 810

Channel number Frequency (MHz)

Decimal Hex. Receive Transmit

801 321 1908.0 1988.0

802 322 1908.2 1988.2

803 323 1908.4 1988.4

804 324 1908.6 1988.6

805 325 1908.8 1988.8

806 326 1909.0 1989.0

807 327 1909.2 1989.2

808 328 1909.4 1989.4

809 329 1909.6 1989.6

810 32A 1909.8 1989.8

Page 387: Drive test.pdf

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J i

Chapter 10

Network optimization

Page 388: Drive test.pdf

GSM-100-423

31st Jul 01ii

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 389: Drive test.pdf

GSM-100-423

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J iii

Chapter 10Network optimization i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter overview 10–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 10–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Network optimization chapter topics 10–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Network optimization overview 10–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Optimization process overview 10–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stages in an optimization exercise 10–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Drive testing the system 10–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 10–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preparing for the drive test 10–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equipment lists 10–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . optimizing for worst case interference 10–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drive test process 10–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data collection overview 10–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Personnel requirements 10–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data collection process 10–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FICS explained 10–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Classification of test calls 10–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Diagnosing drive test results 10–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 10–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analysis of data 10–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High handover failure rates 10–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High set-up failure rates 10–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High dropped call rate 10–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . No audio calls 10–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Noisy calls 10–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poor quality of service calls 10–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High blocking cells 10–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Audio call faults 10–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mean time between drops 10–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drive test report 10–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Implementation of a drive test recommendation 10–20. . . . . . . . . . . . . . . . . . . . . . . . . . . Effects of a recommendation implemented 10–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Residual defect investigation 10–21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 390: Drive test.pdf

GSM-100-423

31st Jul 01iv

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 391: Drive test.pdf

GSM-100-423 Chapter overview

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 10–1

Chapter overview

Introduction

This chapter describes the process and procedures involved in the optimization of anetwork by drive testing.

Within this chapter are details on how to carry out drive testing and guidance onanalysing logs and resolving problems. Discussed are the techniques involved in theoptimization of a macro-cellular system, however these could also apply to amicro-cellular system as well. The same techniques apply to any frequency band,although there will be significant differences in the RF propagation properties.

Networkoptimizationchapter topics

The following network optimization topics are described in this chapter:

� Drive testing the system.

� Diagnosing drive test results.

� Residual defect investigation.

Page 392: Drive test.pdf

GSM-100-423Network optimization overview

31st Jul 0110–2

Installation & Configuration: BSS Optimization

68P02901W43-J

Network optimization overview

Optimizationprocess overview

Optimization is the task of improving the call success rate for mobile subscribers.

In a newly deployed network, problems will emerge. These will be due to any or all of thefollowing:

� The set-up of the database parameters.

� The installation of the equipment.

� The orientation of the antennas.

There will almost certainly be problems with congestion in busy parts of the network.

As a network matures from an initial coverage priority to handling more subscribers, it willbecome clear that some of the original cells will have to be modified or removed from thenetwork.

The optimization of an entire network with hundreds or thousands of cells is atime-consuming and slow process, and can show little improvement in overall networkquality in the short term. Drive testing and analysis of collected data are two stages of apractical method of optimizing a network by attacking the worst ten performing cells.Dealing with the worst ten cells in each optimization exercise, slowly resolves theproblems and raises the overall quality of service available to subscribers. As the networkexpands each new cell integrated into the network is automatically assessed along withall the original cells.

The overall performance of a network which has had little or no upgrading can also beimproved by implementing newer features or operating practices.

Page 393: Drive test.pdf

GSM-100-423 Network optimization overview

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 10–3

Stages in anoptimizationexercise

The optimization process can be divided into the following stages:

� Preparing for an optimization exercise from the OMC-R.

This involves consultation with network operators to review their networkadministration procedures and feature implementation to determine where areascan be modified to increase efficiency and unnecessary diagnostic effort. See

Preparing for optimization in Installation and Configuration: GSM SystemConfiguration (GSM-100-403).

� Checking, collecting and researching network information from the OMC-R. Detailscan be found in the manual Installation and Configuration: GSM SystemConfiguration (GSM-100-403).

� Analysing, diagnosing and rectifying network problem areas from the OMC-R.Details can be found in the manual Installation and Configuration: GSM SystemConfiguration (GSM-100-403).

� Drive testing, if required.

Drive testing is a significant stage in optimizing a network. It is labour intensive,slow, and drive test teams cannot cover cells that are geographically widelyseparated. In these circumstances statistical analysis of the network from theOMC-R can be quicker, but in other circumstances drive testing may still benecessary. See sections in this chapter for further details.

� Analysing and resolving any problem cells using data, logs and tick sheetscollected during the drive tests. See sections in this chapter for further details.

Page 394: Drive test.pdf

GSM-100-423Drive testing the system

31st Jul 0110–4

Installation & Configuration: BSS Optimization

68P02901W43-J

Drive testing the system

Introduction

Once the network optimization exercise has reached the stage of drive testing andnetwork performance is still poor, then a drive test of the problem cells will be required.

This involves:

� Preparing for the drive test.

� Equipment lists.

� optimizing for worst case interference.

� Drive test process.

� Data collection overview.

� Personnel requirements.

� Data collection process.

� FICS.

� The classification of test calls.

Preparing for thedrive test

Prior to the commencement of drive testing, certain system features must be set, andequipment for carrying out the drive test and collection of data must be organised.

System features

Prior to drive testing ensure:

� Base station power control feature is turned off.

� Directed retry feature is turned off.

� Congestion relief feature is turned off.

� All non-BCCH carriers are transmitting dummy bursts on all timeslots.

Equipment required for data collection/analysis

The following equipment is required for gathering and analyzing drive test data.

� TEMS compatible mobile station (Ericsson models GH337, GH388 and GH688with factory modified firmware).

� PC with TEMS mobile logging software and 2 serial ports.

� Colour printer.

Page 395: Drive test.pdf

GSM-100-423 Drive testing the system

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 10–5

Equipment/information required for Drive test

To carry out the drive test the following equipment and information is required.

� A suitable number to ring is required to be available for the duration of the drivetest.

The number may be for a recorded announcement located at the MSC or PSTN,or to contact a third person at a land line phone.

A recorded announcement such as weather or news can be used as long as itis 3 minutes or more in duration.Cordless or mobile phones should not be used for the landline contact.

NOTE

� Maps 1:10000 to 1:50000 in scale, of area to be tested, marked with longitude andlatitude.

BTS sites are to be identified on the maps, showing antenna direction.

� A list of BCCH frequencies and BSICs for all BTS sites.

The list must also contain BCCH frequencies and BSICs of BTSs from anotherequipment supplier, if this equipment borders the area under test.

� A complete neighbour list for all BTSs in the area under test.

� Current database scripts for the sites that are to be optimized.

� Daily network performance statistics and information on outages that have affectedthe network over the past day must be collected from the OMC-R.

Notice of planned outages should also be obtained to avoid time being wastedcollecting data in areas with no service.

� A second mobile for the drive test team.

This phone should be from a rival network to maintain contact during outages,if the area under test is liable to no or poor service.

NOTE

� A suitable vehicle for the drive test team.

The vehicle must be comfortable and capable of negotiating terrain within the testarea.

� GPS or other positioning system.

� Suitable power supplies/inverters to allow the use of data gathering equipment inthe vehicle throughout the duration of the drive test.

� GSM recommendations 04.08, 05.08 and 08.08 are to be available.

GSM recommendation 05.05 may be of use.

Page 396: Drive test.pdf

GSM-100-423Drive testing the system

31st Jul 0110–6

Installation & Configuration: BSS Optimization

68P02901W43-J

Equipment lists

The following tables list the equipment required for drive testing, systems analysis andany necessary fault investigation.

Table 10-1 lists the equipment required for drive testing.

Table 10-1 Equipment required for drive testing

Equipment Preferred Alternative

Vehicle Minibus or MPV (ieEspace)

Any

Laptop PC, Colour,500Mb min HD

Dell Latitude, anymodel

Toshiba 110CT upward

Operating System MS Windows NT 4.0 MS Windows 3.11 orlater

2nd Serial Port Socket I/O PCMCIA None Known

Vehicle Inverter 12Vdcto 240Vac

Any Retail Any Retail

2nd Mobile Phone Alternative Network Any Retail

Ericsson Test Mobile(outdoor)

GH388 (900MHz) Orbitel Test Mobile

Ericsson Test Mobile(outdoor)

PH337 (1800MHz) Later Model

Mobile LoggingSoftware

Erisoft TEMS V96 Later Version

Indoor Test Mobile900Mhz

Ericsson Pocket TEMSGH388

Motorola 8900 in testmode

Indoor Test Mobile1800Mhz

Ericsson Pocket TEMSPH337

Motorola 8900 in testmode

Data Analysis Software Erisoft FICS Shell V96 Later Version

Global PositioningHardware

Motorola PVT6 Trimble 21426 + Card

Global PositioningSoftware

Oncore Rx Controller Trimble V4.24

Page 397: Drive test.pdf

GSM-100-423 Drive testing the system

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 10–7

Table 10-2 lists the equipment required for systems analysis.

Table 10-2 Equipment required for systems analysis

Equipment Preferred Alternative

Colour Plotter or Printer HP Designjet 650Cupward

HP Deskjet 1120 (A3Paper)

Workstation SUN Ultra Sparc 1 SUN Sparc 20

Operating System UNIX UNIX

Data Analysis Software MSI PlaNet Netplan

Data Analysis Software Erisoft FICS Shell V96 Later Version

Table 10-3 lists the equipment required for problem investigation.

Table 10-3 Equipment required for problem investigation

Equipment Preferred Alternative

Network ProtocolAnalyser

Siemens K1103 None

Spectrum Analyser Advantest U4342Tracking Opt

Wavetek 4031 or 4032

Antenna System Bird T43 (VSWR only) Wiltron SitemasterS331

Laptop PC, Colour,500Mb min HD

Dell Latitude, anymodel

Toshiba 110CT upward

Operating System MS Windows NT 4.0 MS Windows 3.11 orlater

9/25 Way I/face cable(BSC/XCDR)

Standard RS232 None

Interface cable (BTS) BTS H/W ModelSpecific

None

Terminal EmulatorSoftware

Procomm + MS Hyperterminal

Page 398: Drive test.pdf

GSM-100-423Drive testing the system

31st Jul 0110–8

Installation & Configuration: BSS Optimization

68P02901W43-J

Optimizing forworst caseinterference

During the drive testing phase of the optimization, downlink power control must be turnedoff. Once optimization is complete downlink power control can be reactivated. A featureat the OMC-R allows the operator to achieve this, configuring all non-BCCH carriers totransmit dummy bursts on all timeslots not carrying traffic. This will give a worst caseinterference environment in which optimization can be carried out. Information on how toenable this feature using the set_full_power command can be found in TechnicalDescription: BSS Command Reference (GSM-100-321). This is useful if duringoptimization there is very little traffic currently on the network.

Drive testprocess

Drive testing provides the data necessary to optimize network performance. The 2minute call method provides the means for investigating the performance of our systems,and optimizing networks. The 2 minute calls used as a standard, give a representation oftraffic and can be used to measure performance of the network giving an indication ofprogress being made by optimization teams. With this method not only can interferenceand coverage issues be identified, but also signalling and other problems that are presentcan be discovered and their effects on system performance quantified.

Data gathered can be used for the benchmarking of system performance. If this is therequirement, then in excess of 1000 calls will be required before data can be looked atwith confidence. Consideration must be given to available time, goals and resourceswhen looking at benchmarking. A significant picture can be built up with a much smallersample, consisting of a minimum 200 calls.

Drive test routes are best defined in consultation with the network operators, as they willhave priority areas that require constant evaluation. Recommendations resulting fromanalysis of network optimization data must reflect the customers circumstances andgoals, and wherever possible use existing hardware and features already in place.

Drive tests are to be conducted by using mobiles in the same manner as they would beused by network subscribers. For instance, it is rare that a subscriber would have a carmounted mobile station, so this must not be used to carry out a drive test. If a roofmounted antenna is to be used then an attenuator should be used to simulate the in-carlosses. Similarly if coverage of buildings is important within a city, then it will benecessary to do tests within a few key buildings.

Data collectionoverview

Data is collected by drive teams using TEMS mobiles. The TEMS mobile is a test mobilestation combined with logging software that runs on a PC. The collecting of data will becarried out by a two man team, consisting of a driver and an operator. The drive testingtask is very labour intensive and time consuming.

Page 399: Drive test.pdf

GSM-100-423 Drive testing the system

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 10–9

Personnelrequirements

Optimizing a network in a large city environment will require a number of teams to speedup the process. Rural network optimization will again require multiple teams, howeverthis time the need is to compensate for geographical dispersion.

A number of personnel will also be required for data analysis. Data analysis consists oftwo stages:

� The generation of statistics to monitor network performance.

� The resolution of problems on the network once detected.

Problems resulting from localised interference will require system investigators to visit theproblem area in person. Spectrum analysers will be used by the investigators to trackextraneous interference.

Data collectionprocess

A number of drive test teams will be collecting data, with each team required to make inexcess of 175 calls per day. TEMS mobile stations equipped with the latest version of thesoftware can make and terminate these calls automatically. This can lead to uncertaintyas to whether a call was dropped or terminated normally.

A call should:

� Be 2 minutes (+/– 5 seconds) in duration.

� Have a minimum gap of 20 seconds in between it and the next call.

� Not be made for 20 seconds after a failed call has terminated

Drive test teams have the option of recording each call attempt made onto a tick sheet orprocessing the results wholly through FICS. An example tick sheet can be found inchapter 11 of this manual.

FICS explained

When using tick sheets to process call log data, errors are to be expected. File &Information Converting System (FICS) must be used to confirm the tick sheets, andidentify calls that need further analysis. Calls are to be logged manually if the latestversion of FICS is unavailable.

An alternative to using tick sheets is to process the call log data direct through TEMSautomatic logging and FICS. This eliminates tick sheet errors and makes the collection ofdata easier and more reliable. However, FICS is unable to differentiate noise during acall, so even with good signal strength if there is induced noise or no audio then it will goundetected. Taking this into account, the proportion of noisy calls and low audio calls isrelatively low, and considering the volume of calls generated may have low impact onoverall network quality.

The ineffectiveness of FICS to identify no audio calls can be counteracted by running amessage_send command for the transcoders. This will identify any faulty DSPs ontranscoder boards at the site. Information on using the message_send command can befound in Technical Description: BSS Command Reference (GSM-100-321).

This command will not help in identifying noisy calls, which will still gocompletely undetected.

NOTE

Page 400: Drive test.pdf

GSM-100-423Drive testing the system

31st Jul 0110–10

Installation & Configuration: BSS Optimization

68P02901W43-J

Report generation

A report can be generated showing call failure analysis when using FICS as opposed totick sheets. This is done using the FICS .sta files, by summing all quality entries in theRxQual 0 to 4 bands inclusive, and using the resultant as a Q measure. An added benefitof this is that it will also give you any MSC related issues that would not normally behighlighted.

Classification oftest calls

A call will fall into one of the categories defined below:

� No service.

A call will fall into this category if the mobile is saying “No service” or “Selectservice” before the send button is pressed.

The RXLEV must be less than the criteria defined for C1 in GSMrecommendation 05.08.

NOTE

� No set-up.

If, after pushing send, the call does not proceed to audio it is categorised as noset-up.

� No audio.

This category applies when after a traffic channel has been assigned the audioconnection is never made, or only appears after a handover.

� Noisy call.

A call is defined as noisy if there are more than 5 seconds of noise or breaks in theaudio during the call.

� Dropped call.

If a call terminates during a 2 minute test call it will be classed as a dropped call.

� Good call.

A call that does not fit into any of the above criteria will be deemed to have beensuccessful and classed a good call.

Tick sheets

When entering test call results onto a tick sheet, only one tick per call should be entered.

Log files

When using log files to record call information the log file names should be changed afterevery 10 calls. A suitable naming convention scheme, to ensure unique files, is to usethe form xydmz.log. Here xy are the initials of the operator, dm are the day and monthand z is a sequencing indicator, starting with a and progressing through the alphabet.

Archiving

All data should be archived at the end of the day. Archiving may be to Floppy disk,CD-ROM or any other suitable means which is convenient to the drive test team carryingout the work.

Page 401: Drive test.pdf

GSM-100-423 Diagnosing drive test results

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 10–11

Diagnosing drive test results

Introduction

Once a drive test of the system is completed, the resultant data of test calls made mustbe analysed.

This involves looking at:

� Analysis of data.

� High handover failure rates.

� High set-up failure rates.

� High dropped call rates.

� No audio calls.

� Noisy calls.

� Poor quality of service calls.

� High blocking cells.

� Audio call faults.

� Mean time between drops.

� Antenna system test procedure.

� Drive test recommendations.

Analysis of data

Call failures will be due to a number of different factors, so each failure must therefore beanalysed. If a failure cannot be explained further assistance should be sought.

Graphs are a useful way of showing the contribution each type of failure is making to thecall success rate. Graphs can be used to show:

� The percentage of failed calls.

These calls will consist of dropped calls, no set-up calls, no service calls and noaudio calls.

� The contribution of different causes of failure to each failure category.

The graphs provide a useful means of analysis and give problem solving teams an ideaof causes of the greatest number of failures. The failures can then be addressed on apriority basis, with the largest percentage of failures being rectified first.

The results collected can be used for benchmarking the systems performance, asdiscussed in Drive test process. Doing this allows the progress of the systemperformance to be monitored. However, for the results to have any statistical significancea large number of calls will need to be made.

Quoting the margin of error when presenting the results is necessary to explain thevariance that will been seen in results from week to week.

Page 402: Drive test.pdf

GSM-100-423Diagnosing drive test results

31st Jul 0110–12

Installation & Configuration: BSS Optimization

68P02901W43-J

High handoverfailure rates

High handover failure rates will probably be due to one or more of:

� High neighbour interference.

� High source cell interference.

� Mobile on incorrect source cell.

� Mobile allocated incorrect or unexpected neighbour.

� Location area borders planned poorly.

– Borders on road junctions or ridges.

– Borders on large water expanses.

� Cell borders planned poorly.

– Borders on road junctions or ridges.

– Borders on large water expanses.

� Database parameters.

– Power budget algorithms incorrectly specified.

– RxQual algorithms incorrectly specified.

– RxLev algorithms incorrectly specified.

– Timing advance algorithms incorrectly specified.

� No dominant server.

– Neighbours being received at similar levels.

– Missing cell site.

Page 403: Drive test.pdf

GSM-100-423 Diagnosing drive test results

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 10–13

High set-upfailure rates

High set-up failure rates will probably be due to one or more of:

� No access to SDCCH.

– Mobile failed to send RACH.

– No UA received from BTS due to interference.

– Mobile access class barred.

– Mobile failed to carry out location update.

Check HLR, VLR or links to them.

– SDCCH congestion.

Result of location area boundaries being undesirable or insufficient SDCCHsavailable.

� Failure before assignment of TCH.

– Downlink disconnect message from MSC.

– Congestion on the A interface.

– No free TCHs available.

� Failure after assignment of TCH.

– High interference on allocated TCH or timeslot.

– On site cabling faulty.

– Disconnect due to called party busy.

– PSTN congestion.

– No answer.

– Incorrectly dialled digits.

– Mobile on wrong cell.

– Rx path failure on non-BCCH carrier.

Page 404: Drive test.pdf

GSM-100-423Diagnosing drive test results

31st Jul 0110–14

Installation & Configuration: BSS Optimization

68P02901W43-J

High droppedcall rate

High dropped call rates will probably be due to one or more of the following.

Interference problems

Interference problems can be attributed to:

� Adjacent channel interference.

– Neighbouring cells causing interference.

� Co-channel interference.

– Neighbouring cells on same frequency as source.

– Non neighbouring cells penetrating due to topology.

– Mobile elevated and receiving out of area signals.

– Antennas to high, causing interference and out of area originations.

� Uplink interference.

– Background interference.

� Extraneous interference.

– Other mobile networks.

– Military communications.

– High power radio transmission stations.

– Proximity of ground based radar systems.

– Cordless telephones.

– Industrial electrical emissions.

– Illegal radio communication equipment.

Mobile to cell link problems

Link problems can be attributed to:

� Link imbalance.

– Mobile transmitting to high.

– Mobile transmitting to low.

– BTS transmitting to high.

– BTS transmitting to low.

– Physical obstructions.

– Nearby microwave or high power radiating devices.

– Antennas positioned to close together.

– Transmit and receive antennas facing different directions.

– Transmit and receive antennas having different tilts.

– Transmit and receive antennas having different beam widths.

– Antenna feeder damage, corrosion or water ingress, or antenna radiatingsurfaces being contaminated.

Page 405: Drive test.pdf

GSM-100-423 Diagnosing drive test results

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 10–15

Cell allocation problems

Cell allocation problems can be attributed to:

� Drop on handover.

– Mobile on incorrect source cell.

– Mobile allocated incorrect or unexpected neighbour.

� Missing neighbour cell.

– Mobile on wrong source cell for location.

– Missing handover definition.

– Neighbour weaker than serving cell.

– Incorrect BSIC or frequency with respect to the neighbour list.

– Target cell congested.

– Frequency not sent in system information message.

� Mobile on wrong cell.

– Missing neighbour.

– Incorrect antenna orientation.

– Antennas cross connected.

– Mobile handed-in to wrong cell from previous server.

– Optimum server out of service.

� Wrong frequency.

– Cell is not on the correct frequency as detailed in the network plan.

– Cell is not on the correct frequency as detailed in the neighbour lists.

� Cell out of service.

– Cell out of service, causing a coverage hole.

– Sleeping cell.

Signal and propagation problems.

Signal and propagation problems can be attributed to:

� Low signal level.

– BTS transmission power too low.

– Radio signal propagation problems.

– Local cell out of service.

� Ridges causing immediate signal loss before handover can be initiated.

� Narrow cell boundaries, mobile cannot handover in time.

Page 406: Drive test.pdf

GSM-100-423Diagnosing drive test results

31st Jul 0110–16

Installation & Configuration: BSS Optimization

68P02901W43-J

No audio callsNo audio calls will probably be due to one or more of:

� Hardware problems in the transcoder circuitry.

� Software problems in the transcoder database.

Noisy callsNoisy calls will probably be due to one or more of:

� Interference.

� Low signal level.

Poor quality ofservice calls

Poor quality calls will probably be due to one or more of:

� Interference.

� Low signal level.

� No serving cell.

High blockingcells

Blocking cells can be attributed to:

SDCCH blocking� No access to SDCCH.

– Mobile failed to send RACH.

– No UA received by MS due to interference.

– Mobile access class barred.

– Mobile failed to carry out location update.

Check HLR, VLR or their respective links.

Location update timer is too long for immobile MS.

– SDCCH congestion.

Location area boundaries undesirable.

Insufficient SDCCHs available.

� Failure before assignment of TCH.

– Downlink disconnect message from MSC.

– Congestion on the A interface.

– No free TCHs available.

� High paging loads.

– Each location area should have similar paging loads.

– A location area with a high paging load needs to be reduced in size torelieve SDCCH blocking.

– A location area with a low paging load needs to be enlarged in size toreduce the overall number of location areas.

� Incorrect or inappropriate timer values.

– Timer rr_t3111 should be set to 1200ms.

– Timer rr_t3212 needs to be the same as the MSC database implicit detachtimer and should be similar across all cells.

Page 407: Drive test.pdf

GSM-100-423 Diagnosing drive test results

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 10–17

TCH blocking

� Handover margins not optimized.

� Power budget margins too high to move traffic to neighbouring cells.

� Cell too large.

– Antennas too high, pulling in out of area traffic.

– Antenna tilts to shallow, pulling in out of area traffic, maximum tilt is 12�.

� Capacity limitation for sites suffering SDCCH and TCH blocking.

� Incorrect or inappropriate timer and parameter values.

– Timer rr_t3111 should be set to 1200ms.

– Parameter link_fail should be set to 3.

– Parameter radio_link_timeout should be set to 3 and timer rr_t3109 to 8000.

MTL blocking

� On site cabling faulty.

� Disconnect due to the called party being busy.

� PSTN congestion.

� No answer.

� Incorrectly dialled digits.

Page 408: Drive test.pdf

GSM-100-423Diagnosing drive test results

31st Jul 0110–18

Installation & Configuration: BSS Optimization

68P02901W43-J

Audio call faults

The process of tracing faults associated with no audio or one way audio calls isexasperated by the way the circuits are allocated dynamically. With circuits beingallocated dynamically it may take several attempts, by the person trying to trace the fault,before the faulty circuit is allocated again. This could result in other users on the systembeing allocated the faulty circuit when trying to make a call, whilst the faulty circuit isbeing traced.

The most likely cause of audio fault on a circuit has been shown to be a faulty DSP on atranscoder board. The following procedure details how to check the DSPs, on atranscoder board, using the msg_send command.

Procedure preparation

Carry out the following procedure from a Local Maintenance Terminal (LMT) connected tothe XCDR containing the suspect XCDR board.

Calls being processed by the suspect transcoder board that are unaffected bythe faulty DSP will be affected by this test procedure.The OMC-R must take the appropriate steps to route all calls away from thesuspect board prior to commencement of the test.

WARNING

1. Disable the suspect transcoder board using the front panel tri-state switch.

This will bring up an alarm in the event window at the OMC-R.

2. Connect the serial A port on the PC to a GPROC/GPROC2 TTY port using the9-way to 25-way cable.

3. Start the terminal emulator software on the PC

DSP check procedure

1. Type CTRL-n to enter the Executive Monitor (EMON), and at the prompt type:

msg_send 75 4 74 7791h 2622h 9 x x x 4 3 1 2 3 4

Where: x x x is: XCDR’s MSI number

Sending this message makes the Fault Translation Process (FTP) think the deviceis in-service, when it is actually disabled.

2. At the EMON prompt type:

msg_send 4ah 50h 0 0 2371h 9 x x x 10 2

Where: x x x is: XCDR’s MSI number

This message will generate a DSP check failure alarm.

3. Exit the Executive Monitor and at the MMI-RAM prompt type:

disp_act_alarm #

Where: # is: location id

A DSP check failed alarm should appear, upon receipt of the command in step 2.

Page 409: Drive test.pdf

GSM-100-423 Diagnosing drive test results

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 10–19

4. Type CTRL-n to enter the EMON, and at the prompt type:

msg_send 4ah 50h 0 0 2371h 9 x x x 10 1

Where: x x x is: XCDR’s MSI number

This message will clear the alarm.

5. Exit the EMON and at the MMI-RAM prompt type:

disp_act_alarm #

Where: # is: location id

The alarm generated in step 2 should now be cleared.

To re-generate and clear the alarm repeat steps 2 to 5.

Restoration

1. Reset or replace the transcoder board as necessary.

To replace the transcoder board follow the procedure detailed in MaintenanceInformation: BSC/RXCDR (GSM-100-533).

2. Remove the 9-way to 25-way cable.

3. Inform the OMC-R that the test is complete.

Mean timebetween drops

When making test calls the length of the call may need to be varied, depending ondiffering conditions. This is creates a problem when using test calls to benchmark anetwork, as the baseline criteria is variable. A metric has been devised to overcome thisthat does not require the rigid adherence of test call length to be 2 minutes. This methoduses the probability of a drop, as a consequence of call length, for the baselinemeasurement.

The mean time between drops is defined as:

Mean Time Between Drop = Length of Test CallDrop Call Percentage

For call drive test metrics:

For system statistics:

Mean Time Between Drop = Length of Average Hold TimeDrop Call Percentage

For example:

� 2 minute calls, 1% drop = 200 minutes (MTBD)

� 2 minute calls, 2% drop = 100 minutes (MTBD)

� 2 minute calls, 10% drop = 20 minutes (MTBD)

� 30 second calls, 1% drop = 50 minutes (MTBD)

� 10 minute calls, 1% drop = 1000 minutes (MTBD)

Page 410: Drive test.pdf

GSM-100-423Diagnosing drive test results

31st Jul 0110–20

Installation & Configuration: BSS Optimization

68P02901W43-J

Drive test report

The result of a drive test is a report, which is generated by compiling all the relevant datagathered, in support of conclusions and recommendations which are to be made to thecustomer. The report must be delivered as part of a formal presentation, and as suchmust incorporate the official Motorola look and feel in accordance with Motorola policy.Each conclusion in the report is to have a supporting numbered recommendation relatedto it. A recommendation must describe the issue, recommended solution and the impactthat carrying out the recommendation will have on the rest of the network. As much detailas possible is to be included to aid in the recommendation’s implementation.

The report must also include legal content reflecting that it is a detailed report based on asurvey and implies no warranty or commitment on the part of Motorola to carry out any ofthe recommendations within it.

An example of the recommendation field report can be found in chapter 11.

Implementationof a drive testrecommendation

It is recommended that the customer implements drive test recommendations. If thecustomer has a service agreement or has purchased the option of Motorola followingthrough the action points, then the recommendations should be implemented in line withlocal agreements. It is beyond the scope of this document to explain the implementationof each recommendation.

Effects of arecommendationimplemented

Any recommendation effected by Motorola is to be monitored and confirmation soughtthat it’s implementation cured the issue.

Page 411: Drive test.pdf

GSM-100-423 Residual defect investigation

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 10–21

Residual defect investigationAny defects discovered during the optimization process that cannot be resolved are to bereported through the normal process for raising problem reports. It is recommended thatdefects discovered are fixed, however it is not within the scope of this document toidentify procedures for the repair/replacement of faulty hardware.

Page 412: Drive test.pdf

GSM-100-423Residual defect investigation

31st Jul 0110–22

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 413: Drive test.pdf

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J i

Chapter 11

Optimization results forms

Page 414: Drive test.pdf

GSM-100-423

31st Jul 01ii

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 415: Drive test.pdf

GSM-100-423

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J iii

Chapter 11Optimization results forms i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BTS/BSC optimization results forms 11–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 11–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The forms 11–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Personnel details 11–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC power supply tests 11–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Antenna reflected power tests 11–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PIX tests 11–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DRCU tests 11–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SCU/TCU900/ TCU-B/CTU900 tests 11–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SCU/TCU1800/ CTU1800 tests 11–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TCU1900 tests 11–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loopback and RTC checks 11–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BSC/RXCDR optimization results forms 11–41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 11–41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The forms 11–41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Personnel details 11–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC power supply tests 11–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PIX tests 11–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1/T1 loopback (BSC) 11–43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1/T1 loopback (RXCDR) 11–44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Site documentation check 11–45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M-Cellaccess PCC optimization results forms 11–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 11–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The forms 11–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Personnel details 11–47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC power supply tests 11–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loopback checks 11–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Site documentation check 11–49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M-Cellaccess BSC/XCDR results forms 11–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 11–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The forms 11–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Personnel details 11–51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC power supply tests 11–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1 loopback (BSC) 11–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1 loopback (XCDR) 11–53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Site documentation check 11–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Drive testing optimization forms 11–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 11–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Forms in this section 11–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tick Sheet Proforma 11–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommendation Proforma 11–57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Feeder Information Proforma 11–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Drive testing optimization tables 11–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 11–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tables in this section 11–60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 416: Drive test.pdf

GSM-100-423

31st Jul 01iv

Installation & Configuration: BSS Optimization

68P02901W43-J

Page 417: Drive test.pdf

GSM-100-423 BTS/BSC optimization results forms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 11–1

BTS/BSC optimization results forms

Introduction

Complete the forms in this section while optimizing the equipment. Photocopy them asnecessary, but do not write on the originals.

EPSMs are for negative earth cabinets (+27 V).IPSMs are for positive earth cabinets (–48 V).

CAUTION

The forms

The following forms are included:

� Personnel details.

� DC power supply tests.

� Antenna reflected power tests.

� PIX tests.

� DRCU0 to DRCU5 tests.

� SCU900 0 to SCU900 5 tests.

� SCU1800 0 to SCU1800 5 tests.

� TCU1900 0 to TCU1900 5 tests.

� TCU-B 0 to TCU-B 5 tests.

� CTU900 0 to CTU900 5 tests.

� CTU1800 0 to CTU1800 5 tests.

� Loopback and RTC checks.

� Site documentation check.

Page 418: Drive test.pdf

GSM-100-423BTS/BSC optimization results forms

31st Jul 0111–2

Installation & Configuration: BSS Optimization

68P02901W43-J

Personnel details

Cell Site Name . . . . . . . . . . . . .

Cell Site Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Engineer’s Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Customer Representative . . . . . . . . . . . . .

Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DC power supplytests

Battery supply PSU output DC input to cabinet

V V V

Page 419: Drive test.pdf

GSM-100-423 BTS/BSC optimization results forms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 11–3

Antennareflected powertests

Antenna Forward power Reverse power

Sector 1 Tx

Rx 1

Rx 2

Sector 2 Tx

Rx 1

Rx 2

Sector 3 Tx

Rx 1

Rx 2

Omni Tx

Rx 1

Rx 2

Channel

PIX tests

Tick the boxes if all alarms show then clear.

PIX0/slot 15

PIX0/slot 16

PIX1/slot 17

PIX1/slot 18

BTS4 and BTS5 systems use slots 15 and 16 only.BTS6 systems use slots 16, 17, and 18 only.

NOTE

Page 420: Drive test.pdf

GSM-100-423BTS/BSC optimization results forms

31st Jul 0111–4

Installation & Configuration: BSS Optimization

68P02901W43-J

DRCU tests

DRCU 0 tests

Serial Number Slot Number 0

CSPWR Settings

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at DRCU PA O/P at top of cabinet

dB Watts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

4

12

20

28

36

44

52

60

68

76

84

92

100

108

116

122

Rx 1 Rx 2

Chan Ant 1 Ant 2 Ant 3

4

12

20

28

36

44

52

60

68

76

84

92

100

108

116

122

Page 421: Drive test.pdf

GSM-100-423 BTS/BSC optimization results forms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 11–5

DRCU 1 tests

Serial Number Slot Number 1

CSPWR Settings

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at DRCU PA O/P at top of cabinet

dB Watts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

4

12

20

28

36

44

52

60

68

76

84

92

100

108

116

122

Rx 1 Rx 2

Chan Ant 1 Ant 2 Ant 3

4

12

20

28

36

44

52

60

68

76

84

92

100

108

116

122

Page 422: Drive test.pdf

GSM-100-423BTS/BSC optimization results forms

31st Jul 0111–6

Installation & Configuration: BSS Optimization

68P02901W43-J

DRCU 2 tests

Serial Number Slot Number 2

CSPWR Settings

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at DRCU PA O/P at top of cabinet

dB Watts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

4

12

20

28

36

44

52

60

68

76

84

92

100

108

116

122

Rx 1 Rx 2

Chan Ant 1 Ant 2 Ant 3

4

12

20

28

36

44

52

60

68

76

84

92

100

108

116

122

Page 423: Drive test.pdf

GSM-100-423 BTS/BSC optimization results forms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 11–7

DRCU 3 tests

Serial Number Slot Number 3

CSPWR Settings

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at DRCU PA O/P at top of cabinet

dB Watts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

4

12

20

28

36

44

52

60

68

76

84

92

100

108

116

122

Rx 1 Rx 2Chan Ant 1 Ant 2 Ant 3

4

12

20

28

36

44

52

60

68

76

84

92

100

108

116

122

Page 424: Drive test.pdf

GSM-100-423BTS/BSC optimization results forms

31st Jul 0111–8

Installation & Configuration: BSS Optimization

68P02901W43-J

DRCU 4 tests

Serial Number Slot Number 4

CSPWR Settings

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at DRCU PA O/P at top of cabinet

dB Watts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

4

12

20

28

36

44

52

60

68

76

84

92

100

108

116

122

Rx 1 Rx 2

Chan Ant 1 Ant 2 Ant 3

4

12

20

28

36

44

52

60

68

76

84

92

100

108

116

122

Page 425: Drive test.pdf

GSM-100-423 BTS/BSC optimization results forms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 11–9

DRCU 5 tests

Serial Number Slot Number 5

CSPWR Settings

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at DRCU PA O/P at top of cabinet

dB Watts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

4

12

20

28

36

44

52

60

68

76

84

92

100

108

116

122

Rx 1 Rx 2

Chan Ant 1 Ant 2 Ant 3

4

12

20

28

36

44

52

60

68

76

84

92

100

108

116

122

Page 426: Drive test.pdf

GSM-100-423BTS/BSC optimization results forms

31st Jul 0111–10

Installation & Configuration: BSS Optimization

68P02901W43-J

SCU/TCU900/TCU-B/CTU900tests

SCU/TCU900/TCU-B/CTU900 0 testsSerial Number Slot Number 0

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at SCU/TCU PA O/P at top of cabinet

dBWatts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

3

11

19

27

35

43

51

59

67

75

83

91

99

107

115

123

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

3

11

19

27

35

43

51

59

67

75

83

91

99

107

115

123

979

987

995

1003

1011

1019

979

987

995

1003

1011

1019

EG

SM

ON

LY

Page 427: Drive test.pdf

GSM-100-423 BTS/BSC optimization results forms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 11–11

SCU/TCU900/TCU-B/CTU900 1 tests

Serial Number Slot Number 1

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at SCU/TCU PA O/P at top of cabinet

dBWatts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

3

11

19

27

35

43

51

59

67

75

83

91

99

107

115

123

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

3

11

19

27

35

43

51

59

67

75

83

91

99

107

115

123

979

987

995

1003

1011

1019

979

987

995

1003

1011

1019

EG

SM

ON

LY

Page 428: Drive test.pdf

GSM-100-423BTS/BSC optimization results forms

31st Jul 0111–12

Installation & Configuration: BSS Optimization

68P02901W43-J

SCU/TCU900/TCU-B/CTU900 2 tests

Serial Number Slot Number 2

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at SCU/TCU PA O/P at top of cabinet

dBWatts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

3

11

19

27

35

43

51

59

67

75

83

91

99

107

115

123

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

3

11

19

27

35

43

51

59

67

75

83

91

99

107

115

123

979

987

995

1003

1011

1019

979

987

995

1003

1011

1019

EG

SM

ON

LY

Page 429: Drive test.pdf

GSM-100-423 BTS/BSC optimization results forms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 11–13

SCU/TCU900/TCU-B/CTU900 3 tests

Serial Number Slot Number 3

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at SCU/TCU PA O/P at top of cabinet

dBWatts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

3

11

19

27

35

43

51

59

67

75

83

91

99

107

115

123

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

3

11

19

27

35

43

51

59

67

75

83

91

99

107

115

123

979

987

995

1003

1011

1019

979

987

995

1003

1011

1019

EG

SM

ON

LY

Page 430: Drive test.pdf

GSM-100-423BTS/BSC optimization results forms

31st Jul 0111–14

Installation & Configuration: BSS Optimization

68P02901W43-J

SCU/TCU900/TCU-B/CTU900 4 tests

Serial Number Slot Number 4

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at SCU/TCU PA O/P at top of cabinet

dBWatts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

3

11

19

27

35

43

51

59

67

75

83

91

99

107

115

123

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

3

11

19

27

35

43

51

59

67

75

83

91

99

107

115

123

979

987

995

1003

1011

1019

979

987

995

1003

1011

1019

EG

SM

ON

LY

Page 431: Drive test.pdf

GSM-100-423 BTS/BSC optimization results forms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 11–15

SCU/TCU900/TCU-B/CTU900 5 testsSerial Number Slot Number 5

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at SCU/TCU PA O/P at top of cabinet

dBWatts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

3

11

19

27

35

43

51

59

67

75

83

91

99

107

115

123

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

3

11

19

27

35

43

51

59

67

75

83

91

99

107

115

123

979

987

995

1003

1011

1019

979

987

995

1003

1011

1019

EG

SM

ON

LY

Page 432: Drive test.pdf

GSM-100-423BTS/BSC optimization results forms

31st Jul 0111–16

Installation & Configuration: BSS Optimization

68P02901W43-J

SCU/TCU1800/CTU1800 tests

SCU/TCU1800/CTU1800 0 testsSerial Number Slot Number 0

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at SCU/TCU PA O/P at top of cabinet

dBWatts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

516524

532540

548

556

564

572

580

588

596

604

612

620

628

636

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

644

652

660

668

676

684

692

700

516524

532540

548

556

564

572

580

588

596

604

612

620

628

636

644

652

660

668

676

684

692

700

Page 433: Drive test.pdf

GSM-100-423 BTS/BSC optimization results forms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 11–17

Receive Bay Level Calibration (continued) – Slot Number 0

Chan Ant 1 Ant 2 Ant 3

708716

724732

740

748

756

764

772

780

788

796

804

812

820

828

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

836

844

852

860

868

876

883

708716

724732

740

748

756

764

772

780

788

796

804

812

820

828

836

844

852

860

868

876

883

Page 434: Drive test.pdf

GSM-100-423BTS/BSC optimization results forms

31st Jul 0111–18

Installation & Configuration: BSS Optimization

68P02901W43-J

SCU/TCU1800/CTU1800 1 testsSerial Number Slot Number 1

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at SCU/TCU PA O/P at top of cabinet

dBWatts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

516524

532540

548

556

564

572

580

588

596

604

612

620

628

636

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

644

652

660

668

676

684

692

700

516524

532540

548

556

564

572

580

588

596

604

612

620

628

636

644

652

660

668

676

684

692

700

Page 435: Drive test.pdf

GSM-100-423 BTS/BSC optimization results forms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 11–19

Receive Bay Level Calibration (continued) – Slot Number 1

Chan Ant 1 Ant 2 Ant 3

708716

724732

740

748

756

764

772

780

788

796

804

812

820

828

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

836

844

852

860

868

876

883

708716

724732

740

748

756

764

772

780

788

796

804

812

820

828

836

844

852

860

868

876

883

Page 436: Drive test.pdf

GSM-100-423BTS/BSC optimization results forms

31st Jul 0111–20

Installation & Configuration: BSS Optimization

68P02901W43-J

SCU/TCU1800/CTU1800 2 testsSerial Number Slot Number 2

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at SCU/TCU PA O/P at top of cabinet

dBWatts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

516524

532540

548

556

564

572

580

588

596

604

612

620

628

636

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

644

652

660

668

676

684

692

700

516524

532540

548

556

564

572

580

588

596

604

612

620

628

636

644

652

660

668

676

684

692

700

Page 437: Drive test.pdf

GSM-100-423 BTS/BSC optimization results forms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 11–21

Receive Bay Level Calibration (continued) – Slot Number 2

Chan Ant 1 Ant 2 Ant 3

708716

724732

740

748

756

764

772

780

788

796

804

812

820

828

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

836

844

852

860

868

876

883

708716

724732

740

748

756

764

772

780

788

796

804

812

820

828

836

844

852

860

868

876

883

Page 438: Drive test.pdf

GSM-100-423BTS/BSC optimization results forms

31st Jul 0111–22

Installation & Configuration: BSS Optimization

68P02901W43-J

SCU/TCU1800/CTU1800 3 testsSerial Number Slot Number 3

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at SCU/TCU PA O/P at top of cabinet

dBWatts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

516524

532540

548

556

564

572

580

588

596

604

612

620

628

636

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

644

652

660

668

676

684

692

700

516524

532540

548

556

564

572

580

588

596

604

612

620

628

636

644

652

660

668

676

684

692

700

Page 439: Drive test.pdf

GSM-100-423 BTS/BSC optimization results forms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 11–23

Receive Bay Level Calibration (continued) – Slot Number 3

Chan Ant 1 Ant 2 Ant 3

708716

724732

740

748

756

764

772

780

788

796

804

812

820

828

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

836

844

852

860

868

876

883

708716

724732

740

748

756

764

772

780

788

796

804

812

820

828

836

844

852

860

868

876

883

Page 440: Drive test.pdf

GSM-100-423BTS/BSC optimization results forms

31st Jul 0111–24

Installation & Configuration: BSS Optimization

68P02901W43-J

SCU/TCU1800/CTU1800 4 testsSerial Number Slot Number 4

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at SCU/TCU PA O/P at top of cabinet

dBWatts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

516524

532540

548

556

564

572

580

588

596

604

612

620

628

636

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

644

652

660

668

676

684

692

700

516524

532540

548

556

564

572

580

588

596

604

612

620

628

636

644

652

660

668

676

684

692

700

Page 441: Drive test.pdf

GSM-100-423 BTS/BSC optimization results forms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 11–25

Receive Bay Level Calibration (continued) – Slot Number 4

Chan Ant 1 Ant 2 Ant 3

708716

724732

740

748

756

764

772

780

788

796

804

812

820

828

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

836

844

852

860

868

876

883

708716

724732

740

748

756

764

772

780

788

796

804

812

820

828

836

844

852

860

868

876

883

Page 442: Drive test.pdf

GSM-100-423BTS/BSC optimization results forms

31st Jul 0111–26

Installation & Configuration: BSS Optimization

68P02901W43-J

SCU/TCU1800/CTU1800 5 testsSerial Number Slot Number 5

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at SCU/TCU PA O/P at top of cabinet

dBWatts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

516524

532540

548

556

564

572

580

588

596

604

612

620

628

636

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

644

652

660

668

676

684

692

700

516524

532540

548

556

564

572

580

588

596

604

612

620

628

636

644

652

660

668

676

684

692

700

Page 443: Drive test.pdf

GSM-100-423 BTS/BSC optimization results forms

31st Jul 01

Installation & Configuration: BSS Optimization

68P02901W43-J 11–27

Receive Bay Level Calibration (continued) – Slot Number 5

Chan Ant 1 Ant 2 Ant 3

708716

724732

740

748

756

764

772

780

788

796

804

812

820

828

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

836

844

852

860

868

876

883

708716

724732

740

748

756

764

772

780

788

796

804

812

820

828

836

844

852

860

868

876

883

Page 444: Drive test.pdf

GSM-100-423BTS/BSC optimization results forms

31st Jul 0111–28

Installation & Configuration: BSS Optimization

68P02901W43-J

TCU1900 tests

TCU1900 0 testsSerial Number Slot Number 0

CSPWR Cell Site Offset O/P at top of cabinet

P: dBm Hex Watts

Loss in test cable O/P at TCU1800 PA O/P at top of cabinet

dBWatts Watts

��������� ���������

Receive Bay Level Calibration

Chan Ant 1 Ant 2 Ant 3

516524

532540

548

556

564

572

580

588

596

604

612

620

628

636

Rx 1 Rx 2 Chan Ant 1 Ant 2 Ant 3

644

652

660

668

676

684

692

700

516524

532540

548

556

564

572

580

588

596

604

612

620

628

636

644

652

660

668

676

684

692

700