11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets...

57
279 11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ; es: I. Wavelets Orthonormal Bases of Compactly Supported Wavelets) Also: Y. , S. Mallat Meyer Outline: 1. Need for time-frequency localization 2. Orthonormal wavelet bases: examples

Transcript of 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets...

Page 1: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

279

11 Basics of Wavelets

Referenc Daubechies (Ten Lectures on ;es: I. WaveletsOrthonormal Bases of Compactly SupportedWavelets)

Also: Y. , S. MallatMeyer

Outline:

1. Need for time-frequency localization2. Orthonormal wavelet bases: examples

Page 2: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

280

3. Meyer wavelet4. Orthonormal wavelets and multiresolution analysis

Page 3: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

281

Signal:

fig 1

Page 4: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

282

Interested in of signal, locally in time.“frequency content”E.G., what is the frequency content in the interval [.5,.6]?

Standard techniques: write in Fourier series as sum ofsines and cosines: given function defined on Ò Pß PÓas above:

Page 5: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

283

0ÐBÑ œ

"

#+ + 8BÐ ÎPÑ , 8BÐ ÎPÑ! 8 8

8œ"

_" cos sin1 1

Ð+ ,8ß 8 constants)

+ œ .B 0ÐBÑ 8BÐ ÎPÑ"

P8

P

P( cos 1

, œ .B 0ÐBÑ 8B Ð ÎPÑ"

P8

P

P( sin 1

Page 6: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

284

(generally is complex-valued and are complex0 + ß ,8 8

numbers).

Page 7: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

285

THEORY OF FOURIER SERIES

Consider function defined on .0ÐBÑ Ò PßPÓ

Let square integrable functionsP ÒPßPÓ œ#

œ 0 À Ò PßPÓ Ä .B l0 ÐBÑl _ Ÿº (‚P

P#

where complex numbers. Then forms a‚ œ P#

Hilbert space.

Page 8: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

286

Basis for Hilbert space:

ŸÈ È" "

P P8BÐ ÎPÑß 8BÐ ÎPÑcos sin1 1

Rœ"

_

(together with the constant function )."Î #PÈThese vectors form an orthonormal basis for P#

(constants give length 1)."Î PÈ

Page 9: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

287

2. Complex form of Fourier series (see previouslecture):

Equivalent representation:

Can use Euler's formula . Can show/ œ , 3 ,3, cos sinsimilarly that the family

Page 10: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

288

ŸÈ ŸÈ È

"

#P/

œ 8BÐ ÎPÑ 8BÐ ÎPÑ" 3

#P #P

38BÐ ÎPÑ

8œ_

8œ_

_

1

cos 1 1sin

is orthonormal basis for P Þ#

Page 11: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

289

Function can be written0ÐBÑ

0ÐBÑ œ - ÐBÑ"8œ_

_

8 89

where

- œ 0 œ .B ÐBÑ0ÐBÑß8 8ß 8P

P  ¡ (9 9

and

98"

#P38BÐ ÎPÑÐBÑ œ 8 œ />2 basis element .È 1

Page 12: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

290

3. FOURIER TRANSFORM

Fourier transform is “Fourier series” on entire lineÐ _ß_Ñ:

Start with function on :0ÐBÑ Ð PßPÑ

Page 13: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

291

fig 2

Page 14: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

292

0ÐBÑ œ - ÐBÑ œ - / Î #P" " È8œ_ 8œ_

_ _

8 8 838BÐ ÎPÑ9 1

Let ; let ;0 1 ?0 18 œ 8 ÎP œ ÎP

let .-Ð Ñ œ - # Î #P0 1 ?08 8È Š ‹È

Page 15: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

293

Then:

Page 16: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

294

0ÐBÑ œ - / Î #P

œ Ð- Î #PÑ /

œ - Î #P /

œ - # Î #P / Þ"

#

œ -Ð Ñ/ Þ"

#

" È" È" Š ‹È

È " È Š ‹È

È "

8œ_

_

838BÐ ÎPÑ

8œ_

_

83B

8œ_

_

83B

8œ_

_

83B

8œ_

_

83B

1

0

0

0

0

8

8

8

8

?0 ?0

11 ?0 ?0

10 ?0

.

Page 17: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

295

Note as we have , andP Ä _ß Ä !?0

Page 18: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

296

-Ð Ñ œ - # Î #P

œ .B 0ÐBÑ ÐBÑ † # Î #P

œ .B 0ÐBÑ /#

#P

œ .B 0ÐBÑ /#

#PÐ ÎPÑ

œ .B 0ÐBÑ / Þ"

#

0 1 ?0

9 1 ?0

1

?0

1

1

1

8 8

P

P

8

P

P38BÐ ÎPÑ

P

P38BÐ ÎPÑ

P

P3B

È Š ‹È( È Š ‹È( È

( È

È (

1

1

08

Page 19: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

297

Now (informally) take the limit The intervalP Ä _Þbecomes

Ò Pß PÓ Ä Ð _ß_ÑÞ

We have

0ÐBÑ œ -Ð Ñ /"

#È "1

0 ?08œ_

_

83B08

Ò 0 01P Ä _

"

#-Ð Ñ/ .

fundamental thm. calculus È (_

_3B0

Page 20: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

298

[note this is like Riemann sum of calculus, which turnsinto integral].

Finally, from above

-Ð Ñ œ .B 0ÐBÑ /"

#0

1È (P

P3B0

Ò1P Ä _

"

#.B 0ÐBÑ /È (

_

_3B0.

Page 21: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

299

Thus, the informal arguments give that in the limit, wecan write

0ÐBÑ œ -Ð Ñ / ."

#È (1

0 0_

_3B0 ,

where (called of )-Ð Ñ 00 Fourier transformis

-Ð Ñ œ .B 0ÐBÑ /"

#0

1È (_

_3B0

(like Fourier series with sums replaced by integrals overthe real line).

Page 22: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

300

Note: can prove that writing in the above integral0ÐBÑform works for arbitrary .0 − P Ð _ß_Ñ#

Page 23: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

301

4. FREQUENCY CONTENT AND GIBBS PHENOMENONFor now work with Fourier series on . If ‘ 0ÐBÑ

discontinuous at 0, e.g. if B œ 0ÐBÑ œ ÀlBlB

-3 -2 -1 1 2 3

-2

-1.5

-1

-0.5

0.5

1

1.5

2

Page 24: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

302

first few partial sums of Fourier series are:5 terms of FS:

% B % $B % &B

$ &

sin sin sin1 1 1

-3 -2 -1 1 2 3

-2

-1.5

-1

-0.5

0.5

1

1.5

2

fig 3

Page 25: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

303

10 terms:

% B % $B % &B % "!B á

$ & "!

sin sin sin sin1 1 1 1

-3 -2 -1 1 2 3

-2

-1.5

-1

-0.5

0.5

1

1.5

2

Page 26: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

304

20 terms:

-3 -2 -1 1 2 3

-2

-1.5

-1

-0.5

0.5

1

1.5

2

Page 27: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

305

40 terms:

-3 -2 -1 1 2 3

-2

-1.5

-1

-0.5

0.5

1

1.5

2

fig 4

Page 28: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

306

Note there are larger errors appearing near “singularity"(discontinuity).

Specifically: “overshoot” of about 9% of the jump nearsingularity no matter how many terms we take!

In general, singularities (discontinuities in or0ÐBÑderivatives) cause high frequency components so thatFS

Page 29: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

307

0ÐBÑ œ - / Î #" È8œ_

_

838B 1

has large for large (bad for convergence).- 88

But notice that singularities are at only , butone pointcause all to be large.-8

Wavelets can deal with problem of localization ofsingularities, since they are localized.

Page 30: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

308

Advantages of FS:

ì “Frequency content" displayed in sizes of thecoefficients and .+ ,5 5

ì Easy to write derivatives of in terms of series (and0use to solve differential equations)

Fourier series are a natural for differentiation.

Equivalently sines and cosines are eigenvectors of thederivative operator ..

.B

#

#

Page 31: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

309

Disadvantages:

ì Usual Fourier transform or series not well-adapted fortime-frequency analysis (i.e., if high frequencies arethere, we have large and for . But what+ , 5 œ "!!5 5

part of the function has the high frequencies?Where ? Where ?B ! # B $

Page 32: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

310

Possible solution:

Sliding Fourier transform -

fig 5

Page 33: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

311

Thus first multiply by “window” , and0ÐBÑ 1ÐB 5B Ñ!look at Fourier series or take Fourier transform: lookat

( (P P

P P

45 ! 4534 B.B 0ÐBÑ 1 ÐBÑ œ .B 0ÐBÑ 1ÐB 5B Ñ/ ´ -

1P

Note however: functions not1 ÐBÑ œ 1ÐB 5B Ñ/45 !34 B1P

orthonormal like sines and cosines; do not form a nicebasis need something better.

Page 34: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

312

5. Wavelet transformTry: Wavelet transform - fix appropriate function .2ÐBÑ

Page 35: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

313

Then form all translations by integers, and all'scalings' by powers of 2:

2 ÐBÑ œ # 2Ð# B 5Ñ454Î# 4

( normalization constant)# œ4Î#

Page 36: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

314

fig. 6: and 2Ð#BÑ 2Ð%B $Ñ

Page 37: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

315

Let

- œ .B0ÐBÑ 2 ÐBÑÞ45 45(If chosen properly, then can get back from the :2 0 -45

0ÐBÑ œ - 2 ÐBÑ"4ß5

45 45

These new functions and coefficients are easier tomanage. Sometimes much better

Page 38: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

316

Advantages over windowed Fourier transform: ñ Coefficients are all real-45 ñ For high frequencies ( large), functions 4 2 Ð>Ñ45

have good localization (get thinner as ;4 Ä _above diagram). Thus short lived (i.e. of smallduration in ) high frequency components can beBseen from wavelet analysis, but not from windowedFourier transform.

Note has width of order , and is centered2 #454

about (see diagram earlier).5#4

Page 39: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

317

DISCRETE WAVELET EXPANSIONS:Take a basic function (the basic wavelet);2ÐBÑ

fig 7

Page 40: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

318

let

2 ÐBÑ œ # 2Ð# B 5ÑÞ454Î# 4

Form discrete wavelet coefficients:

- œ .B 0ÐBÑ 2 ÐBÑ ´ Ø0 ß 2 Ù45 45 45( .

Page 41: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

319

Questions:

ñ Do characterize ?- 045

ñ Can we expand in an expansion of the0 ?245

ñWhat properties must have for this to happen?2ñ How can we reconstruct in a numerically stable way0

from knowing ?-45

We will show: It is possible to find a function such that2the functions form such a perfect basis for245

functions on ‘ .

Page 42: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

320

That is are orthonormal:ß 245

  ¡ (2 ß 2 ´ 2 ÐBÑ2 ÐBÑ.B œ !45 4 5 45 4 5w w w w

unless and 4 œ 4 5 œ 5 Þw w

And any function can be represented by the :0ÐBÑ 245

0ÐBÑ œ - 2 ÐBÑÞ"4ß5

45 45

So: like Fourier series, but are better (e.g., non-zero245

only on a small sub-interval, i.e., compactly supported)

Page 43: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

321

Page 44: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

322

6. A SIMPLE EXAMPLE: HAAR WAVELETS

Motivation: suppose have basic function

9ÐBÑ œŸ B Ÿ

= basic “pixel".1 if 0 10 otherwise

We wish to build all other functions out of pixel andtranslates 9ÐB 5Ñ

Page 45: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

323

fig 8: and its translates9

Page 46: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

324

Linear combinations of the :9ÐB 5Ñ

0ÐBÑ œ # ÐBÑ $ ÐB "Ñ # ÐB #Ñ % ÐB $Ñ9 9 9 9

-1 1 2 3 4 5

-3

-2

-1

1

2

3

4

5

fig 9: linear combination of 9ÐB 5Ñ

Page 47: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

325

[Note that any function which is constant on the integerscan be written in such a form:]

Page 48: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

326

Given function , approximate by a linear0ÐBÑ 0ÐBÑcombination of :9ÐB 5Ñ

fig 10: approximation of using the pixel and its0ÐBÑ ÐBÑ9

translates.

Page 49: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

327

Define = all square integrable functions of the formZ!

1ÐBÑ œ + ÐB 5Ñ"5

59

= all square integrable functions which are constant oninteger

intervals

Page 50: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

328

fig 11: a function in Z!

Page 51: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

329

To get better approximations shrink the pixelß À

fig 12: , , and 9 9 9ÐBÑ Ð#BÑ Ð# BÑ#

Page 52: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

330

fig 13: approximation of by translates of .0ÐBÑ Ð#BÑ9

Page 53: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

331

Define

Z" = all square integrable functions of the form

1ÐBÑ œ + Ð#B 5Ñ "5

59

œ all square integrable functions which are constant on all half-integers

Page 54: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

332

-4 -2 2 4

2

4

6

fig 14: Function in Z"

Page 55: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

333

Define = sq. int. functionsZ#

1ÐBÑ œ + Ð# B 5Ñ"5

5#9

= sq. int. fns which are constant on quarter integerintervals

Page 56: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

334

-4 -2 2 4

-2

2

4

6

fig 15: function in Z#

Page 57: 11 Basics of Wavelets - BUmath.bu.edu/people/mkon/ma717/L11WaveletBasics.pdf11 Basics of Wavelets Referenc Daubechies (Ten Lectures on ;es: I. Wavelets Orthonormal Bases of Compactly

335

Generally define = all square integrable functions ofZ4

the form

1ÐBÑ œ + Ð# B 5Ñ"5

549

= all square integrable functions which are constant on#4 length intervals

[note if is negative the intervals are of length greater4than 1].