Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach,...

73
May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, Nanotron Slide 1 doc.: IEEE 802.15-0285- 00-004a Submiss ion Project: IEEE P802.15 Working Group for Wireless Personal Area Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Networks (WPANs) Submission Title: Rough Draft Text of Chirp-Radio Date Submitted: 17 May, 2005 Source: (1) Kyung-Kuk Lee / Jong-Wha Chong , (2) Rainer Hach Company: (1) Orthotron Co., Ltd. / Hanyang Univ., (2) Nanotron Technologies Address: (1) 709 Kranz Techno, 5442-1 Sangdaewon-dong, Jungwon-gu, Sungnam-si, Kyungki-do, Korea 462-120, (2) Alt-Moabit 61, 10555 Berlin, Germany Voice: (1) 82-31-777-8198, (2) +49 30 399 954 207 E-Mail: (1) [email protected] (2) [email protected] Re: Abstract: [This Document reflects the status of current CSS PHY draft.] Purpose: [To be discussed in editing session.] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this

Transcript of Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach,...

Page 1: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1

doc.: IEEE 802.15-0285-00-004a

Submission

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: Rough Draft Text of Chirp-RadioDate Submitted: 17 May, 2005Source: (1) Kyung-Kuk Lee / Jong-Wha Chong , (2) Rainer HachCompany: (1) Orthotron Co., Ltd. / Hanyang Univ., (2) Nanotron TechnologiesAddress: (1) 709 Kranz Techno, 5442-1 Sangdaewon-dong, Jungwon-gu, Sungnam-si, Kyungki-do, Korea 462-120, (2) Alt-Moabit 61, 10555 Berlin, GermanyVoice: (1) 82-31-777-8198, (2) +49 30 399 954 207 E-Mail: (1) [email protected] (2) [email protected]

Re:

Abstract: [This Document reflects the status of current CSS PHY draft.]

Purpose: [To be discussed in editing session.]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Page 2: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 2

doc.: IEEE 802.15-0285-00-004a

Submission

Draft Technical DocumentDraft Technical Document

by

Kyung-Kuk LeeOrthotron Co., Ltd.

Rainer HachNanotron Technologies

2005. 5. 17.

Page 3: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 3

doc.: IEEE 802.15-0285-00-004a

Submission

6. PHY specificationThis clause specifies four PHY options for IEEE 802.15.4a. The PHY is responsible for the following tasks:— Activation and deactivation of the radio transceiver— ED within the current channel— LQI for received packets— CCA for CSMA-CA— Channel frequency selection— Data transmission and receptionConstants and attributes that are specified and maintained by the PHY are written in the text of this clause initalics. Constants have a general prefix of “a”, e.g., aMaxPHYPacketSize, and are listed in Table xx.Attributes have a general prefix of “phy”, e.g., phyCurrentChannel, and are listed in Table xx.

6.1 General requirements and definitionsThis subclause specifies requirements that are common to all of the IEEE 802.15.4a PHYs.

Page 4: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 4

doc.: IEEE 802.15-0285-00-004a

Submission

6.1.1 Operating frequency rangeA compliant device shall operate in one or several frequency bands using the modulation and spreadingformats summarized in Table xx.

This standard is intended to conform with established regulations in Europe, Korea, Japan, Canada, and the UnitedStates. The regulatory documents listed below are for information only and are subject to change andrevisions at any time. IEEE 802.15.4a devices shall also comply with specific regional legislation. Additionalregulatory information is provided in Annex x.

Europe:— Approval standards: European Telecommunications Standards Institute (ETSI)— Documents: ETSI EN 300 328-1 [B19]6, ETSI EN 300 328-2 [B20], ETSI EN 300 220-1 [B18],ERC 70-03 [B21]— Approval authority: National type approval authoritiesKorea:— Approval standards: TTA— Document: TTA xx— Approval authority: Ministry of Information and Communication (MIC)Japan:— Approval standards: Association of Radio Industries and Businesses (ARIB)— Document: ARIB STD-T66 [B22]— Approval authority: Ministry of Public Management, Home Affairs, Posts and Telecommunications(MPHPT)United States:— Approval standards: Federal Communications Commission (FCC), United States— Document: FCC CFR47, Section 15.247 [B22]Canada:— Approval standards: Industry Canada (IC), Canada— Document: GL36 [B23]

Page 5: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 5

doc.: IEEE 802.15-0285-00-004a

Submission

6.1.2 Channel assignments and numberingA total of 7 channels, numbered 0 to 6, are available across the 2450 MHz frequency band. The center frequency of these channels is defined as follows:Fc = 2412 + 10 x k in megahertz, for k = 0, 1, ... , 6where k is the channel number.For each PHY supported, a compliant device shall support all channels allowed by regulations for the regionin which the device operates.

6.1.2.1 Channel pagesThe upper 5 MSBs, which are currently reserved, of 32 bit channel bitmap will be used as an integer value tospecify 32 channel pages. The lower 27 bits of the channel bit map will be used a bit mask to specify a channelnumber within the page identified by the integer representation of the upper 5 MSBs.The channel page and channel numbering are shown in Table xx.

To support the use of the channel page and channel numbering scheme 2 new PHY PIB attributes, phyPagesSupportedand phyCurrentPage, will have to be added to Table xx (PHY PIB attributes). In addition tothis the PHY PIB attribute phyChannelsSupported will be modified.(UWB Impulse-Radio / 2450MHz Chirp-Radio)

Page 6: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 6

doc.: IEEE 802.15-0285-00-004a

Submission

6.1.3 RF power measurementUnless otherwise stated, all RF power measurements, either transmit or receive, shall be made at theappropriate transceiver to antenna connector. The measurements shall be made with equipment that is eithermatched to the impedance of the antenna connector or corrected for any mismatch. For devices without anantenna connector, the measurements shall be interpreted as effective isotropic radiated power (EIRP) (i.e., a0 dBi gain antenna); and any radiated measurements shall be corrected to compensate for the antenna gain inthe implementation.

6.1.4 Transmit powerThe maximum transmit power shall conform with local regulations. Refer to Annex x for additionalinformation on regulatory limits. A compliant device shall have its nominal transmit power level indicatedby its PHY parameter, phyTransmitPower (see x.x).

6.1.5 Out-of-band spurious emissionThe out-of-band spurious emissions shall conform with local regulations. Refer to Annex x for additionalinformation on regulatory limits on out-of-band emissions.

6.1.6 Receiver sensitivity definitionsThe definitions in Table xx are referenced by subclauses elsewhere in this standard regarding receiversensitivity.

Page 7: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 7

doc.: IEEE 802.15-0285-00-004a

Submission

6.2 PHY service specificationsThe PHY provides an interface between the MAC sublayer and the physical radio channel, via the RFfirmware and RF hardware. The PHY conceptually includes a management entity called the PLME. Thisentity provides the layer management service interfaces through which layer management functions may beinvoked. The PLME is also responsible for maintaining a database of managed objects pertaining to thePHY. This database is referred to as the PHY PAN information base (PIB).Figure 15 depicts the components and interfaces of the PHY.The PHY provides two services, accessed through two SAPs: the PHY data service, accessed through thePHY data SAP (PD-SAP), and the PHY management service, accessed through the PLME’s SAP (PLMESAP).

6.2.1 PHY data serviceThe PD-SAP supports the transport of MPDUs between peer MAC sublayer entities. Table x lists theprimitives supported by the PD-SAP. These primitives are discussed in the subclauses referenced in theTable x.

6.2.1.1 PD-DATA.requestThe PD-DATA.request primitive requests the transfer of an MPDU (i.e., PSDU) from the MAC sublayer tothe local PHY entity.

6.2.1.1.1 Semantics of the service primitiveThe semantics of the PD-DATA.request primitive is as follows:Table x specifies the parameters for the PD-DATA.request primitive.

6.2.1.1.2 When generatedThe PD-DATA.request primitive is generated by a local MAC sublayer entity and issued to its PHY entity torequest the transmission of an MPDU.

Page 8: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 8

doc.: IEEE 802.15-0285-00-004a

Submission

6.2.1.1.3 Effect on receiptThe receipt of the PD-DATA.request primitive by the PHY entity will cause the transmission of the suppliedPSDU. Provided the transmitter is enabled (TX_ON state), the PHY will first construct a PPDU, containingthe supplied PSDU, and then transmit the PPDU. When the PHY entity has completed the transmission, itwill issue the PD-DATA.confirm primitive with a status of SUCCESS.If the PD-DATA.request primitive is received while the receiver is enabled (RX_ON state) the PHY entitywill issue the PD-DATA.confirm primitive with a status of RX_ON. If the PD-DATA.request primitive isreceived while the transceiver is disabled (TRX_OFF state), the PHY entity will issue the PDDATA.confirm primitive with a status of TRX_OFF. If the PD-DATA.request primitive is received while thetransmitter is already busy transmitting (BUSY_TX state) the PHY entity will issue the PD-DATA.confirmprimitive with a status of BUSY_TX.

6.2.1.2 PD-DATA.confirmThe PD-DATA.confirm primitive confirms the end of the transmission of an MPDU (i.e., PSDU) from alocal MAC sublayer entity to a peer MAC sublayer entity.

6.2.1.2.1 Semantics of the service primitiveThe semantics of the PD-DATA.confirm primitive is as follows:Table x specifies the parameters for the PD-DATA.confirm primitive.

6.2.1.2.2 When generatedThe PD-DATA.confirm primitive is generated by the PHY entity and issued to its MAC sublayer entity inresponse to a PD-DATA.request primitive. The PD-DATA.confirm primitive will return a status of eitherSUCCESS, indicating that the request to transmit was successful, or an error code of RX_ON, TRX_OFF orBUSY_TX. The reasons for these status values are fully described in 6.2.1.1.3.

Page 9: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 9

doc.: IEEE 802.15-0285-00-004a

Submission

6.2.1.2.3 Effect on receiptOn receipt of the PD-DATA.confirm primitive, the MAC sublayer entity is notified of the result of itsrequest to transmit. If the transmission attempt was successful, the status parameter is set to SUCCESS.Otherwise, the status parameter will indicate the error.

6.2.1.3 PD-DATA.indicationThe PD-DATA.indication primitive indicates the transfer of an MPDU (i.e., PSDU) from the PHY to thelocal MAC sublayer entity.

6.2.1.3.1 Semantics of the service primitiveThe semantics of the PD-DATA.indication primitive is as follows:Table x specifies the parameters for the PD-DATA.indication primitive.

Page 10: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 10

doc.: IEEE 802.15-0285-00-004a

Submission

6.2.1.3.2 When generatedThe PD-DATA.indication primitive is generated by the PHY entity and issued to its MAC sublayer entity totransfer a received PSDU. This primitive will not be generated if the received psduLength field is zero orgreater than aMaxPHYPacketSize.

6.2.1.3.3 Effect on receiptOn receipt of the PD-DATA.indication primitive, the MAC sublayer is notified of the arrival of an MPDUacross the PHY data service.

6.2.2 PHY management serviceThe PLME-SAP allows the transport of management commands between the MLME and the PLME.Table x lists the primitives supported by the PLME-SAP. These primitives are discussed in the clausesreferenced in the table x.

6.2.2.1 PLME-CCA.requestThe PLME-CCA.request primitive requests that the PLME perform a CCA as defined in x.x.x.

6.2.2.1.1 Semantics of the service primitiveThe semantics of the PLME-CCA.request primitive is as follows:There are no parameters associated with the PLME-CCA.request primitive.

Page 11: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 11

doc.: IEEE 802.15-0285-00-004a

Submission

6.2.2.1.2 When generatedThe PLME-CCA.request primitive is generated by the MLME and issued to its PLME whenever the CSMACAalgorithm requires an assessment of the channel.

6.2.2.1.3 Effect on receiptIf the receiver is enabled on receipt of the PLME-CCA.request primitive, the PLME will cause the PHY toperform a CCA. When the PHY has completed the CCA, the PLME will issue the PLME-CCA.confirmprimitive with a status of either BUSY or IDLE, depending on the result of the CCA.If the PLME-CCA.request primitive is received while the transceiver is disabled (TRX_OFF state) or if thetransmitter is enabled (TX_ON state), the PLME will issue the PLME-CCA.confirm primitive with a statusof TRX_OFF or TX_ON, respectively.

6.2.2.2 PLME-CCA.confirmThe PLME-CCA.confirm primitive reports the results of a CCA.

6.2.2.2.1 Semantics of the service primitiveThe semantics of the PLME-CCA.confirm primitive is as follows:Table x specifies the parameters for the PLME-CCA.confirm primitive.

6.2.2.2.2 When generatedThe PLME-CCA.confirm primitive is generated by the PLME and issued to its MLME in response to aPLME-CCA.request primitive. The PLME-CCA.confirm primitive will return a status of either BUSY orIDLE, indicating a successful CCA, or an error code of TRX_OFF or TX_ON. The reasons for these statusvalues are fully described in 6.2.2.1.3.

6.2.2.2.3 Effect on receiptOn receipt of the PLME-CCA.confirm primitive, the MLME is notified of the results of the CCA. If theCCA attempt was successful, the status parameter is set to either BUSY or IDLE. Otherwise, the statusparameter will indicate the error.

Page 12: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 12

doc.: IEEE 802.15-0285-00-004a

Submission

6.2.2.3 PLME-ED.requestThe PLME-ED.request primitive requests that the PLME perform an ED measurement (see x.x.x).

6.2.2.3.1 Semantics of the service primitiveThe semantics of the PLME-ED.request primitive is as follows:There are no parameters associated with the PLME-ED.request primitive.

6.2.2.3.2 When generatedThe PLME-ED.request primitive is generated by the MLME and issued to its PLME to request an EDmeasurement.

6.2.2.3.3 Effect on receiptIf the receiver is enabled on receipt of the PLME-ED.request primitive, the PLME will cause the PHY toperform an ED measurement. When the PHY has completed the ED measurement, the PLME will issue thePLME-ED.confirm primitive with a status of SUCCESS.If the PLME-ED.request primitive is received while the transceiver is disabled (TRX_OFF state) or if thetransmitter is enabled (TX_ON state), the PLME will issue the PLME-ED.confirm primitive with a status ofTRX_OFF or TX_ON, respectively.

6.2.2.4 PLME-ED.confirmThe PLME-ED.confirm primitive reports the results of the ED measurement.

6.2.2.4.1 Semantics of the service primitiveThe semantics of the PLME-ED.confirm primitive is as follows:Table xx specifies the parameters for the PLME-ED.confirm primitive.

Page 13: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 13

doc.: IEEE 802.15-0285-00-004a

Submission

6.2.2.4.2 When generatedThe PLME-ED.confirm primitive is generated by the PLME and issued to its MLME in response to aPLME-ED.request primitive. The PLME-ED.confirm primitive will return a status of SUCCESS, indicatinga successful ED measurement, or an error code of TRX_OFF or TX_ON. The reasons for these status valuesare fully described in 6.2.2.3.3.

6.2.2.4.3 Effect on receiptOn receipt of the PLME-ED.confirm primitive, the MLME is notified of the results of the ED measurement.If the ED measurement attempt was successful, the status parameter is set to SUCCESS. Otherwise, thestatus parameter will indicate the error.

6.2.2.5 PLME-GET.requestThe PLME-GET.request primitive requests information about a given PHY PIB attribute.

6.2.2.5.1 Semantics of the service primitiveThe semantics of the PLME-GET.request primitive is as follows:Table xx specifies the parameters for the PLME-GET.request primitive.

6.2.2.5.2 When generatedThe PLME-GET.request primitive is generated by the MLME and issued to its PLME to obtain informationfrom the PHY PIB.

6.2.2.5.3 Effect on receiptOn receipt of the PLME-GET.request primitive, the PLME will attempt to retrieve the requested PHY PIBattribute from its database. If the identifier of the PIB attribute is not found in the database, the PLME willissue the PLME-GET.confirm primitive with a status of UNSUPPORTED_ATTRIBUTE.If the requested PHY PIB attribute is successfully retrieved, the PLME will issue the PLME-GET.confirmprimitive with a status of SUCCESS.

Page 14: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 14

doc.: IEEE 802.15-0285-00-004a

Submission

6.2.2.6 PLME-GET.confirmThe PLME-GET.confirm primitive reports the results of an information request from the PHY PIB.

6.2.2.6.1 Semantics of the service primitiveThe semantics of the PLME-GET.confirm primitive is as follows:Table xx specifies the parameters for the PLME-GET.confirm primitive.

6.2.2.6.2 When generatedThe PLME-GET.confirm primitive is generated by the PLME and issued to its MLME in response to aPLME-GET.request primitive. The PLME-GET.confirm primitive will return a status of either SUCCESS,indicating that the request to read a PHY PIB attribute was successful, or an error code ofUNSUPPORTED_ATTRIBUTE. When an error code of UNSUPPORTED_ATTRIBUTE is returned thePIBAttributeValue parameter will be set to length zero. The reasons for these status values are fullydescribed in subclause 6.2.2.5.3.

6.2.2.6.3 Effect on receiptOn receipt of the PLME-GET.confirm primitive, the MLME is notified of the results of its request to read aPHY PIB attribute. If the request to read a PHY PIB attribute was successful, the status parameter is set toSUCCESS. Otherwise, the status parameter will indicate the error.

6.2.2.7 PLME-SET-TRX-STATE.requestThe PLME-SET-TRX-STATE.request primitive requests that the PHY entity change the internal operatingstate of the transceiver. The transceiver will have three main states:— Transceiver disabled (TRX_OFF).— Transmitter enabled (TX_ON).— Receiver enabled (RX_ON).

Page 15: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 15

doc.: IEEE 802.15-0285-00-004a

Submission

6.2.2.7.1 Semantics of the service primitiveThe semantics of the PLME-SET-TRX-STATE.request primitive is as follows:Table 13 specifies the parameters for the PLME-SET-TRX-STATE.request primitive.

6.2.2.7.2 When generatedThe PLME-SET-TRX-STATE.request primitive is generated by the MLME and issued to its PLME whenthe current operational state of the receiver needs to be changed.

6.2.2.7.3 Effect on receiptOn receipt of the PLME-SET-TRX-STATE.request primitive, the PLME will cause the PHY to change to therequested state. If the state change is accepted, the PHY will issue the PLME-SET-TRX-STATE.confirmprimitive with a status of SUCCESS. If this primitive requests a state that the transceiver is alreadyconfigured, the PHY will issue the PLME-SET-TRX-STATE.confirm primitive with a status indicating thecurrent state, i.e., RX_ON, TRX_OFF, or TX_ON. If this primitive is issued with RX_ON or TRX_OFFargument and the PHY is busy transmitting a PPDU, the PHY will issue the PLME-SET-TRXSTATE.confirm primitive with a status BUSY_TX and defer the state change till the end of transmission. Ifthis primitive is issued with TX_ON or TRX_OFF argument and the PHY is in RX_ON state and hasalready received a valid SFD, the PHY will issue the PLME-SET-TRX-STATE.confirm primitive with astatus BUSY_RX and defer the state change till the end of reception of the PPDU. If this primitive is issuedwith FORCE_TRX_OFF, the PHY will cause the PHY to go the TRX_OFF state irrespective of the state thePHY is in.

6.2.2.8 PLME-SET-TRX-STATE.confirmThe PLME-SET-TRX-STATE.confirm primitive reports the result of a request to change the internaloperating state of the transceiver.

6.2.2.8.1 Semantics of the service primitiveThe semantics of the PLME-SET-TRX-STATE.confirm primitive is as follows:Table xx specifies the parameters for the PLME-SET-TRX-STATE.confirm primitive.

Page 16: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 16

doc.: IEEE 802.15-0285-00-004a

Submission

6.2.2.8.2 When generatedThe PLME-SET-TRX-STATE.confirm primitive is generated by the PLME and issued to its MLME afterattempting to change the internal operating state of the transceiver.

6.2.2.8.3 Effect on receiptOn receipt of the PLME-SET-TRX-STATE.confirm primitive, the MLME is notified of the result of itsrequest to change the internal operating state of the transceiver. A status value of SUCCESS indicates thatthe internal operating state of the transceiver was accepted. A status value of RX_ON, TRX_OFF, orTX_ON indicates that the transceiver is already in the requested internal operating state. A status value ofBUSY_TX is issued when the PHY is requested to change its state to RX_ON or TRX_OFF whiletransmitting. A status value of BUSY_RX is issued when the PHY is in RX_ON state, has already receiveda valid SFD, and is requested to change its state to TX_ON or TRX_OFF.

6.2.2.9 PLME-SET.requestThe PLME-SET.request primitive attempts to set the indicated PHY PIB attribute to the given value.

6.2.2.9.1 Semantics of the service primitiveThe semantics of the PLME-SET.request primitive is as follows:Table xx specifies the parameters for the PLME-SET.request primitive.

6.2.2.9.2 When generatedThe PLME-SET.request primitive is generated by the MLME and issued to its PLME to write the indicatedPHY PIB attribute.

Page 17: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 17

doc.: IEEE 802.15-0285-00-004a

Submission

6.2.2.9.3 Effect on receiptOn receipt of the PLME-SET.request primitive, the PLME will attempt to write the given value to theindicated PHY PIB attribute in its database. If the PIBAttribute parameter specifies an attribute that is notfound in the database (see Table xx), the PLME will issue the PLME-SET.confirm primitive with a status ofUNSUPPORTED_ATTRIBUTE. If the PIBAttibuteValue parameter specifies a value that is out of the validrange for the given attribute, the PLME will issue the PLME-SET.confirm primitive with a status ofINVALID_PARAMETER.If the requested PHY PIB attribute is successfully written, the PLME will issue the PLME-SET.confirmprimitive with a status of SUCCESS.

6.2.2.10 PLME-SET.confirmThe PLME-SET.confirm primitive reports the results of the attempt to set a PIB attribute.

6.2.2.10.1 Semantics of the service primitiveThe semantics of the PLME-SET.confirm primitive is as follows:Table xx specifies the parameters for the PLME-SET.confirm primitive.

6.2.2.10.2 When generatedThe PLME-SET.confirm primitive is generated by the PLME and issued to its MLME in response to aPLME-SET.request primitive. The PLME-SET.confirm primitive will return a status of either SUCCESS,indicating that the requested value was written to the indicated PHY PIB attribute, or an error code ofUNSUPPORTED_ATTRIBUTE or INVALID_PARAMETER. The reasons for these status values are fullydescribed in subclause 6.2.2.9.3.

6.2.2.10.3 Effect on receiptOn receipt of the PLME-SET.confirm primitive, the MLME is notified of the result of its request to set thevalue of a PHY PIB attribute. If the requested value was written to the indicated PHY PIB attribute, thestatus parameter is set to SUCCESS. Otherwise, the status parameter will indicate the error.

Page 18: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 18

doc.: IEEE 802.15-0285-00-004a

Submission

6.2.3 PHY enumerations descriptionTable xx shows a description of the PHY enumeration values defined in the PHY specification.

6.3 PPDU formatThis clause specifies the format of the PPDU packet.For convenience, the PPDU packet structure is presented so that the leftmost field as written in this standardshall be transmitted or received first. All multiple octet fields shall be transmitted or received leastsignificant octet first and each octet shall be transmitted or received least significant bit (LSB) first. Thesame transmission order should apply to data fields transferred between the PHY and MAC sublayer.Each PPDU packet consists of the following basic components:— A SHR, which allows a receiving device to synchronize and lock onto the bit stream.— A PHR, which contains frame length information.— A variable length payload, which carries the MAC sublayer frame.

6.3.1 General packet formatThe PPDU packet structure shall be formatted as illustrated in Figure xx.

6.3.1.1 Preamble fieldThe preamble field is used by the transceiver to obtain chip and symbol synchronization with an incomingmessage. The preamble field shall be composed of xx binary zeros.

6.3.1.2 SFD fieldThe SFD is an 8 bit field indicating the end of the synchronization (preamble) field and the start of thepacket data. The SFD shall be formatted as illustrated in Figure xx.

6.3.1.3 Frame length fieldThe frame length field is 7 bits in length and specifies the total number of octets contained in the PSDU (i.e.,PHY payload). It is a value between 0 and aMaxPHYPacketSize (see x.x). Table xx summarizes the type ofpayload versus the frame length value.

Page 19: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 19

doc.: IEEE 802.15-0285-00-004a

Submission

6.3.1.4 PSDU fieldThe PSDU field has a variable length and carries the data of the PHY packet. For all packet types of lengthfive octets or greater than seven octets, the PSDU contains the MAC sublayer frame (i.e., MPDU).

6.4 PHY constants and PIB attributesThis subclause specifies the constants and attributes required by the PHY.

6.4.1 PHY constantsThe constants that define the characteristics of the PHY are presented in Table xx. These constants arehardware dependent and cannot be changed during operation.

6.4.2 PHY PIB attributesThe PHY PIB comprises the attributes required to manage the PHY of a device. Each of these attributes canbe read or written using the PLME-GET.request and PLME-SET.request primitives, respectively. Theattributes contained in the PHY PIB are presented in Table xx.

Page 20: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 20

doc.: IEEE 802.15-0285-00-004a

Submission

6.5 2450 MHz PHY specificationsThe requirements for the 2450 MHz PHY are specified in 6.5.1 through 6.5.3.

6.5.1 Data rateThe data rate of the IEEE 802.15.4a (2450 MHz) PHY shall be 1Mb/s (optional 250 kb/s).

6.5.2 ModulationThe 2450 MHz PHY employs a 8-ary Differentially Bi-Orthogonal Chirp-Spread-Spectrum (DBO-CSS) modulation technique.During each data symbol period, three information bits are used to select one of 8 bi-orthogonal symbols to be transmitted.The bi-orthogonal 4-bit symbol sequences for successive data symbols are differentially coded bit-for-bit basis, and two binary sequence after the Parallel-to-Serial conversion of coded symbol is modulated onto the carrier using quadrature chirp-shift keying (QCSK).

6.5.2.1 Reference modulator diagramThe functional block diagram in Figure 1 and Figure 2 is provided as a reference for specifying the 2450 MHz PHYmodulation. The number in each block refers to the subclause that describes that function.

Page 21: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 21

doc.: IEEE 802.15-0285-00-004a

Submission

33 4S/P

SymbolMapper P/S

1 Mapper

QPSK

33 4S/P

SymbolMapper P/S

1

2

1

14z 2

CSKGen.

2450 MHz PHY modulation 8-ary Differentially Bi-Orthogonal Quaternary-Chirp-Spread-Spectrum (DBO-QCSS) Modulator for 1 Mb/s Data-rate

Data-rate: 1 Mb/s

DBO-QCSSSignal

Binary Data

11S/P

Modulator (1 Mb/s)Modulator (1 Mb/s)

Page 22: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 22

doc.: IEEE 802.15-0285-00-004a

Submission

Binary Data

33 4S/P

SymbolMapper 1

4z 1

FECEncoder

r=1/2P/S

11 11

Data-rate: 250 kb/s

CSKGen.

2450 MHz PHY modulation 8-ary Differentially Bi-Orthogonal Binary-Chirp-Spread-Spectrum (DBO-QCSS) Modulator for 250 Kb/s Data-rate

DBO-BCSSSignal

Modulator (250 Kb/s)Modulator (250 Kb/s)

Page 23: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 23

doc.: IEEE 802.15-0285-00-004a

Submission

PIB: PAN information base

6.5.2.2 Bit - to - Binary symbol mappingAll binary data contained in the PPDU shall be encoded using the modulation shown in Figure 1 and Figure 2.This subclause describes how binary information is mapped into data symbols.The each of 3 bits (b0, b1, b2) of input data shall map into one data symbol.Each data bits of the PPDU is processed through the modulation sequentially, beginning with the preamble fieldand ending with the last octet of the PSDU.

6.5.2.4 Bi-Orthogonal Symbol - to - D-BCSK modulationThe sequences representing each Bi-Orthogonal data symbol are modulated onto the BCSK with raised-cosinepulse shaping. Even-indexed sequences are modulated onto the in-phase (I). Because each data symbol is represented by a 4 sub-chirp (full-chirp) sequences, the sub-chirp rate (nominally 666.7Kchirp/s) is 4 times the symbol rate.

6.5.2.3 Binary Symbol - to - Bi-Orthogonal Symbol mappingEach binary data symbol shall be mapped into a 4 bit Bi-Orthogonal data symbol as specified in Table1.

6.5.2.4a Bi-Orthogonal Symbol - to - D-QCSK modulationThe sequences representing each Bi-Orthogonal data symbol are modulated onto the QCSK with raised-cosinepulse shaping. Even-indexed sequences are modulated onto the in-phase (I) of sub-chirp and odd-indexed sequences are modulated onto the quadrature-phase (Q) of sub-chirp. Because each data symbol is represented by a 4 sub-chirp (full-chirp) sequences, the sub-chirp rate (nominally 666.7Kchirp/s) is 4 times the symbol rate.

Page 24: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 24

doc.: IEEE 802.15-0285-00-004a

Submission

3 bits/symbol

8-ary Bi-OrthogonalSymbol Mapping Table

Decimal

(m)

Binary

(b0,b1,b2)

Bi-Orthogonal Code

(01,02,03,04)

1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 -1 -1 1-1 -1 -1 -1-1 1 -1 1-1 -1 1 1-1 1 1 -1

0 000 1 001 2 010 3 011 4 100 5 101 6 110 7 111

Bi-Orthogonal MappingBi-Orthogonal Mapping

Page 25: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 25

doc.: IEEE 802.15-0285-00-004a

Submission

6.5.2.5 Chirp Pulse shapeThe Raised-cosine time-window is used to shape each baseband sub-chirp is described by Equation (1):Figure 2 shows a sample baseband chirp sequence (the zero sequence) with raised-cosine shaping.

6.5.2.6 Sub-Chirp transmission orderDuring each symbol period the least significant chirp, sub-chirp 0, is transmitted first and the most significant chirp,sub-chirp 3, is transmitted last.

6.5.3 2450 MHz band radio specificationIn addition to meeting regional regulatory requirements, devices operating in the 2450 MHz band shall alsomeet the radio requirements in 6.5.3.1 through 6.5.3.4.

6.5.3.1 Transmit power spectral density (PSD) maskThe transmitted spectral products shall be less than the limits specified in Table xx. For both relative andabsolute limits, average spectral power shall be measured using a 100 kHz resolution bandwidth. For the relative limit, the reference level shall be the highest average spectral power measured within ± 11 MHz ofthe carrier frequency.

6.5.3.2 Symbol rateThe 2450 MHz PHY D-QCSK symbol rate shall be 166.667 ksymbol/s ± 40 ppm, D-BCSK symbol rate shall be83.333 ksymbol/s ± 40 ppm

6.5.3.3 Receiver sensitivityUnder the conditions specified in 6.1.6, a compliant device shall be capable of achieving a sensitivity of–85 dBm or better.(Differential Detection)

Page 26: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 26

doc.: IEEE 802.15-0285-00-004a

Submission

0

3

, , , , , , , ,

4 4 3 4 3 4,

,0 0

,, , , ( )

QCSK / BCSK:

( ) ,

exp2

1, , 4 ( )

,

m mchirp

n

n k k m k m n k m n k m RC n

j j j jn k n

n

k

k mk

c e e e or e

s t s t n

c j t T t T p t T

m piconet

wher

QCSK c

e

, ,

6 6

6

7 7 71 2 3 4

,

0.5 1 1

1.2 10 sec, 6.0 10 sec

, 2 7 1

1, -1

0 1 , 0.25

4.5 10 sec, 3 10 sec, 1.5 10 sec 0 e

(

s c

)

,

n

n k m sub chirp m

sub chirp

BW sub BW

k m

T k T nT

T

or B

T

T

CSK

,2

1 1

1 2

1 1 111 cos -

2 1 2 1 2

k m

sub

sub sub subRC

sub

f

Tt

T T Tp t t t

T

2

0 2subTt

km 1 2 3 4

1 +1 +1 -1 -1

2 +1 -1 +1 -1

3 -1 -1 +1 +1

4 -1 +1 -1 +1

,Table 2. [MHz]k mf

,Table 1. k m

Sub-chirp: Formula, CombinationsSub-chirp: Formula, Combinationskm

1 2 3 4

1 fC-3.15 fC+3.15 fC+3.15 fC-3.15

2 fC+3.15 fC-3.15 fC-3.15 fC+3.15

3 fC-3.15 fC+3.15 fC+3.15 fC-3.15

4 fC+3.15 fC-3.15 fC-3.15 fC+3.15

km

Page 27: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 27

doc.: IEEE 802.15-0285-00-004a

Submission

Concept of Combinations of Sub-ChirpsConcept of Combinations of Sub-Chirps

t

t

Real Imaginary Envelope

Base-band WaveformC(t)

1.2μs 2.4μs 3.6μs 4.8μs

Freq. – Time Property (Base-band)

1.0

0.5

7MHz

0.96μs

Page 28: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 28

doc.: IEEE 802.15-0285-00-004a

Submission

Chirp-Shift-Keying Signal for SOPChirp-Shift-Keying Signal for SOP

t

t

t

t

1.2μs 2.4μs 3.6μs 4.8μs

I

II

III

IV

Page 29: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 29

doc.: IEEE 802.15-0285-00-004a

Submission

fdiff.

-20 -10 fc 10 20 (MHz)

-50

-40

-30

-20

-10

0

Spectrum

Fbw = 7.0 MHzrolloff = 0.25;Fdiff = 6.3 MHz;Tc = 4.8usec

Same Spectrum with IEEE802.11bSame Spectrum with IEEE802.11b

fBW

t

t

t

t

I

II

III

IV

Freq. – Time (Base-band)

Chirp-Shift-Keying Signal for SOPChirp-Shift-Keying Signal for SOP

Page 30: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 30

doc.: IEEE 802.15-0285-00-004a

Submission

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-1

0

1

Base-band Waveform

Real Imaginary Envelope

t

t

t

t

I

II

III

IV

Freq. – Time (Base-band)

Chirp-Shift-Keying Signal for SOPChirp-Shift-Keying Signal for SOP

Page 31: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 31

doc.: IEEE 802.15-0285-00-004a

Submission

SOP: Assigning Different Time-Gap between the CSS Signal Minimize ISI: Assign the Time-Gap between symbol more then 200nsec

I

II

III

IV

t

Duration of 2 Symbols (12 usec)

0.3usec 2.1usec

0.6usec 1.8usec

0.9usec 1.5usec

1.2usec 1.2usec

t

t

t

4.8 usec

Chirp-Shift-Keying Signal for SOPChirp-Shift-Keying Signal for SOP

Page 32: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 32

doc.: IEEE 802.15-0285-00-004a

Submission

0 2 4 6 8 10 12-1

-0.5

0

0.5

1

0 2 4 6 8 10 12-1

-0.5

0

0.5

1

0 2 4 6 8 10 12-1

-0.5

0

0.5

1

0 2 4 6 8 10 12-1

-0.5

0

0.5

1

I

II

III

IV

θ = 0 0 0 0 π/4 3π/4 -3π/4 -π/4

Chirp-Shift-Keying Signal for SOPChirp-Shift-Keying Signal for SOP

Page 33: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 33

doc.: IEEE 802.15-0285-00-004a

Submission

6.5.3.4 Receiver jamming resistanceThe minimum jamming resistance levels are given in Table xx. The adjacent channel is one on either side ofthe desired channel that is closest in frequency to the desired channel, and the alternate channel is one moreremoved from the adjacent channel. For example, when channel 3 is the desired channel, channel 2 andchannel 4 are the adjacent channels, and channel 1 and channel 5 are the alternate channels.The adjacent channel rejection shall be measured as follows. The desired signal shall be a compliant2450 MHz IEEE 802.15.4a signal of pseudo-random data. The desired signal is input to the receiver at a level3 dB above the maximum allowed receiver sensitivity given in 6.5.3.3.In either the adjacent or the alternate channel, an IEEE 802.15.4a signal is input at the relative level specifiedin Table xx. The test shall be performed for only one interfering signal at a time. The receiver shall meet theerror rate criteria defined in 6.1.6 under these conditions.

Page 34: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 34

doc.: IEEE 802.15-0285-00-004a

Submission

Annex E(informative)Coexistence with other IEEE standards and proposed standardsWhile not required by the specification, IEEE 802.15.4a devices can be reasonably expected to “coexist,” thatis, to operate in proximity to other wireless devices. This annex considers issues regarding coexistencebetween IEEE 802.15.4a devices and other wireless IEEE-compliant devices.E.1 Standards and proposed standards characterized for coexistenceThis clause enumerates IEEE-compliant devices that are characterized and the devices that are notcharacterized for operation in proximity to IEEE 802.15.4a devices.As described in 6.1.2, the IEEE 802.15.4a PHYs are specified for operation in 7 channels. Channel 0 through channel 7 span frequencies from 2412 MHz to 2472 MHz and, therefore, may interact with otherIEEE-compliant devices operating in those frequencies.Standards and proposed standards characterized in this annex for coexistence are— IEEE Std 802.11b-1999 (2400 MHz DSSS)— IEEE Std 802.15.1-2002 [2400 MHz frequency hopping spread spectrum (FHSS)]— IEEE P802.15.3 (2400 MHz DSSS)Standards not characterized in this annex for coexistence are:— IEEE Std 802.11, 1999 Edition, frequency hopping (FH) (2400 MHz FHSS)— IEEE Std 802.11, 1999 Edition, infrared (IR) (333GHz AM)— IEEE Std 802.16-2001 (2400 MHz OFDM)— IEEE Std 802.11a-1999 (5.2GHz DSSS)E.2 General coexistence issuesIEEE Std 802.15.4a provides several mechanisms that enhance coexistence with other wireless devicesoperating in the 2400 MHz band. This subclause provides an overview of the mechanisms that are defined inthe standard. These mechanisms include— CCA— Dynamic channel selection— Modulation— ED and LQI— Low duty cycle— Low transmit power— Channel alignment— Neighbor piconet capabilityThese mechanisms are described briefly in E.x.x through E.x.x.

Page 35: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 35

doc.: IEEE 802.15-0285-00-004a

Submission

E.3 Coexistence performanceThe assumptions made across all standards characterized for coexistence are described in E.x.x. SubclausesE.x.x and E.x.x describe the assumptions made for individual standards and quantify their predictedperformance when coexisting with IEEE 802.15.4a devices.E.3.1 Assumptions for coexistence quantificationThe assumptions in E.3.1.1 through E.3.1.9 are made to determine the level of coexistence.E.3.1.1 Channel modelThe channel model is based on the IEEE 802.11 specification used by IEEE P802.15.2 and IEEE P802.15.3.

E.3.1.2 Receiver sensitivityThe receiver sensitivity assumed is the reference sensitivity specified in each standards as follows:a) –76 dBm for IEEE 802.11b 11 Mb/s CCKb) –70 dBm for IEEE 802.15.1c) –75 dBm for IEEE P802.15.3 22 Mb/s DQPSKd) –85 dBm for IEEE 802.15.4E.3.1.3 Transmit powerThe transmitter power for each coexisting standard has been specified as follows:a) 14 dBm for IEEE 802.11bb) 0 dBm for IEEE 802.15.1c) 8 dBm for IEEE P802.15.3d) 0 dBm for IEEE 802.15.4E.3.1.4 Receiver bandwidthThe receiver bandwidth is as required by each standard as follows:a) 22 MHz for IEEE 802.11bb) 1 MHz for IEEE 802.15.1c) 15 MHz for IEEE P802.15.3d) 2 MHz for IEEE 802.15.4E.3.1.5 Transmit spectral masksThe maximum transmitter spectral masks are assumed for the calculations. This assumption is the absoluteworst-case scenario; in most cases, the transmitter spectrum will be lower

Page 36: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 36

doc.: IEEE 802.15-0285-00-004a

Submission

Back-Up Slides

Page 37: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 37

doc.: IEEE 802.15-0285-00-004a

Submission

Differentially Bi-OrthogonalDifferentially Bi-OrthogonalChirp-Spread-SpectrumChirp-Spread-Spectrum

(DBO-CSS)(DBO-CSS)

Page 38: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 38

doc.: IEEE 802.15-0285-00-004a

Submission

0( ) Re exp[ ( ) ] [ ( ) ( )]2

BWchirp s chirp

chirp

s t j t t j u t u t TT

SBW

t

t

( )chirps t

0( ) Re exp[ ( ) ] ( )2

BWchirp s RC chirp

chirp

s t j t t j p t TT

Linear Chirp: Rectangular Window

Linear Chirp: Raised-Cosine Window

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-200 -150 -100 -50 0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

Correlation Property of Chirp Signal

Am

plitu

de

DBO-CSS System OverviewChirp PropertiesChirp Properties

Page 39: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 39

doc.: IEEE 802.15-0285-00-004a

Submission

0

3

, , , , , , , ,

4 4 3 4 3 4,

,0 0

,, , , ( )

QCSK / BCSK:

( ) ,

exp2

1, , 4 ( )

,

m mchirp

n

n k k m k m n k m n k m RC n

j j j jn k n

n

k

k mk

c e e e or e

s t s t n

c j t T t T p t T

m piconet

wher

QCSK c

e

, ,

6 6

6BW

7 7 71 2 3 4

0.5 1 1

1.2 10 sec, 6.0 10 sec

, 2 7 10 1 , 0.25

4.5 10 sec, 3 10 sec, 1.5 10 s

1, -1

ec,

(

0

)

s

n

n k m sub chirp m

sub chirp

BW chirp

T k T nT

T T

T

or BCSK

, ,

ec

2

1 1

1 2

1 1 111 cos -

2 1 2 1 2

k m k m

sub

sub subRC

sub

f

Tt

T Tp t t

T

2

0 2

sub

sub

Tt

Tt

km 1 2 3 4

1 +1 +1 -1 -1

2 +1 -1 +1 -1

3 -1 -1 +1 +1

4 -1 +1 -1 +1

,Table 2. [MHz]k mf

,Table 1. k m

Sub-chirp: Formula, CombinationsSub-chirp: Formula, Combinations

km

1 2 3 4

1 fC-3.15 fC+3.15 fC+3.15 fC-3.15

2 fC+3.15 fC-3.15 fC-3.15 fC+3.15

3 fC-3.15 fC+3.15 fC+3.15 fC-3.15

4 fC+3.15 fC-3.15 fC-3.15 fC+3.15

km

DBO-CSS System Overview

Page 40: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 40

doc.: IEEE 802.15-0285-00-004a

Submission

3 bits/symbol

8-ary Bi-OrthogonalSymbol Mapping Table

Decimal

(m)

Binary

(b0,b1,b2)

Bi-Orthogonal Code

(01,02,03,04)

1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 -1 -1 1-1 -1 -1 -1-1 1 -1 1-1 -1 1 1-1 1 1 -1

0 000 1 001 2 010 3 011 4 100 5 101 6 110 7 111

Bi-Orthogonal MappingBi-Orthogonal Mapping

DBO-CSS System Overview

Page 41: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 41

doc.: IEEE 802.15-0285-00-004a

Submission

33 4S/P

SymbolMapper P/S

1 Mapper

QPSK

33 4S/P

SymbolMapper P/S

1

2

1

14z 2

CSKGen.

2450 MHz PHY modulation 8-ary Differentially Bi-Orthogonal Quaternary-Chirp-Spread-Spectrum (DBO-QCSS) Modulator for 1 Mb/s Data-rate

Data-rate: 1 Mb/s

DBO-QCSSSignal

Binary Data

11S/P

DBO-CSS System OverviewModulator (1 Mb/s)Modulator (1 Mb/s)

Page 42: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 42

doc.: IEEE 802.15-0285-00-004a

Submission

Binary Data

33 4S/P

SymbolMapper 1

4z 1

FECEncoder

r=1/2P/S

11 11

Data-rate: 250 kb/s

CSKGen.

2450 MHz PHY modulation 8-ary Differentially Bi-Orthogonal Binary-Chirp-Spread-Spectrum (DBO-QCSS) Modulator for 250 Kb/s Data-rate

DBO-BCSSSignal

DBO-CSS System OverviewModulator (250 Kb/s)Modulator (250 Kb/s)

Page 43: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 43

doc.: IEEE 802.15-0285-00-004a

Submission

DBO-CSS System OverviewConcept of Sub-ChirpsConcept of Sub-Chirps

t

t

Real Imaginary Envelope

Base-band Waveforms(t)

1.2μs 2.4μs 3.6μs 4.8μs

Freq. – Time Property (Base-band)

1.0

0.5

Page 44: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 44

doc.: IEEE 802.15-0285-00-004a

Submission

t

t

t

t

1.2μs 2.4μs 3.6μs 4.8μs

I

II

III

IV

DBO-CSS System OverviewConcept of Sub-ChirpsConcept of Sub-Chirps

Page 45: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 45

doc.: IEEE 802.15-0285-00-004a

Submission

fdiff.

-20 -10 fc 10 20 (MHz)

-50

-40

-30

-20

-10

0

Spectrum

Fbw = 7.0 MHzrolloff = 0.25;Fdiff = 6.3 MHz;Tc = 4.8usec

Same Spectrum with IEEE802.11bSame Spectrum with IEEE802.11b

DBO-CSS System Overview

fBW

t

t

t

t

I

II

III

IV

Freq. – Time (Base-band)

Chirp-Shift-Keying Signal for SOPChirp-Shift-Keying Signal for SOP

Page 46: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 46

doc.: IEEE 802.15-0285-00-004a

Submission

2.4GHz ISM Band: Same Operating Channels with 802.11b - Non-Overlap: fc = 2.412GHz, 2.437GHz, 2.462GHz (North America) / 2.412GHz, 2.442GHz, 2.472GHz (Europe)

- Overlap: fc = 2.412GHz, 2.422GHz, 2.432GHz, 2.442GHz, 2.452GHz, 2.462GHz (North America, Europe) /

2.472GHz (Europe) 22MHz Bandwidth: 4 SOPs per Band

Band in Use:Band in Use:

-20 -10 fc 10 20 (MHz)

-50

-40

-30

-20

-10

0Fbw = 7.0 MHzrolloff = 0.25;Fdiff = 6.3 MHz;Tc = 4.8usec

Spectrum

DBO-CSS System Overview

Page 47: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 47

doc.: IEEE 802.15-0285-00-004a

Submission

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-1

0

1

Base-band Waveform

DBO-CSS System Overview

Real Imaginary Envelope

t

t

t

t

I

II

III

IV

Freq. – Time (Base-band)

Chirp-Shift-Keying Signal for SOPChirp-Shift-Keying Signal for SOP

Page 48: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 48

doc.: IEEE 802.15-0285-00-004a

Submission

Each of CSS Signal consists of 4 sub-chirp signals.

I

II

III

IV

-5000 0 50000

0.2

0.4

0.6

0.8

1

-5000 0 50000

0.2

0.4

0.6

0.8

1

-5000 0 50000

0.2

0.4

0.6

0.8

1

-5000 0 50000

0.2

0.4

0.6

0.8

1

-5000 0 50000

0.2

0.4

0.6

0.8

1

-5000 0 50000

0.2

0.4

0.6

0.8

1

-5000 0 50000

0.2

0.4

0.6

0.8

1

-5000 0 50000

0.2

0.4

0.6

0.8

1

-5000 0 50000

0.2

0.4

0.6

0.8

1

-5000 0 50000

0.2

0.4

0.6

0.8

1

-5000 0 50000

0.2

0.4

0.6

0.8

1

-5000 0 50000

0.2

0.4

0.6

0.8

1

-5000 0 50000

0.2

0.4

0.6

0.8

1

-5000 0 50000

0.2

0.4

0.6

0.8

1

-5000 0 50000

0.2

0.4

0.6

0.8

1

-5000 0 50000

0.2

0.4

0.6

0.8

1

Correlation Power (For Preamble Detection)

Correlation Property between the piconetDoes not need Synchronization inter-piconet

CSS Signal : Quasi-Orthogonal Property

Chirp-Shift-Keying Signal for SOPChirp-Shift-Keying Signal for SOP

DBO-CSS System Overview

Page 49: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 49

doc.: IEEE 802.15-0285-00-004a

Submission

Each of CSS Signal consists of 4 sub-chirp signals.

I

II

III

IV

-4000 -2000 0 2000 4000

0

0.5

1

-4000 -2000 0 2000 4000

0

0.5

1

-4000 -2000 0 2000 4000

0

0.5

1

-4000 -2000 0 2000 4000

0

0.5

1

-4000 -2000 0 2000 4000

0

0.5

1

-4000 -2000 0 2000 4000

0

0.5

1

-4000 -2000 0 2000 4000

0

0.5

1

-4000 -2000 0 2000 4000

0

0.5

1

-4000 -2000 0 2000 4000

0

0.5

1

-4000 -2000 0 2000 4000

0

0.5

1

-4000 -2000 0 2000 4000

0

0.5

1

-4000 -2000 0 2000 4000

0

0.5

1

-4000 -2000 0 2000 4000

0

0.5

1

-4000 -2000 0 2000 4000

0

0.5

1

-4000 -2000 0 2000 4000

0

0.5

1

-4000 -2000 0 2000 4000

0

0.5

1

Complex Amplitude (for Data Demod)

Correlation Property between piconetCSS Signal : Quasi-Orthogonal Property

Chirp-Shift-Keying Signal for SOPChirp-Shift-Keying Signal for SOP

DBO-CSS System Overview

Page 50: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 50

doc.: IEEE 802.15-0285-00-004a

Submission

SOP: Assigning Different Time-Gap between the CSS Signal Minimize ISI: Assign the Time-Gap between symbol more then 200nsec

I

II

III

IV

t

Duration of 2 Symbols (12 usec)

0.3usec 2.1usec

0.6usec 1.8usec

0.9usec 1.5usec

1.2usec 1.2usec

t

t

t

4.8 usec

DBO-CSS System OverviewChirp-Shift-Keying Signal for SOPChirp-Shift-Keying Signal for SOP

Page 51: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 51

doc.: IEEE 802.15-0285-00-004a

Submission

0 2 4 6 8 10 12-1

-0.5

0

0.5

1

0 2 4 6 8 10 12-1

-0.5

0

0.5

1

0 2 4 6 8 10 12-1

-0.5

0

0.5

1

0 2 4 6 8 10 12-1

-0.5

0

0.5

1

I

II

III

IV

θ = 0 0 0 0 π/4 3π/4 -3π/4 -π/4

DBO-CSS System OverviewChirp-Shift-Keying Signal for SOPChirp-Shift-Keying Signal for SOP

Page 52: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 52

doc.: IEEE 802.15-0285-00-004a

Submission

Each of CSS Signal consists of 4 sub-chirp signals. Differential Detection Property between piconet

I

II

III

IV

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

0 1 2

x 104

-1

-0.5

0

0.5

1

Interference Tested by Packet (32 bytes Random Data)

Chirp-Shift-Keying Signal for SOPChirp-Shift-Keying Signal for SOP

DBO-CSS System Overview

Page 53: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 53

doc.: IEEE 802.15-0285-00-004a

Submission

Available SOPs

2.4GHz: 4[piconets/FDM Ch.] x 3[FDM Ch.] = 12 SOPs 2.4GHz: 4[piconets/FDM Ch.] x 13[FDM Ch.] = 52 SOPs

Performance with SOPPerformance with SOP

0 0.5 1 1.5 2 2.5 310

-4

10-3

10-2

10-1

100

Dint/Dref

PE

R

System Performance in 1 interf. piconet

AWGNCM8CM1CM5

0.5 1 1.5 2 2.5 3 3.510

-4

10-3

10-2

10-1

100

Dint/Dref

PE

R

System performance with 2 interf. piconet

AWGNCM8CM1CM5

1 1.5 2 2.5 3 3.5 410

-4

10-3

10-2

10-1

100

Dint/Dref

PE

R

System performance with 3 interf. piconet

AWGNCM8CM1CM5 Desired

Transmitter

Receiver Under Test

Uncoordinated Piconets’ Transmitters

Dint. Dref.

DBO-CSS System Overview

Page 54: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 54

doc.: IEEE 802.15-0285-00-004a

Submission

Technical Feasibility: Technical Feasibility: Regulatory Impact

Devices manufactured in compliance with the DBO-CSS proposal can be operated under existing regulations in all significant regions of the world- Including but not limited to North and South America, Europe, Japan,

China, Korea, and most other areas- There are no known limitation to this proposal as to indoors or

outdoors The DBO-CSS proposal would adhere to the following

worldwide regulations:- United States Part 15.247 or 15.249- Canada DOC RSS-210- Europe ETS 300-328- Japan ARIB STD T-66

DBO-CSS System Overview

Page 55: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 55

doc.: IEEE 802.15-0285-00-004a

Submission

■ Data-Rate: - 2 rates: 1Mbps / 250Kbps

■ RF Tx Power: - 5 classes: 0.1mW / 1.0mW / 10mW / 100mW / 1W

DBO-CSS System OverviewScalabilityScalability

Page 56: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 56

doc.: IEEE 802.15-0285-00-004a

Submission

-12

Equivalent Chirp Symbol-Timing Er

Chirp Index:

Doppler Shift:

Ex) 7 , 1.2 sec, 2.45 1.4

50[ / ]

10

=13.89[m/

or

s

r :

]

BW chirp

d c

c

BW chirp c

f T

f f v c T

T f v c

f MHz T f GHz T v

v Km h

ΔT= 19.4 [psec]

DBO-CSS System OverviewMobilityMobility

■ Mobility Value: - Chirp is insensitive for Doppler Shift: very small Timing error and BER degrade

Page 57: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 57

doc.: IEEE 802.15-0285-00-004a

Submission

PHY Layer Criteria: PHY Layer Criteria: Size and Form Factor

The implementation of the DBO-CSS proposal will be less than SD Memory at the onset– Following the form factors of Bluetooth and IEEE 802.15.4 / ZigBee

The implementation of this device into a single chip is relatively straightforward

SD Memory (32mm X 24 mm)

BasebandRFPattern Antenna

(24mm X 14mm)

Button CellButton CellBatteryBattery

Ex)• Battery Capacity: 3V x 30mAh (324Joule)• Dimension: 10 x 2.5 (Dia. x Ht. mm)

DBO-CSS System Overview

Page 58: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 58

doc.: IEEE 802.15-0285-00-004a

Submission

DATA Frame ACK Frame DATA Frame

TACKTLIFT

330 / 1104 μsec 114 / 240 μsec

Payload: 32byte 5byte

574 / 1474 μsec

TACK = TLIFS = 192usec

Payload Bit-rate:

■ Data-rate: 1MHz / 250Kbps per piconet■ Aggregated Data-rate: Max. 4Mbps (4 X 1Mbps) per FDM Channel■ FDM Channels: 13 (11) CH. (2.4GHz)

Data Throughput:

■ Payload bit-rate 1Mbps / 250Kbps : Throughput 330 Kbps / 148 Kbps

PHY Layer Criteria: PHY Layer Criteria: Bit Rate and Data Throughput

DBO-CSS System Overview

Page 59: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 59

doc.: IEEE 802.15-0285-00-004a

Submission

Data Frame:Payload bit-rate : 1Mbps (r=1) / 250Kbps (r=1/2)

Preamble Delimiter Length

+Rate

5 Chirps 1Chirp 6Chirps 43 Chirps (1Mbps) / 172 Chirps (250Kbps)

MPDU

330 μsec (1Mbps) / 1104 μsec (250Kbps)(8 + 1)bit (32X8 +2) bit

ACK Frame:Payload bit-rate : 1Mbps(r=1) / 250Kbps (r=1/2)

Preamble Delimiter Length

+Rate

5Chirps 1Chirp 6Chirps 7Chirps (1Mbps) / 28Chirps (250Kbps)

MPDU

114 μsec (1Mbps) / 240 μsec (250Kbps)

(8 + 1)bit (5X8 +2) bit

PHY Layer Criteria: PHY Layer Criteria: Bit Rate and Data Throughput

DBO-CSS System Overview

Page 60: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 60

doc.: IEEE 802.15-0285-00-004a

Submission

Throughput with ACK and SIFS

0100000200000300000400000500000600000700000800000900000

32 64 128 256

PSDU length (octets)

Th

rou

gh

pu

t (b

/s)

250 Kb/s plot

1 Mb/s plot

Tack= 192 µsSIFS= 192 µs

330 Kb/s

148 Kb/s

797 Kb/s

230 Kb/s

PHY Layer Criteria: PHY Layer Criteria: Bit Rate and Data Throughput

DBO-CSS System Overview

Page 61: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 61

doc.: IEEE 802.15-0285-00-004a

Submission

This DBO-CSS proposal is based upon a preamble of 5 Chirp symbols which results in a duration of 30 µs. This value is significantly below the duration of preamble defined in 15.4 and thus increases the available throughput.

Existing implementations demonstrate that modules, which might be required to be adjusted for reception (gain control, frequency control, peak value estimation, etc.), can settle in this time.

Signal AcquisitionSignal Acquisition

DBO-CSS System Overview

Page 62: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 62

doc.: IEEE 802.15-0285-00-004a

Submission

1400 1500 1600 1700 1800 1900 2000 2100 2200

10-5

10-4

10-3

10-2

10-1

In AWGN, at FA=3.2x10-5, TxPower=10mW

Distance : meter

Pm

2 Chirp Symbols3 Chirp Symbols4 Chirp Symbols

Preamble Detection

Signal Acquisition: Signal Acquisition: Miss Detection Probability, Pm

n=2

DBO-CSS System Overview

Page 63: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 63

doc.: IEEE 802.15-0285-00-004a

Submission

System PerformanceSystem Performance

Data Rate : 1Mbps (QPSK)

10 12 14 16 18 20 2210

-4

10-3

10-2

10-1

100

Eb/No

PE

RSystem Performance

AWGNCM8CM1CM5

DBO-CSS System Overview

Page 64: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 64

doc.: IEEE 802.15-0285-00-004a

Submission

System PerformanceSystem Performance

1800 2000 2200 2400 2600 2800 300010

-4

10-3

10-2

10-1

100

AWGNData Rate : 1Mbps (QPSK)n=2

Distance (meter)

DBO-CSS System Overview

Page 65: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 65

doc.: IEEE 802.15-0285-00-004a

Submission

System PerformanceSystem Performance

CM1: LOS (n=1.79) CM2: NLOS (n=4.58):

Residential: 7m~20m

1400 1600 1800 2000 2200 2400 2600 2800 300010

-4

10-3

10-2

10-1

distance(meter)

PE

R

CM1 LOS (n=1.79)

16 18 20 22 24 26 2810

-4

10-3

10-2

10-1

100

distance(meter)

PE

R

CM2 NLOS (n=4.48)

DBO-CSS System Overview

Page 66: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 66

doc.: IEEE 802.15-0285-00-004a

Submission

System PerformanceSystem Performance

CM3: LOS (n=1.63) CM4: NLOS (n=3.07):

Office: 3m~28m

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 320010

-4

10-3

10-2

10-1

distance(meter)

PE

R

CM3 LOS (n=1.63)

60 65 70 75 80 85 90 95 100 105 11010

-4

10-3

10-2

10-1

100

distance(meter)

PE

R

CM4 NLOS (n=3.07)

DBO-CSS System Overview

Page 67: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 67

doc.: IEEE 802.15-0285-00-004a

Submission

System PerformanceSystem Performance

CM8: NLOS (n=2.15):

Industrial: 2m~8m

400 600 800 1000 1200 1400 1600 1800 2000 220010

-4

10-3

10-2

10-1

100

distance(meter)

PE

R

CM8 NLOS (n=2.15)

DBO-CSS System Overview

Page 68: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 68

doc.: IEEE 802.15-0285-00-004a

Submission

Signal Robustness: Signal Robustness: Coexistence

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.910

-4

10-3

10-2

10-1

100

DInt

/ DRef

PE

R

100

10-1

10-2

10-3

10-4

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Dint. / Dref.

PE

R

System performance with IEEE802.11b Interference

Same Tx PowerDBO-CSS Signal is not susceptible to W-LAN Interference

Desired Transmitter

Receiver Under Test

WLAN Transmitters

Dint. Dref.

DBO-CSS System Overview

Page 69: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 69

doc.: IEEE 802.15-0285-00-004a

Submission

Parameter mandatory option 1 option 2  

Peak payload bit rate(Rb) 1000 250 250 kbps

Average Tx Power(Pt) 10 10 1000 mW

Average Tx Power(Pt) 10 10 30 dBm

Tx antenna gain(Gt) 0 0 0 dBi

fc' = sqrt(fminfmax) -10dB 2.44 2.44 2.44 GHz

Path loss at 1meter(L1=20log10(4pifc'/c)) 40.2 40.2 40.2 dB

Distance 30 100 1000 m

Path loss at d m(L2=20log10(d)) 29.5 40 60 dB  

Rx antenna gain(Gr) 0 0 0 dBi

Rx power(Pr = Pt+Gt+Gr-L1-L2(dB)) -59.7 -70.2 -70.2 dBm

Average noise power per bit -114.0 -120.0 -120.0 dBm

Rx Noise Figure(Nf) 7 7 7 dB

Average noise power per bit(Pn=N+Nf) -107.0 -113.0 -113.0 dBm

Minimum Eb/No(S) 12.5 12.5 12.5 dB

Implementation Loss(I) 3 3 3 dB

Link Margin (M=Pr-Pn-S-I) @ distance d 31.8 27.3 27.3 dB

Proposed Min. Rx Sensitivity Level -91.5 -97.5 -97.5 dBm

Link BudgetLink Budget

DBO-CSS System Overview

Page 70: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 71

doc.: IEEE 802.15-0285-00-004a

Submission

Power management aspects of this proposal are consistent with the modes identified in the IEEE 802.15.4: 2003 standard

There are no modes lacking nor added Once again, attention is called to the

1 Mbit/s basic rate of this proposal and resulting shorter “on” times for operation

Power Management ModesPower Management Modes

DBO-CSS System Overview

Page 71: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 72

doc.: IEEE 802.15-0285-00-004a

Submission

1Mbps 250Kbps (FEC: r=1/2)

Logic Die Area Power Logic Die Area Power

RF@ Tx Power:

10mW

Tx + D/A - 1.7 mm2 187 mW - 1.7 mm2 187 mW

Rx + A/D - 1.6 mm2 28.9 mW - 1.6 mm2 28.9 mW

Common - 0.3 mm2 10 mW - 0.3 mm2 10 mW

Baseband@ Sampling-rate:

40MHz

Tx 1.5K 0.04 mm2 0.48 mW 1.6K 0.06 mm2 0.52 mW

Rx 53.7K 0.69 mm2 0.77 mW 148.6K 1.54 mm2 2.18 mW

Common 5K 0.08 mm2 0.42 mW 5K 0.08 mm2 0.42 mW

TotalTx

60.2K 4.41 mm2197.9 mW

155.2K 5.28 mm2198 mW

Rx 40.1 mW 41.5 mW

Deep Sleep 3 μW 3 μWTarget Library : 0.18 um Technology

■ Power Consumption for Average Throughput 1 Kbps (w/o FEC) - PTX : 197.9[mW] / 330 = 600 [μW] - PRX : 40.1[mW] /330 = 121.5 [μW]

■ Battery: 324[Joule] for Button Cell (10mm D. X 2.5mm H) / 12,000[Joules] for AA Alkaline Cell - (PTX + 50 X PRX)/51 = 130.9[uW] ----- (Assume TTX : TRX = 1:50 duty-cycle for sensor node) - Battery Life TB = 324/130.9e-6/3600/24 = 28.6 days Continuously (Button Cell) - Battery Life TB = 12000/130.9e-6/3600/24/365 = 2.91 years Continuously (AA Alkaline Cell)

Power ConsumptionPower Consumption

DBO-CSS System Overview

Page 72: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 73

doc.: IEEE 802.15-0285-00-004a

Submission

The antenna for this DBO-CSS proposal is a standard 2.4 GHz antenna such as widely used for 802.11b,g devices and Bluetooth devices.

These antennas are very well characterized, widely available, and extremely low cost.

Additionally there are a multitude of antennas appropriate for widely different applications.

The size for these antennae is consistent with the SCD requirement.

Antenna PracticalityAntenna Practicality

DBO-CSS System Overview

Page 73: Doc.: IEEE 802.15-0285-00-004a Submission May 17 2005 Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 1 Project: IEEE P802.15 Working Group for Wireless.

May 17 2005

Kyung-Kuk Lee, Orthotron / Rainer Hach, NanotronSlide 74

doc.: IEEE 802.15-0285-00-004a

Submission

■ Antenna Size - Smaller than SD-Memory: 24mm X 14mm @2.4GHz

■ Frequency / Impulse Response - Almost flat Antenna frequency response: narrow-band

■ Radiation Characteristics - Isotropic: 0dBi

Antenna PracticalityAntenna Practicality

DBO-CSS System Overview