DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer •...

70
DDC Sequencing and Redundancy

Transcript of DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer •...

Page 1: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

DDC  Sequencing  and  Redundancy  

Page 2: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Presenter  

Page 3: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Importance  of  sequencing  •  Essen%al  piece  to  designing  and  delivering  a  successful  project  •  Defines  how  disparate  components  interact  to  make  up  a  ‘system’  

•  The  fundamentals  to  sequencing  •  Mechanical  designers  intent  •  How  it  should  operate    •  How  to  control  to  meet  both  

•  Simplicity  is  key  •  Clear,  concise  and  complete  

•  Overview  of  process  •  Analyze  mechanical  design  •  Outline  SOO  •  Fill  in  details  •  Op%mize  system  

Sequencing  

Page 4: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Systema@c  approach  to  developing  SOO’s.  •  Map  out  en%re  system,  compartmentalize  components  if  possible,  

analyze  system  on  a  component  level  •  Define  instrumenta%on  on  a  component  level  •  Develop  I/O  list  for  components  including  hardwired  points  and  data  

connec%ons  •  Define  Instrumenta%on  on  the  system  level  •  Develop  I/O  list  for  system  •  Iden%fy  set  points,  alarms,  schedules  and  trends  

Sequencing  

Page 5: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Series  water-­‐side  economizer  

•  Primary-­‐secondary  chilled  water  pumping  

•  Variable  speed  condenser  water  pumping  

•  Dual  piping  loops  

Example  System  –  Chilled  Water  Plant  

Page 6: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Systema%c  approach  to  developing  SOO’s.  •  Map  out  en@re  system,  compartmentalize  components  if  possible,  

analyze  system  on  a  component  level  •  Define  instrumenta%on  on  a  component  level  •  Develop  I/O  list  for  components  including  hardwired  points  and  data  

connec%ons  •  Define  Instrumenta%on  on  the  system  level  •  Develop  I/O  list  for  system  •  Iden%fy  set  points,  alarms,  schedules  and  trends  

Sequencing  

Page 7: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Define  system  by  it’s  disparate  components  

•  N+1  component  redundancy  

•  One-­‐to-­‐one  rela%onships  

Map  Out  En@re  System  

Page 8: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Compartmentalized  Components  

•  Compartmentalize  system  as  best  as  possible.  

•  Create  “Line-­‐ups”  of  equipment  

Page 9: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Chiller  Plant  System  –  Component  Level  

•  Break  down  system  to  the  individual  component  level  

Page 10: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Systema%c  approach  to  developing  SOO’s.  •  Map  out  en%re  system,  compartmentalize  components  if  possible,  

analyze  system  on  a  component  level  •  Define  instrumenta@on  on  a  component  level  •  Develop  I/O  list  for  components  including  hardwired  points  and  data  

connec%ons  •  Define  Instrumenta%on  on  the  system  level  •  Develop  I/O  list  for  system  •  Iden%fy  set  points,  alarms,  schedules  and  trends  

Sequencing  

Page 11: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Component  Level  –  Defining  Instrumenta@on  

•  As  laid  out  by  the  mechanical  designer  

•  What  instrumenta%on  is  required  to  meet  intent  and  opera%on?  •  Enable/Disable  

Page 12: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Component  Level  –  Defining  Instrumenta@on  

•  Unit  Mounted  Controller  

•  What  instrumenta%on  is  required  to  meet  intent  and  opera%on?  •  Enable/Disable  

Page 13: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Component  Level  –  Defining  Instrumenta@on  

•  Unit  Mounted  Controller  

•  Shut-­‐off/Isola%on  Valves  

•  What  instrumenta%on  is  required  to  meet  intent  and  opera%on?  •  Enable/Disable  

Page 14: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Component  Level  –  Defining  Instrumenta@on  

•  What  instrumenta%on  is  required  to  meet  intent  and  opera%on?  •  Enable/Disable  •  Capacity  Control  

•  Unit  Mounted  Controller  

•  Shut-­‐off/Isola%on  Valves  

Page 15: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Component  Level  –  Defining  Instrumenta@on  

•  Unit  Mounted  Controller  

•  Shut-­‐off/Isola%on  Valves  

•  Temperature  Sensor  

•  What  instrumenta%on  is  required  to  meet  intent  and  opera%on?  •  Enable/Disable  •  Capacity  Control  

Page 16: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Unit  Mounted  Controller  

•  Shut-­‐off/Isola%on  Valves  

•  Temperature  Sensor  

Component  Level  –  Defining  Instrumenta@on  

•  What  instrumenta%on  is  required  to  meet  intent  and  opera%on?  •  Enable/Disable  •  Capacity  Control  •  Opera%ng  Restraints  

Page 17: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Unit  Mounted  Controller  

•  Shut-­‐off/Isola%on  Valves  

•  Temperature  Sensor  

•  Head  Pressure  Control  

Component  Level  –  Defining  Instrumenta@on  

•  What  instrumenta%on  is  required  to  meet  intent  and  opera%on?  •  Enable/Disable  •  Capacity  Control  •  Opera%ng  Restraints  

Page 18: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Unit  Mounted  Controller  

•  Shut-­‐off/Isola%on  Valves  

•  Temperature  Sensor  

•  Head  Pressure  Control  

Component  Level  –  Defining  Instrumenta@on  

•  What  instrumenta%on  is  required  to  meet  intent  and  opera%on?  •  Enable/Disable  •  Capacity  Control  •  Opera%ng  Restraints  •  Op%miza%on  

Page 19: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Unit  Mounted  Controller  

•  Shut-­‐off/Isola%on  Valves  

•  Temperature  Sensor  

•  Head  Pressure  Control  

•  Addi%onal  Sensors  

Component  Level  –  Defining  Instrumenta@on  

•  What  instrumenta%on  is  required  to  meet  intent  and  opera%on?  •  Enable/Disable  •  Capacity  Control  •  Opera%ng  Restraints  •  Op%miza%on  

Page 20: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Systema%c  approach  to  developing  SOO’s.  •  Map  out  en%re  system,  compartmentalize  components  if  possible,  

analyze  system  on  a  component  level  •  Define  instrumenta%on  on  a  component  level  •  Develop  I/O  list  for  components  including  hardwired  points  and  data  

connec@ons  •  Define  Instrumenta%on  on  the  system  level  •  Develop  I/O  list  for  system  •  Iden%fy  set  points,  alarms,  schedules  and  trends  

Sequencing  

Page 21: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Develop  I/O  List  for  Components  

Page 22: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Develop  I/O  List  for  Components  

Page 23: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Repeat  instrumenta@on  and  I/O  for  other  components  

•  Cooling  Tower  

•  Condenser  Water  Pump  

•  Primary  Chilled  Water  Pump  

•  Secondary  Chilled  Water  Pump  

Page 24: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Systema%c  approach  to  developing  SOO’s.  •  Map  out  en%re  system,  compartmentalize  components  if  possible,  

analyze  system  on  a  component  level  •  Define  instrumenta%on  on  a  component  level  •  Develop  I/O  list  for  components  including  hardwired  points  and  data  

connec%ons  •  Define  Instrumenta@on  on  the  system  level  •  Develop  I/O  list  for  system  •  Iden%fy  set  points,  alarms,  schedules  and  trends  

Sequencing  

Page 25: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  How  do  the  disparate  components  interact  with  the  system?  

System  Level  –  Defining  Instrumenta@on  

Page 26: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  System  Valves  

System  Level  –  Defining  Instrumenta@on  

Page 27: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  System  Valves  

•  Flow  Meters  

System  Level  –  Defining  Instrumenta@on  

Page 28: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  System  Valves  

•  Flow  Meters  

•  System  Temp  Sensors  

System  Level  –  Defining  Instrumenta@on  

Page 29: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  System  Valves  

•  Flow  Meters  

•  System  Temp  Sensors  

•  Differen%al  Pressure  Sensors  

System  Level  –  Defining  Instrumenta@on  

Page 30: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Systema%c  approach  to  developing  SOO’s.  •  Map  out  en%re  system,  compartmentalize  components  if  possible,  

analyze  system  on  a  component  level  •  Define  instrumenta%on  on  a  component  level  •  Develop  I/O  list  for  components  including  hardwired  points  and  data  

connec%ons  •  Define  instrumenta%on  on  the  system  level  •  Develop  I/O  list  for  system  •  Iden%fy  set  points,  alarms,  schedules  and  trends  

Sequencing  

Page 31: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Develop  I/O  List  for  System  

Page 32: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Systema%c  approach  to  developing  SOO’s.  •  Map  out  en%re  system,  compartmentalize  components  if  possible,  

analyze  system  on  a  component  level  •  Define  instrumenta%on  on  a  component  level  •  Develop  I/O  list  for  components  including  hardwired  points  and  data  

connec%ons  •  Define  instrumenta%on  on  the  system  level  •  Develop  I/O  list  for  system  •  Iden@fy  set  points,  alarms,  schedules  and  trends  

Sequencing  

Page 33: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Avoid  exact  set  points,  baselines  are  recommended    •  Typically  done  by  Cx  agent  along  with  the  balancing  contractor  

•  Define  schedules  

•  Alarms  can  be  addressed  as  virtual  points  in  points  list  as  well  as  safe%es  that  typically  take  the  form  of  hardware  

•  Define  trends  

Iden@fy  Set  Points,  schedules,  alarms,  trends  

Page 34: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Understand  the  importance  of  sequencing  

•  Become  in%mate  with  the  fundamentals  of  the  design  

•  Define  your  systema%c  approach  to  developing  sequences  

•  Keep  it  simple!  

Sequencing  

Page 35: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Ques@ons?  

Page 36: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Where  and  why  redundancy  in  DDC  is  required  

•  Redundant  systems  within  a  facility  

•  DDC  System  Redundancies  

•  Redundant  Instrumenta%on  •  Redundancy  in  system  architecture    •  Physical  separa%on  of  installed  control  components  •  Dual  power  supplies  with  separate  feeds  to  each  control  panel  •  Network  Redundancy  •  Separate  supervisory  networks    •  Redundant  Servers  

•  PLC  Systems  

Redundancy  in  DDC  

Page 37: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Where:    

•  Mission  Cri%cal  Facili%es  (MCF)  

•  What  it  means  to  be  a  ‘Mission  Cri%cal’  •  Facili%es  that  require  100%  up%me  24  hours  a  day  7  days  a  week  for  

normal  business  opera%on  

•  Redundancy  provides  maximum  reliability  but  also  generates  maximum  cost  and  complexity  

•  Examples:  Data  Centers,  Hospitals,  Laboratories  

Redundancy  in  DDC  

Page 38: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Why:  

•  Enables  con%nuous  opera%on  during  cri%cal  system  failures  

•  Meets  owner’s  requirements  for  minimized  down%me    •  Designing  for  redundancy  in  all  building  systems,  including  the  DDC  

system  may  be  required    

•  Site-­‐wide  control  coordina%on  •  Example  coordina%on  types:  Temperature  Control  ,  Power  restart,  

Load  Shedding,  Humidity  Control,  Pressuriza%on    

Redundancy  in  DDC  

Page 39: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Redundant  Systems  

Page 40: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  N+1  component  redundancy  

•  Dual  piping  loops  

Redundant  Systems  

Page 41: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  DDC  system  redundancy  isn’t  addressed  by  Up%me  

•  Redundant  mechanical  equipment  s%ll  needs  DDC  to  func%on  properly  

•  Fault  Tolerant  Control  Systems  –  any  single  controller  or  communica%on  network  

•  Redundancy  in  DDC  is  necessary  to  ensure  any  malfunc%on  or  loss  of  power  within  the  control  system  will  not  affect  cri%cal  equipment  opera%on  

Redundant  Systems  

Page 42: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Redundant  Instrumenta@on  

•  Redundancy  in  system  architecture    

•  Physical  separa%on  of  installed  control  components  

•  Dual  power  supplies  with  separate  feeds  to  each  control  panel  

•  Network  Redundancy  

•  Separate  supervisory  networks    

•  Redundant  Servers  

DDC  System  Redundancies  

Page 43: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  System  Valves  

•  Flow  Meters  

•  System  Temp  Sensors  

•  Differen%al  Pressure  Sensors  

Redundant  Instrumenta@on  

Page 44: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Redundant  Instrumenta%on  

•  Redundancy  in  system  architecture    

•  Physical  separa%on  of  installed  control  components  

•  Dual  power  supplies  with  separate  feeds  to  each  control  panel  

•  Network  Redundancy  

•  Separate  supervisory  networks    

•  Redundant  Servers  

DDC  System  Redundancies  

Page 45: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Redundancy  in  System  Architecture  

•  DDC  system  architecture  depends  on  the  make-­‐up  of  the  mechanical    and  electrical  systems  

•  DDC  system  architecture  designs  to  achieve  redundancy:  

•  Primary-­‐Redundant  Managers  (True  Primary/Redundant)    •  Distributed  Control  (Line-­‐Up  Configura%on)    •  Hybrid  (Line-­‐Up  Configura%on  with  PR  Managers)  

•  How  to  find  the  right  design  for  your  applica%on  

•  Compartmentalize  the  systems  as  best  as  possible  

Page 46: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Redundancy  in  System  Architecture  

•  Primary-­‐Redundant  Managers  (True  Primary/Redundant)    

Page 47: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Redundancy  in  System  Architecture  

•  Distributed  Control  (Line-­‐Up  Configura%on)    

Page 48: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Redundancy  in  System  Architecture  

•  Hybrid  (Line-­‐Up  Configura%on  with  PR  Managers)  

Page 49: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Redundant  Instrumenta%on  

•  Redundancy  in  system  architecture    

•  Physical  separa@on  of  installed  control  components  

•  Dual  power  supplies  with  separate  feeds  to  each  control  panel  

•  Network  Redundancy  

•  Separate  supervisory  networks    

•  Redundant  Servers  

DDC  System  Redundancies  

Page 50: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Physical  Separa@on  of  Components  

•  DDC  Controllers  

•  Variable  Frequency  Drives  

•  Redundant  Sensors  

•  Control  Valves  

•  Wiring  

Page 51: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Redundant  Instrumenta%on  

•  Redundancy  in  system  architecture    

•  Physical  separa%on  of  installed  control  components  

•  Power  redundancy  

•  Network  Redundancy  

•  Separate  supervisory  networks    

•  Redundant  Servers  

DDC  System  Redundancies  

Page 52: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Power  Redundancy  

•  Control  panels  need  to  be  powered  at  all  %mes  to  properly  func%on  

•  Examples:  •  UPS  power  from  two  sources  with  a  local  ATS  •  UPS  power  from  electrical  system  with  back-­‐up  generator  and  local  UPS  

Page 53: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Redundant  Instrumenta%on  

•  Redundancy  in  system  architecture    

•  Physical  separa%on  of  installed  control  components  

•  Dual  power  supplies  with  separate  feeds  to  each  control  panel  

•  Network  Redundancy  

•  Separate  supervisory  networks    

•  Redundant  Servers  

DDC  System  Redundancies  

Page 54: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Network  Redundancy  

•  Concept  of  ‘self-­‐healing’  communica%on  busses  

•  Redundant  topologies  (network’s  virtual  shape  or  structure)    

•  Ethernet  Topologies  •  Bus  Topology  •  Classic  Star  Topology  •  Tree  Topology  (combina%on  of  bus  and  star)  •  Ring  Topology  

•  Redundancy  through  ring  topology  is  becoming  the  most  popular  for  the  BMS  market  

•  Wireless  Mesh  

Page 55: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Network  Redundancy  

•  Bus  Topology  •  Uses  a  common  backbone  to  connect  all  devices.  Failure  of  one  node  or  

link  affects  the  rest  of  network  •  Works  best  with  a  limited  number  of  devices  due  to  the  broadcast  traffic  

it  generates  

Page 56: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Network  Redundancy  

•  Star  Topology  •  Most  common  network  setup    •  If  the  central  hub  fails,  all  devices  connected  to  that  hub  would  be  

disconnected  •  Performance  of  the  network  is  dependent  on  the  capacity  of  central  hub  

(router  or  switch)  

Page 57: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Network  Redundancy  

•  Tree  Topology  •  Integrates  mul%ple  star  topologies  together  onto  a  bus.  •  This  hybrid  approach  supports  future  expandability  of  the  network  much  

beier  than  a  bus  

Page 58: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Network  Redundancy  

•  Ring  Topology  –  N+1  •  U%lizing  industrial  switches  •  Redundant  rings  is  becoming  the  most  popular  for  the  BMS  market  •  Ethernet  rings  will  cause  broadcast  storms  and  can  ul%mately  cause  the  

network  to  stop  working  •  How  to  fix  this?  -­‐  Spanning  Tree  Protocol  

Page 59: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Network  Redundancy  

•  Spanning  Tree  Protocol  (STP)  

•  Although  two  cable  paths  exist,  messages  can  only  travel  in  one  direc%on  

•  STP  solves  problems  in  a  ring  topology  including  broadcast  storms  

•  STP  does  for  an  Ethernet  network  what  a  router  does  for  an  IP  network  

•  Typically  provides  network  recovery  %mes  of  30-­‐60  seconds  

•  Rapid  Spanning  Tree  Protocol  (RSTP)  

•  Provides  faster  spanning  tree  convergence  aler  a  topology  change  

Page 60: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Network  Redundancy  

•  Wireless  Mesh  Topology  •  Can  take  any  of  several  possible  paths  from  source  to  des%na%on.  •  Devices  are  connected  with  many  redundant  interconnec%ons  between  

network  nodes  •  In  a  true  mesh  topology  every  node  has  a  connec%on  to  every  other  node  

in  the  network.  

Page 61: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Network  Redundancy  

•  The  most  common  problems  in  any  fieldbus  or  high  speed  digital  communica%ons  system  are:  

•  Cabling  and  wiring  faults:  •  Reflec%ons,  interference,  cable  rou%ng  and  grounding  faults  etc.  

•  Poor  design  and  installa%on:  •  Lack  of  awareness  of  avoidable  issues  at  design  stage,  poor  rou%ng,  

layout,  untrained  installers,  inaccurate  or  insufficient  system  documenta%on  

•  Device  and  wiring  failures:  •  Rare  but  can  lead  to  communica%ons  faults  or  peripheral  faults  

Page 62: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Redundant  Instrumenta%on  

•  Redundancy  in  system  architecture    

•  Physical  separa%on  of  installed  control  components  

•  Dual  power  supplies  with  separate  feeds  to  each  control  panel  

•  Network  Redundancy  

•  Separate  supervisory  networks    

•  Redundant  Servers  

DDC  System  Redundancies  

Page 63: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Separate  Supervisory  Networks  

•  SNMP  monitoring  on  equipment  back  to  a  separate  owner  network  and  server  

•  Other  secondary  monitoring  methods  such  as  web  based  services  

Page 64: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Redundant  Instrumenta%on  

•  Redundancy  in  system  architecture    

•  Physical  separa%on  of  installed  control  components  

•  Dual  power  supplies  with  separate  feeds  to  each  control  panel  

•  Network  Redundancy  

•  Separate  supervisory  networks    

•  Redundant  Servers  

DDC  System  Redundancies  

Page 65: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Redundant  Servers  

•  Servers  are  also  at  risk  for  being  a  single  point  of  failure  

•  Server  redundancy  minimizes  down%me  caused  by:  

•  Planned  Maintenance  •  Hardware  Failure  

•  Redundancy  Methods  

•  Two  separate  servers  –passive  synchroniza%on  rou%ne  •  Two  separate  servers  –  with  an  ac%ve  synchroniza%on  rou%ne  •  Clustering  and/or  VM’s  (Virtual  Machines)  

Page 66: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Redundant  Servers  

•  Two  separate  servers  –  would  have  some  manual  back  up  and  a  passive  synchroniza%on  rou%ne  

•  Two  separate  servers  –  with  an  ac%ve  synchroniza%on  rou%ne  

•  Two  computers  using  separate  network  between  them  that  buffers  and  replicates  the  data  going  into  one  machine  

•  Poten%ally  lose  the  buffer  as  data  is  being  passed  between  the  two.  

Page 67: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Redundant  Servers  

•  Clustering  and/or  VM’s  (Virtual  Machines)  

•  Two  different  things  but  from  controls  perspec%ve  doesn’t  maier  

•  Server  Clustering  –  combining  two  or  more  servers  that  are  interconnected  to  appear  as  one  

•  Load  balanced  clustering/fail  over  clustering  

•  Need  clustering  solware  that  monitors  the  ac%ve  nodes  in  a  server  cluster  and  transi%ons  a  failed  server’s  workload  to  the  secondary  node  

•  Virtual  Machines  –  maintain  an  exact  mirror  copy  on  a  second  physical  server  

Page 68: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

PLC  Systems  

•  PLC  systems  are  more  robust,  have  higher  performance,  faster  networks  and  more  flexible  programming  capability  

•  PLC’s  have  the  capability  to  have  Hot  Standby  Processors  (no  PID  tuning  required):    the  scans  of  the  primary  and  standby  controllers  are  synchronized  

•  Redundant  Power  Supplies  –  separate  power  supplies  can  be  provided  for  PLC  controllers.  

•  Redundant  Networks  

•  Difference  in  costs  between  PLC  and  DDC  control  -­‐  up  to  5:1  cost  

Page 69: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

•  Where  and  why  redundancy  in  DDC  is  required  

•  Redundant  systems  within  a  facility  

•  DDC  System  Redundancies  

•  Redundant  Instrumenta%on  •  Redundancy  in  system  architecture    •  Physical  separa%on  of  installed  control  components  •  Dual  power  supplies  with  separate  feeds  to  each  control  panel  •  Network  Redundancy  •  Separate  supervisory  networks    •  Redundant  Servers  

•  PLC  Systems  

Redundancy  in  DDC  

Page 70: DDCSequencingand# Redundancy# - ASHRAE · • Serieswaterside(economizer • PrimaryJsecondary(chilledwater pumping(• Variable(speed(condenser(water(pumping(• Dual(piping(loops

Ques@ons?