Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical...

29
Digitally Assisted Analog Circuits Bernhard Boser Boris Murmann Department of Electrical Engineering University of California, Berkeley

Transcript of Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical...

Page 1: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Digitally Assisted Analog Circuits

Bernhard BoserBoris Murmann

Department of Electrical EngineeringUniversity of California, Berkeley

Page 2: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

„Moore‘s Law“ for Digital Circuits

2x every1.9 years

≈10,000 MIPS0.3 MIPSLead µP Peformance

2x every1.8 years≈200 Million5000Lead µP

Transistors/die

0.7x every2-3 years0.13µm6µmTransistor

Feature Size

Rate of Change20021974

[Moore, ISSCC 2003]

Page 3: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

„Moore‘s Law“ for Analog Circuits

1.0E+08

1.0E+09

1.0E+10

1.0E+11

1.0E+12

1.0E+13

1.0E+14

1985 1990 1995 2000 2005

Ban

dwid

th x

Res

olut

ion

[Hz-

LSB

]

Lead µP Slope (2x/1.9years)

Lead ADC: 2x/4.7 yearsAll ADCs: 2x/6.1 years

50x

Perf

orm

ance

Page 4: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Impact of Moore’s Law

Digital circuitry:o Cost/function decreases by 29% each yearo That’s 30X in 10 years

Analog circuitry:o Cost/function is constanto Dropping supply voltages threaten feasibility

Transition to DSP is inevitable!

Ref: International Technology Roadmap for Semiconductors, http://public.itrs.net

Page 5: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Digitally Assisted Analog Circuits

Concept:o Relax analog domain precisiono Recover accuracy in digital domain

Benefits:o Improve compatibility with fine line technologyo Reduced power consumption

Examples:o Nonlinear amplification in A/D converterso Digital pre-distortion in power amplifierso Nonlinear equalization

Page 6: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Outline

Pipelined analog-to-digital converterAnalog errors and digital correctionCorrection parameter estimationResults

Page 7: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Pipelined ADC

Dominant topology for wide performance range: 10-14 bits, 10-200MHz

Σ

A/D D/A-

D

VresVin

STAGE 1 STAGE N-1 STAGE NS/H

R bits

Vin

2R

D=0 D=1

V res

Vin

(e.g. R=1)

Page 8: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Σ

A/D D/A-

D

VresVin

2R

Relax Analog Precision?

Redundancy (RSD arithmetic) helps tolerate

large sub A/D errors[Lewis, 1987]

“Digital calibration“ removes D/A and linear gain error by

adjusting digital weights[Karanicolas, 1993]

Page 9: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Σ

A/D D/A-

D

VresVin

2R

Relax Analog Precision?

Remaining challenge: Fast, highly linear gain element50-70% of total pipeline ADC power is consumed by interstage amplifiers

Redundancy (RSD arithmetic) helps tolerate

large sub A/D errors[Lewis, 1987]

“Digital calibration“ removes D/A and linear gain error by

adjusting digital weights[Karanicolas, 1993]

Page 10: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Conventional Gain Element

Electronic feedback linearizes, stabilizesHigh gain requirement costs headroom and/or additional stages ⇒ power penaltySemiconductor technology trend: Decreasing VDD and low intrinsic device gain!

E.g. [Kelly, ISSCC 2001]

Page 11: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Open-loop Amplification“Open loop“

☺ Power ↓↓Precision ↓↓

Sensitivity ↑↑

Precision Amplifier

Page 12: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Digital Correction

Digital Post-Processor ADC

VinDraw Dcorrected

Issues:Analog domain errors Digital correction mechanismError measurement and tracking

Page 13: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Amplifier Nonlinearity

Vi

ISS

R R

Vo

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5

Vi/Vdsat

Vo/(I

SS*

R)

Diff. Pair TFTangent

?2max

=

dsat

i

VV

Page 14: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Pipeline Stage Error Model

Σ

A/D D/A-

D

VresVin a1Σ

Vos

a2Vx2

a3Vx3

Σ

2R⇒

How can we linearize the ADC digitally ?

Page 15: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Vresb1 Σ A/D

b3Vx3

b3Vx3

-

Dres

Linearization Concept

• Problem: amplifier input is an analog signal

Page 16: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Vresb1 Σ A/D

b3Vx3

Σ-

e(Vres)

Dres

Linearization Concept

0:

2712

cos31

3cos

312)( 3

1

33

3

1

3<=

−⋅+−−= −

bbpwith

p

Vp

VVe resresres

π

Page 17: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Vresb1 Σ A/DD'res

b3Vx3

Σ-

e(Dres)

Dres

Digital Linearization

Single-parameter correction function can be pre-computed and stored in look-up table (ROM)Small ROM size achievable through continuous data compression methods

Page 18: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Calibration Concept

Correction parameters depend on temperature, etc.Classical “foreground calibration“ unfeasibleNeed continuous “background calibration“ during normal A/D operation

Classical Approach: Problem:

Time

ChipTemp. IdlePower-Up

Bad timeto calibrate!

Calibratenow?

A/DVin

CalibrationCircuit

Dout

TestSignal Param.

Page 19: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Approach: Two-Residue Pipeline StageΣ

A/D D/A-

D

VresVin

Σ

SHIFT

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

Vres

/Vre

f

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

Vres

/Vre

f

Add: Digital SHIFT signal, redundant A/D and D/A statesCan carry out conversion on “red“ or “black“ segments

Page 20: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Digitized Segment

Idea: Measure h1, h2 and force difference ∆h to 0How measure ∆h without interrupting A/D operation?Solution: Statistics based measurement

0 0.1 0.2 0.3 0.4 0.5Vi/Vref

Dre

s (0

...2B -1

)

h2h1

no calibration: h1<h2

0 0.1 0.2 0.3 0.4 0.5Vi/Vref

Dre

s (0

...2B -1

)

perfect calibration: h1=h2

h2h1

Page 21: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Dre

s (0

...2B -1

)

"Red" withProb. 1/2

"Black" withProb. 1/2

Input Samples Vin(k)

Distance Estimation (1)

For each input sample “fair coin toss“ decides red/black

Page 22: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Distance Estimation (2)

Dre

s (0

...2B -1

)

f(Vin(k))

vinvq

q CHref(q)

Simple input model: stationary random processCount # of codes ≤ q in “black channel“→ cumulative histogram CHref(q)

Page 23: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Distance Estimation (3)

Dre

s (0

...2B -1

)

f(Vin(k))

vin

h

CHref(q)

CH(j)CH(j-m)

CH(j+m)

vq

H*

Place counter array in “red channel“After n samples, find “red“ count that is closest to CHref (q) ⇒ Distance Estimator H*

Page 24: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

LMS Loop

Vini Vresi A/DD'resDresi

Σ-

e(D'res)

p3

STAGE i

DistanceEstimation

Σ

H1 H2

Accum. µ

-

b

Accumulator forces average ∆h = H2-H1 to zeroStraightforward extension to track offset and gain errors

Page 25: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Die Photograph

“Proof of concept“: 12bit, 75MHz ADC, 0.35µmRe-used commercial part (Analog Devices AD9235)Digital post-processor off-chip (FPGA)

REFERENCEAND BIAS

PIPELINEBACKEND

STAGE1SHA

CLK

LOGIC

Page 26: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Measurement Results: Linearity

0 1000 2000 3000 4000-1

-0.5

0

0.5

1(b) with calibration

C d

0 1000 2000 3000 4000

-10

0

10

(a) without calibration

Code

INL

[LSB

]

RNG=0RNG=1

0 1000 2000 3000 4000

-10

0

10

(b) with calibration

Code

INL

[LSB

]

Page 27: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Stage1 Power Savings

0

10

20

30

40

50

Power [mW]

AD9235 Prototype

Sub-A/DBiasingAmplifierPost-Processor*

(*simulated, 0.35µm)

Incl. Post-Processor

Excl. Post-Processor

-52%-74%

-36%-48%

Stage1 PowerAmplifier Power

Page 28: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Digital Post-Processor

Area=1.4mm2 (18%) Power=10.5mW (3.6%)

• 8400 Gates, 64 bytes RAM, 64kBit ROM• Implementation in 0.35µm technology:

Pipelined ADC(7.9 mm2)

Post-Processor0

10

20

30

40

AmplifierSavings

Post-Processor

Pow

er [m

W]

Page 29: Digitally Assisted Analog Circuits · 2015. 7. 29. · Boris Murmann Department of Electrical Engineering University of California, Berkeley „Moore‘s Law“ for Digital Circuits

Conclusions

Digital versus analog scalingo Digital circuit performance improves faster than analog

o Digital circuits benefit from scaling

o Voltage scaling jeopardizes analog circuit feasibility

Digitally assisted analog circuitso Reduced sensitivity to analog imperfections

o Compatibility with fine-line CMOS

o Benefit from technology scaling

Digitally assisted ADCo Open-loop interstage amplification

o ~50% amplifier power reduction

o Advantages increase at reduced feature size