Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

38
Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 20 01

Transcript of Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Page 1: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Daubechies Wavelets

A first look

Ref: Walker (Ch.2)

Jyun-Ming Chen, Spring 2001

Page 2: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Introduction• A family of wavelet transforms disc

overed by Ingrid Daubechies

• Concepts similar to Haar (trend and fluctuation)

• Differs in how scaling functions and wavelets are defined– longer supports

Wavelets are building blocks that can quickly decorrelate data.

Page 3: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Haar Wavelets Revisited

• The elements in the synthesis and analysis matrices are

2

121

2

1,

2

121

2

1

2

1

2

2

1

2

1

2 Q ,P

Page 4: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Haar Revisited

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

1

1

1

1

1

1

1

1

SynthesisFilter P3

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

1

1

1

1

1

1

1

1

SynthesisFilter Q3

21V

21W

Page 5: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

In Other Words

482

1

2

1

2

1

2

1

813

83

73

63

53

43

33

23

1412

42

32

22

1

VVVVVVVVVVVV

322

311

21 VVV

4,,1,322

3121

2 mVVV mmm

4,,1,322

3121

2 mVVW mmm

Page 6: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

How we got the numbers

• Orthonormal; also lead to energy conservation

• Averaging

• Orthogonality

• Differencing

122

21

021

1221 ,

2

121

2

1,

2

121

122

21

221

22

22

2

then

if

21

2122112

1

21

fff

fffVf

fff

022

then

if

21

2122112

1

21

ff

fffWf

fff

022112

12

1 WV

Page 7: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

How we got the numbers (cont)

8

7

6

5

4

3

2

1

21

21

21

21

21

21

21

21

4

4

3

3

2

2

1

1

f

f

f

f

f

f

f

f

d

c

d

c

d

c

d

c

fDy OR,

fDDffDDfyyddcc )()( TTTTT24

21

24

21

IDDffyy TTT re therefo,

:onConservatiEnergy

8

21

21

21

21

21

21

21

21

22

1

22

1

212

1

22

11

I

1 and 1

Hence22

21

22

21

Page 8: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Daubechies Wavelets• How they look like:

– Translated copy

– dilation

Scaling functions Wavelets

Page 9: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

1n n n n n

nk

nNk VV :around-Wrap

Daub4 Scaling Functions (n-1 level)

• Obtained from natural basis

• (n-1) level Scaling functions– wrap around at end due to

periodicity

• Each (n-1) level function– Support: 4

– Translation: 2

• Trend: average of 4 values

1n

1n

1n

1n

1n

nN 2

c j

Page 10: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Daub4 Scaling Function (n-2 level)

• Obtained from n-1 level scaling functions

• Each (n-2) scaling function– Support: 10

– Translation: 4

• Trend: average of 10 values

• This extends to lower levels

2n 1n 1n1n 1n

112/ VV :around-Wrap

nk

nNk

1j j j j j

jk

j

k j VV :around-Wrap2

Page 11: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Daub4 Wavelets

• Similar “wrap-around”• Obtained from natural

basis• Support/translation:

– Same as scaling functions

• Extends to lower-levels

1n

nN 2

1n

1n

1n

1n

1j j j j j

jk

j

k j VV :around-Wrap2

Page 12: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Numbers of Scaling Function and Wavelets (Daub4)

Page 13: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Property of Daub4

• If a signal f is (approximately) linear over the support of a Daub4 wavelet, then the corresponding fluctuation value is (approximately) zero.

• True for functions that have a continuous 2nd derivative

xconstxfconstxf )()()(

Page 14: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Property of Daub4 (cont)

Page 15: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

MRA

)(d)(c)(c

)(d)(cf112

22

xxx

xx

)(c1 x 1 1 1 1 1 1

1 1 1 1 1 1)(d1 x

nn- Nxxx 2 where)(d)(d)(cf 100

Page 16: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Example (Daub4) 887654321 Nfffffffff

000043212

1 V

0000 43212

2 V

43212

3 0000 V

21432

4 0000 V

000043212

1 W

0000 43212

2 W

43212

3 0000 W

21432

4 0000 W

244

233

222

211

11 VVVVV

224

213

242

231

12 VVVVV

244

233

222

211

11 VVVVW

224

213

242

231

12 VVVVW

124

113

122

111

01 VVVVV

124

113

122

111

01 VVVVW

24

24

23

23

22

22

21

21

12

12

11

11

01

01

01

01

)()()()(

)()()()(

WWfWWfWWfWWf

WWfWWfWWfVVff

Page 17: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

More on Scaling Functions (Daub4, N=8)

338

37

36

35

34

33

32

31

24

23

22

21

24

13

24

13

24

13

42

31

24

13

24

13

24

13

42

31

P

Or,

1

1

1

1

1

1

1

1

VVVVVVVVVVVV

SynthesisFilter P3

Page 18: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Scaling Function (Daub4, N=16)

338

37

36

35

34

33

32

31

24

23

22

21

24

13

24

13

24

13

42

31

24

13

24

13

24

13

24

13

24

13

24

13

24

13

42

31

44

43

4234

4133

322444

312343

22144234

21134133

123224

113123

2214

2113

12

11

P

Or,

VVVVVVVVVVVV

SynthesisFilter P3

Page 19: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Scaling Functions (Daub4)

24

13

42

31

24

23

22

21

12

11

VVVVVV

SynthesisFilter P2

4

3

2

1

12

11

12

11

01

VVVVV

SynthesisFilter P1

Page 20: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

More on Wavelets (Daub4)

24

13

24

13

24

13

42

31

38

37

36

35

34

33

32

31

24

23

22

21

VVVVVVVVWWWW

24

13

42

31

24

23

22

21

12

11

VVVVWW

SynthesisFilter Q2

4

3

2

1

12

11

12

11

01

VVVVW

SynthesisFilter Q1

SynthesisFilter Q3

Page 21: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Summary

Daub4 (N=32)

j=5 j=4 j=3 j=2In

general

N=2n

support 1 4 10 22 ?

translation 1 2 4 8 ?

jjj PVV 1 jjj QVW 1

Page 22: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Analysis and Synthesis

• There is another set of matrices that are related to the computation of analysis/decomposition coefficient

• In the Daubechies case, they are also the transpose of each other

• Later we’ll show that this is a property unique to orthogonal wavelets

Page 23: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Analysis and Synthesis

332

332

cBd

cAc

1d2d0d

0c2c 1cf

221

221

cBd

cAc

110

110

cBd

cAc

Page 24: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

MRA (Daub4)0c1c2c3c4c

5c6c7c8c

)(xf

Page 25: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Energy Compaction (Haar vs. Daub4)

Page 26: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

How we got the numbers

• Orthonormal; also lead to energy conservation

• Orthogonality

• Averaging

• Differencing– Constant

– Linear

04231 4 unknowns; 4 eqns

Page 27: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Supplemental

22average

then

if

4321443322112

1

4321

f

fffffVf

fffff

202ncorrelatioconst

then

if

4321443322112

1

4321

fffffWf

fffff

202ncorrelatiolinear

3210

then

3,2,, if

43214321

443322112

1

4321

sk

ffffWf

skfskfskfkf

Page 28: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Conservation of Energy

• Define

• Therefore (Exercise: verify)

Page 29: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Energy Conservation

• By definition:cc c

c c

c c

Page 30: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Orthogonal Wavelets

• By construction • Haar is also orthogonal

• Not all wavelets are orthogonal!– Semiorthogonal, Biorth

ogonal

Page 31: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Other Wavelets (Daub6)

nN 2

1n

1n

1n

1n

Page 32: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Daub6 (cont)

• Constraints

• If a signal f is (approximately) quadratic over the support of a Daub6 wavelet, then the corresponding fluctuation value is (approximately) zero.

Page 33: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

DaubJ• Constraints

• If a signal f is (approximately) equal to a polynomial of degree less than J/2 over the support of a DaubJ wavelet, then the corresponding fluctuation value is (approximately) zero.

Page 34: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Comparison (Daub20)

0c1c2c3c4c

5c6c7c8c

)(xf

Page 35: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Supplemental on Daubechies Wavelets

Page 36: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.
Page 37: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Coiflets

• Designed for maintaining a close match between the trend value and the original signal

• Named after the inventor: R. R. Coifman

Page 38: Daubechies Wavelets A first look Ref: Walker (Ch.2) Jyun-Ming Chen, Spring 2001.

Ex: Coif6