Crane Engineering Data2

40
1 CRANE 1 I 1 . Notes: Bdts that are too short for minimum thread lengths will be threaded full length and d8siited scr8ws. Bdts in the diameter range Ml6 to M27 indusi~, up to 12S mm length, may ahmmtivdy have a shorter thread length equal to ).SD but this option must be spe&illy mquasted. Engineering Data Met rii ISO METRIC BOLTS SCREWS AND NUTS GENERAL INFORMATION BLACK BOLTS Grade 4..6 Bolts and Grade 4 Nuts to BS 4 190: 1967 HlGH TENSILE BOLTS Grade 8.8 Bolts and Grade 8 Nuts to BS 3692: 1967 THREADS IS0 Coarse Pitch Metric Threads to BS 3643: 1963 DiMENSIONS HEXAGON BOLTS AND NUTS (MILLIMETRES) Size designation MS M6 MB IWO Ml2 a16 MZO- y24 M27 M30 ,q 5 19 Diameter of un- thr& shank bnax) 5.0 6.0 8.0 10.0 12.0 10.0 20.0 24.0 27.0 30.0 Width across flats bnax) 8.0 10.0 13.0 17.0 19.0 24.0 30.0 36.0 41.0 46.0 Width across comers bnmd -Depth of bolt head (nominal) 9.2 11.5 150 19.6 21.9 27.7 34,6 41.6 47.3 S3+1 - 3.5 4.0 5.5 7.0 8.0 10.0 13.0, l&O 17.0 19.0 Depth.of nut . (nominal) 4.0 5.0 6.5 8.0 10.0 13.0 l&O 19.0 22.0 24.0 LENGTH OF THREAD HEXAGON e’OLTS (MILLIMETRES) -- Up to and including 125 mm long 16 18 22 26 30 38 46 54 60 66 Over 125mm upto and includina 200 mm - ml 22 24 28 32 36 44 52 60 66 72 -k- overmChnmlong 35 37 41 45 49 57 65 73 79 85 OTHER STRENGTH GRADES AND THRFADS BS 3692 and BS 4190 together list 10 strength grades of bolts’and screws aid 6 grades df nuts. In the interests of variety reduction the UK bolt and nut indust& has decided to standard% on only two grades of bolts (4.6 and 8.8) and two grades of nuts (4 and 8). Furthermore, these grades of bolts, screws and nuts wi II be produced as standard items with Metric. Course Threads.only, to BS 3643. All other grades, also bolts, etc required with Metric Fine Thread, will be regarded as specials. - RECOMMENDED BOLT AND NUT STRENGTH GRADE COMBINATIONS Normally Grade 4 nuts will be used with Grade 4.6 bolts and Grade 8 nuts with Grade 8.8 bolts; It is however satisfactory to substitute a higher strength grade nut for a lower one. Thus it is acceptable to use a Grade 8 nut on a Grade 4.6 bolt. :- 80

description

Marine Pipe Size - KFELS

Transcript of Crane Engineering Data2

Page 1: Crane Engineering Data2

1 CRANE 1I 1

.

Notes:Bdts that are too short for minimumthread lengths will be threaded fulllength and d8siited scr8ws.

Bdts in the diameter range Ml6 toM27 indusi~, up to 12S mm length,may ahmmtivdy have a shorterthread length equal to ).SD but thisoption must be spe&illy mquasted.

Engineering Data

Metrii

ISO METRIC BOLTSSCREWS AND NUTSGENERAL INFORMATION

BLACK BOLTSGrade 4..6 Bolts and Grade 4 Nuts to BS 4 190: 1967

HlGH TENSILE BOLTSGrade 8.8 Bolts and Grade 8 Nuts to BS 3692: 1967

THREADSIS0 Coarse Pitch Metric Threads to BS 3643: 1963

DiMENSIONSHEXAGON BOLTS AND NUTS (MILLIMETRES)

Size designation MS M6 MB IWO Ml2 a16 MZO- y24 M27 M30 ,q5 19

Diameter of un-thr& shank bnax) 5.0 6.0 8.0 10.0 12.0 10.0 20.0 24.0 27.0 30.0

Width across flatsbnax) 8.0 10.0 13.0 17.0 19.0 24.0 30.0 36.0 41.0 46.0

Width acrosscomers bnmd

-Depth of bolt head(nominal)

9.2 11.5 150 19.6 21.9 27.7 34,6 41.6 47.3 S3+1-

3.5 4.0 5.5 7.0 8.0 10.0 13.0, l&O 17.0 19.0Depth.of nut .(nominal) 4.0 5.0 6.5 8.0 10.0 13.0 l&O 19.0 22.0 24.0

LENGTH OF THREADHEXAGON e’OLTS (MILLIMETRES)

- -Up to and including125 mm long 16 18 22 26 30 38 46 54 60 66

Over 125mm uptoand includina 200 mm

-ml 22 24 28 32 36 44 52 60 66 72 -k-

overmChnmlong 35 37 41 45 49 57 65 73 79 85

OTHER STRENGTH GRADES AND THRFADSBS 3692 and BS 4190 together list 10 strength grades of bolts’and screws aid 6grades df nuts. In the interests of variety reduction the UK bolt and nut indust&has decided to standard% on only two grades of bolts (4.6 and 8.8) and twogrades of nuts (4 and 8). Furthermore, these grades of bolts, screws and nutswi II be produced as standard items with Metric. Course Threads.only, to BS 3643.All other grades, also bolts, etc required with Metric Fine Thread, will beregarded as specials. -

RECOMMENDED BOLT AND NUT STRENGTH GRADE COMBINATIONSNormally Grade 4 nuts will be used with Grade 4.6 bolts and Grade 8 nuts withGrade 8.8 bolts; It is however satisfactory to substitute a higher strength gradenut for a lower one. Thus it is acceptable to use a Grade 8 nut on a Grade 4.6bolt.

:-

80

Page 2: Crane Engineering Data2

Engineering Data

Mte ric

BOLTS AND SCREWS

IS0 METRIC BOLTSSCREWS AND NUTS

DESIGN DATA

-Sia daslgn8tlo8l Ml5 M6M8 Ml0 M l 2 Ml6 M20 M24 w7 M30

Pitch mm 0.80 1.0 1.25Stress area mm 2 14.2 20.1 36.6

1.50 1.75 2.0 2.50 3.0 3.0 3.5058.0 84.3 157.0 245.0 353.0 459.0 561.0

.Pitch acea mm 4.480 5.350 7.188 9.026 10.863 14.701 18.376 22051 25.051 27.727Grade 4.6

Ultimate bad tf 0.568 0.804 1.464 232 3.37 628 9.80 1412 lb6 22.44. . kN 5.57 760 14.36 22.7 33.1 61.6 96.1 138.5 180.0 220.0

Roof lodd tf CL321 0.454 0.827 1.31 191 3.55 .5.54 7.98 10.40 12.70. . kN 815’ 4.45 8.11 12.8 10.7 34.8 54.3 78.2 102.0 124.0

Grada 8.8Ultimate load tf 1.136 1.608 2.928 4.64 6.74 12.56 19.60 28.24 36.72 44.06

Priof loA tf kN 0.826 11.14 15.76 1.170 28.72 2.130 45.50 3.38 4.91 66.14 9.14 1232 192.2 14.30 277.0 20.50 26.70 360.0 440.0 X2.70” . kN 8.10 11.47 20.69 33.1 48.1 8Q.6 149.2 201.0 262.0 320.0

1 tf (tonne fond = lWOkgf- 9.81 kN approx.I. 0.9842 UKtonf.-

Roof load stress.Grade 4.6 bob - 22.6 kgf/mmt

.

I# 8.0 ” 56.2 kgf/mm’*.

-

MECHANICAL PROPER11 ESBOLTS

Grade I &Btimaw tensile strength imin) Yield stress bnin)’ CkgF/mm’ N/mm’ UK tonf /in’ kgfhnm’ N/mm’ UK tonf/ina

4.6 I 40 392 25.4 24 235 15.28.8 80 785 50.8 64 49.6

NUTS

Proof bad stres 1 kgf/mm’ = 9.81 N/m& approxl v

kgf/mm’ N/mm’ UK tonf/ina = 0.6350 UK tonf/ina

4 I 40 392 25.48 80 785 50.8

EXPLANATION OF STRENGTH GRADE DESIGNATIONSBolts and screws. The first figure in the grade number is one tenth of theminimum ultimate tensile strength in kgf/mmt . The second figure is one tenthof the ratio between minimum yield stress and minimum tensile strength,expressed as a percentage. Mylt~lication of the two figures will give the yieldstress in kgf/mm’ or stress at permanent set limit for higher tensile bolts.

In the case of Grade 4.6 bolts and screws.4 xjzl0 gives the minimum tensile strength of 40 kgf/mm’4 x 6 gives the minimum yield stress of 24 kgf/mms

Nuts. The grade number is one tenth of the specified proof load stress in kgf/mm’The proof load stress corresponds to the minimum tensile strength of the highestgrade of bolt or screw with which the nut can be used.

In the case of Grade 4 nuts4 x 10 gives the proof load stress of 40 kgf/mm’

This grade of nut may therefore be used on bolts having a minimum tensileof not more than 40 kgf/mm’ .

81

Page 3: Crane Engineering Data2

Engineering Data

General

INTEGRAL FLANGESSUMMARY OF AVAl LABI LITY

-~-- - -FLANGE TABLE REFERENCE

Nom. sire BS4504 PN BS 10 TABLE ANSI CLASS

DN in 2.5 6 10 16 [ 25 40 L A D 1 E F H 125 1 150 300,1 0 iA 4 4 A15 3 A A A 4m f25 1 AI

32 1t ,40 13

BCI I

50 2 IA BC B

45!5g- A AB AB ABC ABC

I I ,- - I80 3

yoo 4 1125 5 4 I150 6 ’ I I

c AB ABC ABC ABC ABC L ’ .’175 72W8v t t-t 1 A BC BC

9. L25OlOf f + ABC ABC + I t 8C 4

.300 12 A dB .AB AC +C 9 i 8C C350144 * # AC AC # C- 15

400 16I I *

450 18 A X0 AB h AC C 1 A C Csoo2Oq *- 21 , f L6W1241A 1 AB 1 AB 1 AC 1 C 1 C 1 y 1 v 1 v 1 v I v A C CI I I I , I I I I7001271A 1 AB 1 AB 1 AC 1 C 1 C 1 A 1 AC 1 AC 1 AC

AC A C2 C2- - l t . , I800 - A AB AB AC C c- 33 4 A

\ 900 38 A AB A6 AC C C A c2 c2ibOO 39. A AB AB AC C C . I . . I I . t- 42 Ia- 1 I 1 1 I c3AA IA 1. A 1 C3 1.

AG- 45 IL

12W48A AB A0 C C C A.-- _ I I I’ I I I t14001541~ IA~IABI c 1 c 1 c ! Al C3 c3I .- Isol I I I I I Itlvl I 1 iA’I~I+t

I I I I

A0 C C C IA AC

AB C C A AC A’e . A

-A 1 A 1 A C_--- I I I- 84 A A‘

2200 x c 1 I ! 11 I24W96A A A A A’

2600 - 4 .- 108 A

r .

2800 - 1) I ’ I3000 120 A A

This table indicates theavailability (shown A, B or C -see material key below) ofintegral flange details inBS 4504, PN 2.5 to PN 40,BS 10 tables A to H, ANSI8 16.1 Class 125 and Classes 150and 300 from BS 1560 ANSI8 16.5 and 8 16.24, BS 3293,MSS SP 44 and API 605.Certain flange sizes shown in theabove listed standards which arenot in common use have baenexcluded from the table.

.

The availability of matingflanges for fixing to pipe mayextend to sizes larger than thoseindicated for integral flanges -reference should be made to therelevant standards for details ofthese sizes.

The flange dimensions i.n thecomparison.tables on pages85 to 99 only compare flangesin nominal sizes up to 18OOmm/72in. Where there are not exactequivalent sizes of metric andimperial flanges, the 8S4504flange is compared with the

. nearest equivalent BSlO orANSI size(s).

NOTES:

1. These sizes are included for ’convenience and do not carry adefinite rating.

2. Sizes in range above 24 into 36 in are included onlyin 8S3293, MSS SP 44 andAPI 605.

3. Sizes larger than 36 inafe contained only in API 605

CAST IRONCOPPER ALLOYCASTSTEEL - 83

Page 4: Crane Engineering Data2

- Engineering Data

General

INTEGRAL FLANGESPRESSURE/TEMPERATURE RATINGS

r1 PRESSURE (BAR GAUGE) AT TEMPERATURE (oC)llATERIAL RATING

ANSlclsss

-

1202.53.56

6.910I 3.812.11620.72534.53.5

6a91013.8I 3.41620.72529.334.640i.9I3A1610.920.72534.640E

22a21.75

z.58

6.99.013

13.119

13.11.9

44.87

9.8

11.314.617.520.724.6!5.5893.85e43.2!0.7!4.6l4.519.212.8-

- -

400 425 Eo 475

-

&7 T811.2 7.913 9 ’

10.2 6516.9 I t.721 142895 19.733 2330.7 u.5

3.56.9

5.610.312

17.2m28.8

4.7 3.7 2.8

912.41520.-

69.110

1x5

23c1 .9

26cl1.7

4.8 4.3

7.7 6.8

8.612.4 10.8

18.6 17.5

TYPE 0s 9STM EMPN2.5-

BS

Kblc0s1452Grade14

-10

ii2.53.56

8.91013.813.81620.72s34.5

2102

1.95

3.887.69.313

13.319.515.224.5827.810.610.312.415.819.321.426.427.86 .913.815-T13.610.7

3.6

6

10

16

ziron

6

10

16 3

25

125

sl=M9126Zlass 8

5.61 521 !3

12 ; 10 1 a4

28 21.7 17.43-t3.0 2.6 2.26 6 5

x73.54.5&29.0

10.213.415.7

22.823.5bs13aI 5.0

I 2.820.724.434-5B.812.3

285

46.9

710.3law.5

17.27.5s.s2.84.211.719.323.832.137to.7

4sTM3624HOY336

3.56a91013.815851620.72534.534.540b913.81619.620.72534.54051.1

6 .

10

16

25

4 0

6.616.61 55To 1 10 1 8.5

13.8(188111.412.4111.3110.615016 1 16 113.5

20.7 I 20.7 16.925 25 21.2

26.9 Q3.8 22.134.5 I 34.5 283

0s1504-161-480

ASTMA216GR WCI

CarbonStael

* L16 16 16

E I15.8 4.7 1416

25

40

150

300

20.7b.7 $I.7

l5.2M.4 143.8 143.3

Ratings given above are extracted from the rekvant ftangs standards and are for integralflanges in a selection of materials commonly used in the valve and fitting industry. Theseratings are subject to any limitations that may be imposed by individual product standardsand attention is drawn to the requirements for bolting materi& and gasket types whichshould be used in conjunction with the flanges/ratings deteiled. Information is given inthe rektvmt standardr .

1. Dimensions for BS.4504 flanges are stated in millijnetret only. Dimansions for 8S.10 and ANSI flanges are shown in inches (bracketed) withmetric equivalent to nearest uuhole millimetre.

2. Raised joint faces are applicable only to BS.4504 Cast Iron and Steel, BS.10 Table H and ANSI Classes 150 and 300 ‘Steel.3. Flange thicknesses ere inclusive of raised face height where this is giwm.4. All flengas are normally drilled unless otherwise specified with bolt holes drilled off centres.

Page 5: Crane Engineering Data2

FLANGE COMPARISON TABLES

NOMINAL SIZE 15mn (12 in.)

B O L TDIA.

INTEGRAL FLANGE DIMI ORILl NG

P.C.D.

STANDARDAND RATING THICKNESS RAISED FACEDiA.

80

95 .

95

95

95

HOLEDIA.

r

. I

GREYCASTIRON

12

14

14

16

95(3; 1

95(3Z 1

95(3: 1

114(451

89(3*)

95(3: 1

13($1

13(41

13($1

16(8,

90

105

105

105

105

m

-

14

t6

16

18

. I

f

to2v$

to24

(4)to2

(4)114

(44)

13(4,

13(4,

13(ii

16fg)

CASTSTEEL

16

16

16

18

18

18

to@I

10c#r

10(#I

13Cg,

I-

A

13($1

16($1

COPhERALLOY

DIA. HT.

40

45

45

45

4 5

YO.

4

4

4

4

4

4

4

4

4

4

4

-

10’ -

10

11

11

14

14

14

14

5 5

65

65

65

65

M 10

Ml2 .

M 12

M t2

M 12

PN 2.5 QI 6

PN 10

8s P N 1 645Q4

PN 25

PN 40

TAB.A&C 14(&I

67(23)

14(4)

67(291

14($1

67tzgl

17@

83(4)

571221

35(12)

35Il#

TABLE Ez

TABLE F

TABLE H

CLASS 15aANSI

CLASS 3Oi

2Ofni ( 34 in . )NQMUJAL S!ZE .

50

58

58

58

58

M 10

M 12

.M 12

M 12

M 12

65

.75

75

. 75

75

73(2i)

73(241

73(2i)

83(3; 1

13r*,

13($1

13(3,

16(a,

4 11

4 14

4 14

4 14

4 14

PN 2.5 816

PN 10

10

to

11

BS4504 PN 16

PN 25

PN40

TAB-A&l

$7(24

BS TA8LE E10

TAQLE F

TABLE H

9($1

t3(g)

43

43 (ig2

(32

(&I

CLASS 1sEANSI*,<.

CLASS 3oc

For notes applicable to these tables see page 8485

Page 6: Crane Engineering Data2

Engineering OataGCtWd

FLANGE COMPARISON TABLES

NOMINAL SIZE . 25mm (1in )INTEGRAL FLANGE DIM NSIONS

HOLEDIA.

ING

P.C.D.

STANDARDAN0 RATING

BOLTDIA.-DIA. THICKNESS RAISED FACE

DIA. HT.

60

68

68

6a

68

64(23)

5112)

51m

70

78

78

78

78

-

76(3)

I

L

64(29)

64(29

GREYCASTIRON.

CAST COPPEFiSTEEL ALLOY

No,

PN 2.5 & 6 too

115

115

115

115

14

16

16

18

11 75

14 85

14 85

14 85

14 85

M 10

18 to

18 11

18 13

PN 10 Ml2

4Fw PN t6 Ml2 ,

PN 25 Ml2

PN40 Ml2 ‘-r

14($I-

14Gb

17@I

17($I

16(51

16CS,

19@I

14 90

18 100

ta 100

18 loo .

18 ‘1QO

-10

10(31

to($1

14(4)

ttC&

17(I’-)

16

8(5)

8(51

to(a

1tC&l

10($1

15C&

114(44)

114(431

121(4Q

121(4t)

108M#l

108t4&

124(4;)

TAB.A& 0

tiTABLE E

10 TABLE F

TABLE H

CLASS 125

ANSI CLASS 150

CLASS 300

NOMINAL SIZE 32mm (l’&M 12 fPN 2.5 & 6 120

140

140

140

140

16

ta

la

20

-

.

18

ia

18

PN 10 M 16

M 16

M l 6 .

M 16

Bs4504 @N 16 10

1T

13

8(iI)

a(ii)

10($1

11I&,

PN 25

PN 40

TAB.A&D 13

13ii)

13(4,

17($1

16($1

16.(31

16@I

22tg,

13(*I

I21r4#1

121(49)

133!5@

133(541

117(43)

117(49)

133(5;)

87(a

87(6)

98(3$

9813;)

89(341

a9i31)

98 *(3g)

131;)

13(4,

16($1

16($1

13(4,

13Ii,

.I6(2)

TABLEEBsto GABLE F

TABLE H

CLASS 125

10(#I

16(5,

ANSI CLASS 150

CLASS 300

!Fi For notes applicable to these tables see page 84

Page 7: Crane Engineering Data2

FLANGE COMPARISON TABLES

NOMINAL S IZE 4&n (1’2 i.)r

BOLTDIA.

ING

P.C.D.

ORILl

HOLEDIA.

INTEGRAL FLANGE DIMI USIONS

RAISED FACE

’ ‘DIA. HT.

STANDARDAN0 RATING r THICKNESSDIA.

CAST COPPERSTEEL ALLOY

GREYCASTIRON

No.

too M 12

110 M 16

t10 M 16

110 M 16

110 M 16

16

ia

18

20

80

‘88

88

88

88

iN 2.5 & 6 130

150

150

150

150

3

3

3

3.

i-

14

18

18

18

18

14(a

14(ii)

17($1

17tg,

16(8,

1s. (5,

22($1

t8 11

18 13

18 15

PN 10

4E PN 16

PN 25

PN40 .

13(31 ‘,

98(3$

98a$,

105(4;)

105(4i)

98

iI3(3$f

i3QI114

(4s)

10

10(31

11 tg1

13Vi)

( 1 )

11t&J

17(%I

133(54)

133(5{)

140(56)

140(5%)

127(5)

127(5)

156(G)

16(21

16(5)

16cg,

22($1

14(3

TAB.A& C

2(6 1

- -

a3(3i)

13(4)

16tg,

TABLE EBS10 TABLE F

16(31TABLE H

13t#’

13 *(3)

--.

14(21

21(316

CLASS125

ANSI CLASS 1%

CLASS 300

73(2i)

73(2i)

2W

2,w

19(51

5Ornm, (2,)NOMINAL SIZE

140

165

165

165

165

16

m

m

22

14 110 M 12

18 125 M 16

18 125 M 16

18 125 M 16

18 125 M 16

90.

102

102

to2

102

4

4

4

4

4

4

4

4

4-4

4

8

3

3

3

3

3

2(&I

2C&b

2C&l

PN 2.5 & 6

m

m

m

11

13

15 .

PN 10Bs

4504 PN 16

PN 25

PN40

17 114 i6(# (44) t; 1

17 114 16(3) (43, (2)

17 127 16(“1I6 (5) cgr

17 127 t6tf& (51 ($1

19 121 . 16($1 (4;) ($1

19 121 16(#I (4;) (;I

19 127 16(0, (5) t@

- ~~14

(it)14

(%I16

(5)19

tg,.

TAB-A&U 152 5 ,(

(6)152

(6)165

(64,165

(6;)

10(;I

10(3,

ttc&g

13(3,

13(#

19($1

102(4)

TABLE EBs *10 TABLE F

TABLE H

CLASS 125 152(6)

152(6)

t65(6;)

16t;,

92(391

92(3%)

16(3,

22r:r

. ANSI CLASS 150

CLASS 300

*Table A thickness is 16 (8)For notes applicable to these tables see page 84

87

Page 8: Crane Engineering Data2

.-0

Enginewing Oata&nerd1 CRANE 1

FLANGE COMPARISON TABLES

65nrn (2’2 in)NOMtNAL SIZE

STANDARDAND RATING

INTEGRAL FLANGE. DIMENSIONS

HOLEDIA.

,ING .

P.C.D.

1.

THICKNESS RAISED FACE.

DIA. HT. No<

110

122

122

122

122

114(44)

lo5cs;,

lo5(43)

-

128 3

138 3

138 3-

138 3

138 3

127(5)

-4

8

8

8

8-

4

4

a

127(5)

127(5)

8-:4

4

8-

BOLTDIA.

I

- DIA.

GREY

IRONCAST COPPERSTEEL ALLOY

PN 2.5 & 6 160

185

185

185

185

16

20

20

24

14 130

18 1 4 5

18 145

18 145

18 145

M 12

18 13

22 15

22 17

PN io

Bs4506 PN 16

PN 25

M 16

PN 40

TAB.A&D 127(5)

127(51

146(551

146 @I140

(5$)140

(5;)149

(5#)

116)

11(6,

13(41

14($1

14(4)

21(“116

14(3)

14ci%)

16(4)

19(;I

17(21

25(1)

Bs TABLE E* 10

TABLE F

TABLE H

CLASS 125

ANSI CLASS 150

CLASS 300

17&I

mmrn (3iJ ’NOMINAL SIZE

PN 2.5 & 6 190 18

22

22

26

20

24

- 24

18 150

18 160

18 160

18 16o ‘-

18 16o

PN 10 2oil

Bs4504 PN 16

PN 25

PN 40

TAB-A&D

BSTABLE E

* 10 TABLE F

TABLE H

CLASS li5

ANSI CLASS 150

cxAss300

184(7iI

I84c-r+,

203(8)

203. (8)391

(74)191

17*1210

(8&

15

17

19

M 16

M l 6

M 16

M 16

14 13@ t+r-

14 13Gk, (4,

16 14(8 (a

22 16($1 . (5,

19(#I

29(1:

M 16

19+($1

19({I

19($1

29(l#

19(#I

146.(53,

146C5$

165(I#

165K$

152tb (6)

152(6)

168 *W

16($1

16tg1

16tg,

16(3,

16(8,

16

19

*Table A thickness is 17 (+)IFor notes applicable to these tables see page 84

Page 9: Crane Engineering Data2

Engineering Data

&fWfdi

FLANGECOMPARlSON TABLES

(4 >in.NOMINAL SIZE IOOmm-

- DRl&

.

No.-

4

8

3

8

0-

4

8

8

8-

8

8

8

HOLEDIA.

INTEGRAL FLANGE DIMENSIONS *I I. DIA. THICKNESS RAISED FACE tI

GREYCASTIRON

CAST COPPERSTEEL ALLOY

DIA. HT.

ING

P.C.D.

BOLTDIA.

148 3

158 3:

156 3

162 3

162 i

18

18 .

18

22

22

170

180 -

lqo .

190

wo

M 16

M 16

M‘l6

M20

M20

1 7@I

17(+a)

17(#I

17q#

19t@

19. ($1

22G)

178(7)

178(7)

191. (73

is3(741

191(7$)

-191(741

16(3,

16(3,

16(8,

16(2)

16(8)

-I

NOMINAL SIZE 125mm ( 5.)

STANDARDAND RATING

-20 19

2 4 21

2 4 23

210

220

220

235

235

18

24

s 24

28

PN 2.5 & 6

PN 10

Bs PN 16fy 4 5 0 4

DPN 25

PN40

TAB.A&t 17 16q&l ($1

17 16(,$I (9

19 17($1 I#

25. 19. (11 #ii)

216.(8#

216(IQ1

229(9)

229(9)

22919)

(9)254

(10)

--

.-

152(61

Bs TABLE E

10 TABLE F

TABLE H

CLASS 125

157@a

157@it)

ANSI cLASS 150

CLASS 300

-8

8

8

8

8-‘8

8

8

8-

8

8

8-

PN 2.5 & 6 w 18

18’

. 18

26

26

M 16

M l 6

M 16

M 2 4

M 2 4

178

186

* 10%

168

166

200

210

210

20

26

26

30

PN 16 2 5 0

t& PN 16

)iN 25 2 7 0

PN 40

TAB.A&C

2 7 0

BS TABLE E10 :a

TABLE F

TABLE H

CLASS 125

ANSI CLASS 150

CLASS 3oa

254 %I254

(10)279

(111279

11112 5 4

(1012 5 4

(la279

WI

22

26

26.

16($1 .

21*(#a

22(4,

25’(1)

210(8;l

210(88)

235(St)

(9$216

(841216

(841235

t&1

16. (21

19(21

1969

19c$

19($1

19(Z,

178(7)

*Table A thickness is 19 (36) and drilling it 4 holesFor notes applicable to these tables see page 84

89

Page 10: Crane Engineering Data2

FLANGE COMPARISON TABLES

15Omm (&) - .NOMINAL SIZE

BOLTDIA.

.INTEGRAL FLANGE .DfMf

RAISED FACE

DRII

HOLEDIA.

JNG

.

P.C.D.

STANDARDAND RATING DIP. THICKNESS

GREYCASTIRON

cm- COPPE RSTEEL ALLOY

DIA HT. No.

b

22

28

28

8

8

8

8

8-

8’

8

12

12

8

8

12

-8

13

12

8

8

12

12

-

PN 2.5-& 6 202

212

212

21tl

21Q

-

M 16

M20

Mm

M24

M 24

20

2 6

-26

34

18 225

22 240

22 240

26 250

26 250

265

285

285 ‘, 22

’ 26

PN 10

4z PN 16

PN 25

PN4Ci ’

TAB-A&C 17(8)

17 ’

22(#I

2kti,

(1)

279(111

279(11)

(12)279

(11)279

(11)318

(1231

21(#I

22. t;,

25~(11

3jIl#)

25(1)

17(?a

17(hi)

’22(a .

29 .;* (l&l-.

25(1)

37(l&g)

B sTABLE E

10 TABLE F

210tq,

216tB+)

218I%&,

TABLE f-f

CLASS 125 ’

21(B

30(l&I

2’t&1

2t&1

ANSI CLASS156

CfAss 300

NOMINAL SIZE 175.mm (7iJPN 16 28

34

24 .

28

32

22

26’

30

24 242

28

.19

i;,19

($122

($132

(ld)

248

2%19f)

270

‘280

295

ClO$

t1@1292

(11~1292

(11&l

M20

(11124

M 27

B s4504 PN 25

PN 40

19it,

19ii$

22(5,.

32(It)

22’($1

25 .(1)

25(1)

38t1#

TAB.A&C 16($1

19($1

19t{,

19($1

(121305 .’

(12)337

03;:337

,I1 3ifl

TABLE EBs10 TABLE F

TABLE H

*Table A drilling on size 6 is 4 holes, thickness on size 7 in is 21 (#IFor notes applicable to these tables see page 84

Page 11: Crane Engineering Data2

Engineering 5ata

Gad

FLANGE COMPARISON TABLES

NOMtNAt SU?E 200mm (8in.)T

BOLTDIA

N G

P&D.

DRILL

HOLEDIA

- -

1’8

22.

22

28

30

17(#I

22($1

2 2(3,

22

2 2(3,

; ($122

($125

(1’)

INTEGRAL FLANGE DlMENS,lONS.ITSTANDARDAND RATING THICKNESS I RAISED FACEI

IDIA.

CAST COPPERSTEEL ALLOY

GREYCASTIRON

8

‘8

12

‘12

12

8

8

12

12-

8

8

12

HT.

24

30

34

M 16

M20

M 20

M 24

M 27

268

PN25&6 22

-26

30

34

&

PN 10

PN 25

296-310

320

26

30 .27?3

285 .PN40

16cjr

.292(11&I

292 ;(114 1

324(125)

324(12;)

298m tr

298(1 l-$1

(131

(13@337’

(l*)368

(14#368

(14#343

(1331

(13#381

(15).

19@I

19(31

2 5(1)

32(1:)

TAB.A&C 22tg1

25(1)

29U&I

38(l#

2911;)

l-9(21

19($1

Bs TABLEE

10 TABLE F

19(;ITABLE H

19ct,CLASS 125

290;)

41(1~)

270 ’M@

270(lO#

ANSI CtAss 1%

CLASS 300

NOMINAL SIZE 25Omm(1oiJ.PN25&6 18

22

26

30

33

M 16

M 20

M 24

M 27

M30

is

3 2

3 8

375

* 395

406

425

450

24 ’

28

32

36

12

12

12

12

12

8

12

12

12

12

12

16

350.

. 355

370

385

(141

(14)381

(15)381

(15)

(144)387

(15$le

PN 10

BS4504 PN 16

PN 25

, PN 40

28

: 32

25(1)

22t#

22tg,

25(1)

250)

TAB-A&U 19(2,

19($1

22ci1

22(Ql

22cgr

22(%I

25(1)

25*(1)

?5I (1129

(l&I41

(12)30 .

U&l

.a:

(16)’

(16)432

(17)432

(17)

(16)

(16)445

t17*:

TABLE EBs 410 TABLE F

311(126)

324112;)

324(123

TABLE H

25(1)

25 .(11

29(1:)

CLASS 125

ANSI CLASS 1%

CLASS 300

*Table A thickness is 24 ( # 1For notes applicable to these tables see page 84

91

Page 12: Crane Engineering Data2

3OOmtn(12in)NOMlNAL SIZE

RAISED FACE

INTEGRAL FLANGE DIME DRILl

HOLEDIA.

YG

P.C.D.

395

4io

450

(16)408.

06)

(17$

(17&432

(171

(17)451

l17$1‘8

445

470

510

470l18#1

4701183

495llQ+l

495c19#

476(18$)

476(18$)

514f20&

STANDARDAND RATING

BOLTD?A.?I A. THICKNESS

DIA.GREYCAST*IRON

CAST COPPER.STEEL ALLOY

HT.

L4 .

4

4

4

4

Na

-12

12

12

16

16-12#

12

16

16

12

12

36

24

28

32

40

365

370

376

,395

410

22

22

28

30

33

M20’

M20

M 24

M 27

MiO

PN 2.5 & 6

-

28

34

42

PN 10

4=m PN 16 ’

PN 25

PN 40-

:

362W+

381(15)

381(151

22ff 1

250)

25(1)

25Ill

457(18)

457(18)

(19&

w#l

(19)

(191521

fm#

22tg,

25(1)

29t1;1

38 (l.#

27(l&l

22(3)

25(1)

29

38’(1))

(13,

-

32(1;)

51 :(2)

25’(1)

29(1;)

32clg)

44fit)

32. f1+1

TAB.A&D

8s TABLE E10

TABLE F-

TABLE H

CLASS 125

ANSI CLASS 150

C-300

25(1)

25(1)

32(l&i

35OmA14in)NOMINAL SIZE x----L .-0 .

M 2012

16

16

16

16

PN 2.5 4 6 26

30

36J’ 44

22

22

28

33

36

30

38

46

8s PN 10 M20 .4504

PN 16 M 24

M30

M 33

PN 25

PN401

12*

12

16

$6

22#

22I;,

25Ill

25(1)

25(1)

25(1)

29(1;)-

527f20$

527f2q

552t21$

552(215

1211

121)

(231

25 25(1) Ill

25 25. (1) 11)

32 32(I$ * cl+)

41' 41(15) Ilil

35(l#

54(2iI

2511)

25(1)

29It&I

29(1J)

29(13,

29(1#

32(I+)

TAB-A&r

BS10 TABLE E

TABLE F

TABLE H

CLASS 125 12

12

20

413(16tl

413(16;l

ANSI CLASS 150

CLASS 300

*Table A thickness is 24 (8) and 2

3 For notes applicable to these tables see page 84(1) on sizes 12 in & 14 in respectively; dritling is 8 holes on both sirsr

Page 13: Crane Engineering Data2

Engineering Data

Gmefc3l

NOMINAL SIZE 4OOmm(l&)TT JGI BOLT

DIA.

DRILLSIONS

RAISED FACE

INTEGRAL FLANGE QIME

TSTANDARDAND RATINGS DIA. THICKNESS .

HT.GREYCAST!RON

*’ D I A . P.C.D.

+

495 M 20

515 M 24

CASTSTEEL

COPPERALLOY

Qo. HOLEDIA.

.16 2 2

16 26

16 30

16 36

16 39

4

4

4

4

i-

2&Ii)

. 32

40

50

PN25&6 28

32

38

48

465

505

535

483(19)

PN 10 565

620

Bs4504

PN 16

PN 25

525 M27

ill33

5 8 4 -M36IPN40

’ TAB.A&C 25 25(11 (11

25 25(1) (1)

32 32(lfg U$l

44 44c1$ (13)

578(2231

578(2231

610 ’(24)610

(241597

(234)597

(234)

29’114)

32(l&I

35 *il2,

51(2)

37U&J

621f20$ I

552(21 f,

552(21$)

(219

t21t1571

1224 1

22f$J

25(1)

25(1)

25(11

2541)

Bs TABLE E10

TABLE F

TABLE H

2&

2I&)

37(16)

57(2;)

CLASS 125

470(18+1

470118$

ANSI CLASS 15032

(12)CLASS 300

’ .45Omm (18in)NOMlN&L SIZE

M 24

M 27

M33

M36

32

40 -

50

25

30

36

39

25(1)

25w

32cl;)

32(1;)

32(l$

32(141

35(131

20

20

20

20

12

16

20

20

16

16

24

532

550

555

585

610

34

42

50529

(ltjl29

(l#35

(l$)48

(l$

-26

t1#29

(14)35

(13)48

(19)

22(iJ

22(;J

29(1:)

29(13)

29(1;)

29(191

32(1;)

TAB.A&D 641I (2541

32’r1g

35II+)

38U$)

5442;)

40(l&I

533(21)

123)

(231610

(241610

(24)578

f22$578

CZ@

- (2481

8s TA6LE E 641 i%$J10 TABLE F 673

(2641:\

TABLE H 673(2641

CLASS 125 635 (25)

A N S I CLASS15fJ 635 (25)I

-40(1%)

60(24)

(21)

(211CLASS 300 711 (28)

‘Table A thickness is 27 (1 & on both siqs 16 in aftd 18 in

For notes applicable to these tables see page 84 93

Page 14: Crane Engineering Data2

Enginsering Data

GWfdl

FLANGE COMPARlSON TABLES

NOMINAL SIZE 5OOmd2OiJT INTEGRAL FLANGE OIMENSIONS

BOLTDIA.

DRIL N G

P.C.D.

620 M 24

670

542 22(g,

642(254

673

22(i,

673(262

635(251

(25)6 8 6

(27)

705

725

770

770

795

M 24

M 27

M 33

M36 .

M 45

756(29$

756(2B#l

781

78t w749

(293749

(2938’2 ’

(32)

25(1)

29(li)

32(1;)

32(l&l

32(14)

320 4,

3811+1

STANDARDAND RATING tTTHICKNESS RA1SE.D FACE

GREYCASTIRON

CAST COPPERSTEEL ALLOY

DIA. HT.

PN 2.5.& E

PN 10

645

6 7 0

715

730

755

30

34

42

52

36

44

52

-

570

585

610

615

615

22263336 i42

BS4504 PN 16

PN 25

PN 40

TAB.A&f 32(1;)

32(l&I

38(13,

51(2)

32*(1;)

32(1;)

38ttj,

51. (2)

705(27;

705(273

737(291

737. (29)

608(2741

698(2741

774

32*(14,

38(13,

4’ctjr

5712*,

43(l#

16 25 (‘1

16 25 (1)

24 32 (Ii)

24 32 (1;)

20= (l$)

20 32 (1’)4:24 35 OfI

5971233

8s TABLE E

10 TABLE F-

TABLE H

CLASS 121

43(1-g~

64(24)

ANSI CLASS 15c (23)584 .

(23)CLASS 3oc

NOMINAL SIZE 6OOmm( 24in)

PN 2.5 &I e 755 30

36

48

670

685

725

720

735

PN 10 780

4Fw PN 16

PN 25 845

PN 40 890

TA6.A & I

8sTABLE E

10 TABLE F

TABLE H

CLASS 121

ANSI CLASS llil

CLASS 30

825(323

825t321

851(x3$’

851133;

813(32)

813(32)

914(36)

40

46

60

,

35(1:)

38c1g,

41(13

57(29

35’(l#

38(l$l

41@!

57(221

35’(lf)

4’(1%)

44cl@

64

48

-

698(273

48(1;)

70

2(41

2(&I

682t27t

692t27t

*Table A thickness is 29 (1 &I and :For notes applicable to these tables see page &

respctiuely; drilling is 1

Page 15: Crane Engineering Data2

Engineering Data

NOMINAL SIZE 7OOmm( 27in)1 T 1 .

BOLTDIA.

IINTEGRAL FLANGE DIMEI JONSSTAND&DAND RATING

-

No-24

24

24

24

24-

18

DIA. 1 THICKNESS

P.C.D.

RAISED FACE

GREYCASTi~0~

CAST COPPERSTEEL ALLOY

DIA. HT. HOLEDIA.

PN 2.5 & 6 5

5

5

5.

*. 5

26

30

36

42

46

M24

M 27

M33

M39

M 45

PN 10

4yw PN 16

860

895

910

PN 25

PN 40 995

810

875

42

50

64

25(11

25(1)

29(1:)

TABLE A

8s TABLE D10

TABLE E’

I

!

!

-

PN 2.5 & 6

PN 10

8S4504 PlU16

PN 25

PN 40

975

to15

1025

1085

1140

3 4

44

58

TABLE A

8sTAFLE D

10 TABLE E

946 * ‘* 32(37X1 (1x1

997 4’(394) (121

997 48(39;) (li)

CLASS 125 (38;)

ANSI CLASS 150”

CLASS 300’

8OOmn@fNNOMINAL SIZE-

30

33

39

48

56

M 27

M30

M 36

M 45

M 52

24

24

24

24

24

20

20

20-28

28

28

42

54

72

-

-

930

- - 883 * 25t3W (‘1

927 29(36$1 (11

927 32w (l#

914 32(36) (I$

9’4 32(36) (‘$

997 44(39$ (1;)

!9

32cl+ 1

(li)55

,1;,$5

(‘#I35

i8(1%

(1;)

41(12)

48(li)

54(2#

54(2i)

921331

857 2(33;) (iid

857 2l33$ (&I

l Dimensions for ANSI Class 150 and 300 flanges are taken from 85.3293 and MSSSP44For notes applicable to these tables see page 84

95

Page 16: Crane Engineering Data2

Engheeri~ D a t a .

Generat

FLANGE COMPARISON TABLES

. )omm(33iJ . ’nluvt1,.. .-

1 INTEGRAL FLANGE DIMI USIONS

RAISED FACE

D I A . HT.

DRILI

HOLEDIA.

P.C.D.

STANDARDAND RATING 1 BOLT

DIA.* DIA.

DIA.

THICKNESS

GREYCASTIRON

CAST COPPERSTEEL ALLOY

42

54

72

41,t1@

5’(2)

PN 2.5 B 6 975 34

44

58

M 27

1015

1025

1065

“40

1 0 2 9WHJ

to92(43)

1092. (43)

PN 10 M30

BS4504

PN 16 All36

M 45 -?PN 25

PN 40 1030 M 52

(351016

(40)to16

(40)

TABLE A 32(WI

41fli)

51(2)

BsTABLE 0

10TABLE E

..

NOMINAL SIZE QOOmrB6in)W25&6 36

46

62

1075

“15

‘125

‘185

‘250

to20

1050

1050

1090

1140

24

28

28

26

26-24

24

24-32

32

32

30

33

39

48

56

29(14)

35fl$

35(l$I

4’(l#

41(12)

54 (2&l

PN 10 M30 ’

M36 ’

M45

Bs4504 PN 16 44

58

76

44(l$)

51(2)

PN 25

PN40

TABLE A

M 521105

(43%

1175(46&

‘175t4g

1168(461

“68ma

1270tm

35(‘{I

44(l&

5’(2)

60(231

104’ 25 -(41) (1)

1092143)

1 0 9 2WI

1086(42t

1086(42z

1’68(46)

.

Bs TABLE 010

TABLE E

. (1~) .:L51

CLASS 125

6p ti#r105

. (4i,

ANSI CLASS 16q*

CLASS 300+

*Dimensions for ANSI Class 150 and 300 flang am taken from 88.3293 and MSS.SP44.For notes applicable to these tables see page 84

Page 17: Crane Engineering Data2

NOMINAL SIZE 1 OOOmm(39in)T

DRlLl NG

HOLEDIA

P.C.D.

* INTEGRAL FLANGE DIMEI

THICKNESS

SIONS

RAISED FACE

111

TABLE A

TABLE 0

TABLE E

1181(46x1

1257(*I

1257t49#

1375 .

PN 6 1405

PN 10BS

4504 PN 16

1455

1485

PN 25 1530

PN40 .-

TABLE A

1575 _1416 ’

(55%:

BS TABLE 010

TABLE E

1492(58$1

1492(5831

CLASS 125i

l

CLASS 300’

1511t5!3#

1511(59%

1511(59351

BOLTDIA.

STANDARDAND RATING DIA.

DIA.

-

CAST . COPPERSTEEL ALLOY

46

62

80

44(1;)

54(2iI

-

52

70

88

51(2)

60(24)

.

70(2%)

129tad

-

A

GREYCASTIRON

DIA HT. No.

28

28

28

28

28

24

24

24

-

30 1120 M27

36 1160 M 33

42 1170 M 39

56 1210 M 52

56 1250 M 52

-PN25&6 -36

50

66

1175

PN 10 1230

4sg4 PN 16

“IP‘_ PN 25

1255

1320

PN40 1360

1118144)

1175t46t

11751-t

.

29Cl’!

35(1QI

38(13,

NOMINAL SliE 12OOd48iJ3232

32

32

32

3228

32

32-44

44

40

-

i1 5

5

5

5

5

5

1320 M 27

1340 M30

30

40

56 1380

1390

1420

14601353 -

(53+)

1410c5G 1

1410(=a

1422(58)

.1422156)

1416(55%)

30

33

39

48

56

6229

(141

35(l$l

38(13,

41(151

41(l@

51(2)

1280

1295

1330

1330

1350

1380

M 36

M45

M 52

M5625

(1)38

(1 HI

51(2)

80(231

70(2Z)

- -

*t-Ad2

t-a

1359(53X)1

1327(52%)

38(1 WI

48IW

*Dimensions for ANSI Class 150 flanmr we taken from BS.3293 and Class 300 flanges from AP1.805.For notes applicable to these tables see page 84

97

Page 18: Crane Engineering Data2

Engineering Data

General1 CRAiE]

FLANGE COMPARISON TABLES

14OOmm(54in)NOMINAL SIZE

T INTEGRAt FLANGE DIM@

RAISED FACE

DRILL

HOLEDIA.

P.CD. ’

1520 M 27

1560 M33

1500 M39

1590 ‘M4ii

1640 M56

1680 MS6

STANDARDAND RATING DIA..* THICKNESS

GREY’CASTIRON .

CAST COPPERSTEEL ALLOY

DIA. HT. No.

36

36

36

36

36

36

32

36

44

56

48

PN 25 1575

1630

1675

1685

1755

1795

30

44

62

1480

1510

1535

1’530

1560

1600

30

36

42

48

,62 .

6235

(l#,35

of)51

(2)32

(l#51

121

.

PN6

Bs PN 104504

PN 16 58

76

98

57(Z&I

PN 25

PN40

TABLE A

8s10 TABLE 0

1608f63w

16U8(63$

1683t66$

1549(61)

1673c65g1

r

l4.twtb)

57(24)

76(3)

1530(6Ol4

1530r60&

1594f62$

1492f58#1

1578t62#

32fl.%)

32(l$)

44(ItI

29(l#

48(l$)

2(ib

2f&l

CLASS 125

ANSI CLASS 150”

CLASS 300’

71(*+$I

136(53) -I

.

144166$

1480f58$

NOMINAL SIZE

PN 2.5 1790 32

48

68

40 30 1730 M27

40 36 1760 MV

40 48 1820 M45

40 56 1820 i M 52

40 62 .1860 M56

40 70' 1900 M 6 4

PN6 1830

PNlOBs

4504 PN16

1915

1930

PN 25 1975

PN40 2025

TABLE A

ss10 TABLE D

CLASS 12t

CLASS 300’

1784f7OW)

1784(70&

1854 .(731

1726(67+$

1878(73#

1.696

1710

1760

175q

1780

1815

32

40

52

52

40

- .

64

B4 .

108

60(23 1

1701(67)

imi(67)

I8(l*)

60(Zf!

79134:

-

35o*:

38(14)

51(21

35(131

60(29

.-

1759MS*,

1662(65&

17*

76(31

151(%

iC&l

2(i;rl

1600(63)

1651m!5)

*Dimensions for ANSI Clas 150 and 300 flanges are taken from APl.805.For notes applicable to these’tables see page 84

Page 19: Crane Engineering Data2

tngmeering Data

G-dl.

FLANGE COMPARISON TABtES

NOMINAL SIZE 16OOmm(66Jr

ING

P.C.D.

DRIL

HOLEDIA

30

36

48

56

62

7035

w

38

I ISIONS

RAISED FACE

INTEGRAL Ft ANGE DtMEBOLTDIA

STANDARDAND RATING THICKNESSDIA.

CAST COPPERSTEEL ALLOY

GREYCASTIRON

32

48

68

DIA. H T

-

M 27PN 2.5 1 7 9 0 1730

1760

1820

1820

1860

19001860

(73%

1860(7341

l

5

5

5

S

i.

5

1690

1710

1760

1750

17ti

1815

1830

1915

1930

1975

20251942

176?hl

1942(7631

M 33. PN6

M45Y-Y Bs

PN 10I 4504

ia+ PN 16. 64

84

108

64(2#

M6432

(1%)

PN40 .

TABLE A

38(13,Bs TABLE 0

10 .

NOMINAL SliE ‘l~OOmm(7~in)

BF-1

iPN 2.5 44

44

44

44

44

1930 M 27

t-970 v 36

2020 M45

'2020 M 52

2070 M64

.36

39

48

68

7038

(1%41

(18)51

(2)

1990

2045

2115

2130

2195

34

50

70

PN6

Bs4504 PN 10

P N 1 6 68

90PN 25

36

4467(25)

2019(79%

-2019(7&l

(82$1

’ TABLE A

; TABLE 0

2108 .r?183) ”

2108(83.1

f86#44

(1;)60ANSI CL&S 125

For notes applicable to these tables see page 8499

Page 20: Crane Engineering Data2

r 1

] CRANE 11 J

.

Engineering Data

Flow of hidS d-VOU&~lW, FittingS & Pipe

CONTENTS AJUDNOMENCLATURE

CONTENTS The contents indexed below comprise a condensed summary of data published in Crane’sTechnical Paper No. 4lOM Wletric Edition) . . . . “Flow of Fluids Through Valves, Fittings,and Pipe”.NOMENCLATURE 5ee belowBASIC THEORYResistance Coefficient K . ..’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 & 102Equivalent Length L/D and Flow Coefficient . . . . . . . . . . . . . . . . . . . . . 102 & 103taminar Flow Conditions; Reduced Seat Valves . . . . . . . . . . . . . . . . . . 103REPRESENTATIVE RESlSTANCE~COEFFlClENTS (“K” FACTOR TABLE)Pipe Friction Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Formulas for Sudden Contraction and Enlargement . . . . . . . . . . . . . . . 104Formulas for Reduced Port Valves and Fittings . . . . . . . . . . . . . . . . . . . . . 104Coefficients for Valves ahd Fittings . . . . . . . . . . . . . . . . . . . . . . . . 105 to 107NOMOGRAPHS, CHARTS, AND TABLESFriction Factors for Clean Commercial Pipe . . . . . . . . . . . . . . . . . . . . . . . . 108Density of Air and Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Physical Properties of Water . . . . . . . . . . . . . . . . . . . . . . . . ..: . . . . . . . . . . . . 111Viscosity of Gases and Vapours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Viscosity of Water and Steam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112Viscosity of Water and Liquid Petroleum Products . . . . . . . . . . . . . . . . . . 113Flow of Water through Steel Pipe . . . . . . . . . . . . . . . . . . 114& 116Flow of Air through Steel Pipe . . . . . . . . . . . . . . . . . . . . . 115& 116

* Flow Formula for Compressible Fluids... . . . . . . . . . . . . . . . 117 to 120

NOMENCLATURE Symbols used in this “Flow of Fluidt” section we defined as follows unlessotherwise stated.a = cross sectional area of pipe or orifice, or flow area in valve, in square

mitlimetres

cv = flow coefficient for valvesD = internal diameter of pipe, in metresd =.internal diameter of pipe, in millimetresf = friction factor in formula h, =fz~2/~2g,

fT ‘= friction factor in zone of complete turbulence

gn = acceleration of gravity = 9.81 metres per second per second

hL = loss of static pressure head due to fluid flow, in metres of fluidK = resistance coefficient or velocity head loss in the formula, h, =Ko2/2gnL = length of pipe, in metresL/D = equivalent length of a resistance to flow, in pipe diameters

'P = pressure, in bars gaugeP' = pressure, in bars absoluteQ = rate of flow, in I itres per minute

q8= rate of’flow, in cubic metres per second at flowing conditions

qk = rate of flow, in cubic metres per hour at metric standard conditions(MSC) 1.013 25 bar absolute and 15*C

8q M = rate of flow, in cubic metres per minute at MSC

4 = Reynolds number

% = specific gravity of a gas retative to air = the ratio of the molecular weightof the ps to that of air (relative density)

Tt

= absolute temperature, in kelvins (273 + 4= temperature, in degrees Celsius

v = specific volume of fluid, in cubic metres per kilogramv’ = specific volume of fluid in cubic decimetres per kilogramit = mean velocity of flow, in metres per secondW = rate of flow, in kilograms per hour

Greek Letters fl = Beta ratio of small to large diameter in orifices and nozzles, andcontractions or enlargements in pipes

A = Delta differential between two pointscc =Mu dynamic (absolute) viscosity, in centipoise .

P =Rho weight density of fluid, kilograms per cubic metre8 = Theta angle of convergence or divergence in enlargements or

contractions in pipes .Subscript (100) = refers to 100 metres of pipe

;itI

t

Ij

Page 21: Crane Engineering Data2

Engineering Data

RESISTANCE COEFFICIENT K,EQUIVALENTXENGTH L/D

AND FLOW COEFFICIENT

Pressure loss test data for a wide variety of valves and fittings are available from Resistance Coefficient andthe work of numerous investigators. Extensive studies in this field have been EquivdmLdngth .conducted by Crane Laboratories. HOVWBM, due to the time-consuming andcostly nature of such testing, it is virtually impossible to obtain test data forevery size and type of valve and fitting. It is therefore desirable to provide ameans of reliably extrapolating available test information to envelope thoseitems which have not been or cannot readily be tested. Commonly used conceptsfor accomplishing this are the “equivalent length L/D”, “‘resistance coefficientK”, and “flow coefficient Cv or Kir .

Pressure losses in a piping system result from a number of system characteristics,which may be categorized as follows:

Pipe friction, which is a function of the surface roughness of the interior pipewall, the inside diameter of the pipe, and the fluid velocity, density andviscosity. For friction data, see pages 104 and 108.

Changes in direction of flow path. .*

Obstructions in flow path.

Sudden or gradual changes in the cross-section and shape of flow path.

Velocity in a pipe is obtained at the expense of static head, and decrease in statichead due to velocity. is,

2=-hL 2g,

Eqwtiun 1 --. -

which is defined as “-locity head”. Flow through a valve or fitting in a pipe linealso causes a reduction in static head which may be expressed in terms of velocityhead.

.

The resistance (oefficient K in the equation

V2hr. =K-

2gn

Equation 2

therefore, is defined .as the number of’velocity heads lost due to a valve or fitting.-It is always associated with the diameter in which the Aodity occurs. In most. valves or fittings, the losses due to friction (Category 1 above) resulting from

actual length of flow path are minor compared to those due to one or more ofthe other three categories listed. .

The resistance coefficient K is therefore considered as being independent offriction factor or Reynolds’ number, and may be treated as a constant for anygiven obstruction (i.e., valve or fitting) in a piping system under all conditions offlow, including laminar flow.

The same loss in straight pipe is expressed by the Darcy equation,

Eqwtion 3

It follows that,

K=(h) Equation 4

The ratio L/D is the equivalent length,‘in pipe diameters of straight pipe, thatwill cause the sarrk pressure drop as the obstruction under the same flowconditions. Since the resistance coefficient K is constant for all conditions of

B

flow, the value of L/D for any given v&k or fitting must necessarily varyinverskly with the change in friction factor for different flow conditions.

Page 22: Crane Engineering Data2

) CRANE 1I J

Engineering Data

Flow of .Fluids lhough,kla, Fittings 2% Pipe

.RESlSTANCE COEFFICIENT K,EQUIVALENT LENGTH L/D,AN0 FLOW COEFFICIENT-continued

~-~Resistam CoeHicierm Equation 2 may be written in many forms depending upon the units in which

flow conditions are expressed. Some of the more common and ukeful forms are,

K2 KQ2hL = 8265 x 107$ * 22.967

Ap = 0.000 005 Kpv2

For nomencktum refer pulse 100

For compressible flow with h, or Ap greater than approximately 10% of the inletabsolute pressure, refer to Crane Technical Paper No. 410M (Metric Edition) -“Flow of Fluids Through Valves, Fittings, and Pipe”.

Analysis of flow test data for different sizes of the same items indicates that theresistance coefficient K for any given line of vales and fittings knds to vary withsize, in the same manner, as does the friction factor for straight pipe at flowwnditions resulting in Reynolds numbers falling in the zone of complete.turbulence.

As previously stated, the resistance coefficient K is always associated with the.diameter in which the y&city in the term v2/2gn occurs. The values in the “K”Factor Table are associated with the internal diameter of the following pipeschedule numbers for the various ANSI Classes of valves and fittings.

Class 300 and lower . . . . . . . . Schedule 40Class 400 and 6bO . . . . . . .” Schedule 80Class 900 . . . -. . . . . . . -. Schqdule 120Class 1600 . . . H. . . . H. Schedule 160Class 2500 (sizes W to 6“) . . . “. ,.. XXSClass 2600 (sizes 8” and up) Schedule 160

When the resistance coefficient K is used in flow equation 2, or any of itsequiwlent forms, the wlocity and internal diameter dimensions used in theequation must be based on the dimensions of these schedule numbers regardlessof the pipe with which the valve may be installed.

An alternate procedure which yields identical results for Equation 2 is to adjustK in proportion to the fourth power of the diameter ratio, and to base Values ofvelocity or diameter on the internal diameter of the connecting pipe.

Equatio#v 5

Subscript “Y’defines K and d with reference to the internal diameter of theconnecting pipe.

Subscript ‘b” defines K and d with reference to the internal diameter of the pipefor which the values of K were established, as given in the foregoing list of pipeschedule numbers.

When a piping system contains more than one size of pipe, valves or fittings,Equation 5 may be used to express all resistance in terms of one size. For thiscase, subscript ‘k” relates to the size with reference to which all resistances areto be expressed, and subscript “b “relates to any other size in the system.

Page 23: Crane Engineering Data2

Engineering Oata

Flow of bddhOU$~i~,ktth$ & Pipe*

RESfSTANCE COEFFICIENT K,EQUIVALENT LENGTH L/D

AN0 FLOW COEFFICIENT -continued

It is convenient in some branches of the valve industry, particularly in Flow Ctmfficientswnnection with control values, to express the valve capacity and the ~Iue flowcharacteristics in terms of a flow coefficient. In the USA and UK the flowcoefficient at present in use is designated C, and is defined as:

C,, = Rate of flow of water, in either US or UK gallons per minute, at 6OF, at apressure drop of one pound per square inch across the valve.

Another coeff icient,this is defined as:

Kv, is used in some countries, particularly in E urope, and

K,, = Rate of flow of water in cubic metres per hour (m3./h) at a pressure dropof one kilogram force per square centimetre (kgf/cm2) across the valve.

.

One kgf/cm’ is equal to 0.980 665 bar (exactly) and in some wntinental

B /-- countries the name kilopond (kp) is used in place of kilogram force.“75,di.e. 1 kp/cm’ = 1 kgf/cm2. .

Cv = O.O694&=(in US gallons)Q = rate of flow, Iitfes/min.

44999)where: p = density of fluid, Kg/m3

&I = .pressure drop, bar

In the usual piping installation, the flow will change from laminar to turbulent in Lamiriar Flc+w conditionsthe range of Reynolds numbers from 2000 to 4000, defined on page 108 as thecritical zone. The lower critical Reynolds number of 2000 is usually recognized *as the upper limit for the application of Poiseuille’s law for laminar flow instraight-pipes,

Eqwtion 6

which is identical to Equation 3 when the value of the.friction factor for laminarflow,f= 64/R,, is factored into it. Laminar flow at Reynolds numbers above

D

~2000 is unstable, and in the critical zone and lower range of the transition zone,j turbulent mixing and lamin% motion may alternate unpredictably.

Equation 2(hL =Kv2/2gn) is valid for wmputing the head loss due to valves and.fittings for all conditions of flow, including laminar flow, using resistance

mefficient K as given in the “‘K” Factor Table. When this equation is used todetermine the losses in straight pipe, it is necessary to wmpute the Reynoldsnumber in order to establish the fridtion factor, j’, to be used to determine thevalue of the resistance coefficient K for the pipe in accordance with Equation 4(K =fz/m

Valves are often designed withreduced seats, and the transition from seat to Valves with Reduced Seatsvalve endsmay be either abrupt or gradual. Straight-through types such as gate -and ball valves SO designed with gradual transition are sometimes referred to asventuri valves. Formulae (page 104) for computing resistance coefficient Kfor b

several types of reduced seat valves have been found to yield results that haveexcellent correlation with test results. It will be noted that these computed Kflues are a function of the ratio fl (beta) of the seat diameter to the internal

’diameter of the wnnecting pipe.

The procedure for determining K for reduced seat globe and angle valves is alsoapplicable to throttled globe and angle valves. For this Case the value of fl mustbe based upon the square root of the ratio of areas,

p= J5a2

where :aI . . . defines area at most restricted point in flow patha2 . . . defines internal area of connecting pipe For nmnmchtum rsfsrpcrqu f&30

103

Page 24: Crane Engineering Data2

I 1

1 CRANE 1Engineering Data .

Fbwd Fb&~Vdk,Fittings~Pi~

REPRESENTATtVE RESISTANCECOEFFICIENTS. (K).FOR VALVES ANO FITTINGS

PIPE FRICTION DATA “K”is~onuasof~~u~pi~rrlIShPdon~ 102

FOR CLEAN COMMERCIALSTEEL PIPE WITH FLOWIN ZONE 6F COMPLETE

TURBULENCE.Nominal mm 15 20 25 32 40 ‘50 65,80 100 l-is 150 200,250 300400 450600Size . L

in. ‘A # 1 1% 1% 2 4 5 6 12-M 18-242X,3 8,10FrictionFactor (f~) .027 -025 .023 ,022 -021 -019 -018 .017 .016 .OlS .014 .013 .012

b 1

FORMULASFOR CALCULATING

‘K” FACTORSFOR VALVES AND FITTINGS

WITH REDUCED PORT

SUDDEN ANDGRADUAL CONTRACTION

SUDDEN ANDGRADUAL ENLARGEMENT

For nwnendimm refer page 109

Formula f

K, =o.ELin~ (1 - S2)

8’

Formuta 3

K, =2.6 sin; (1 - f12),

8’

Formula 5

K= 2 + Formula 1+ Formula 3K2 j34

K, =K, +rinf[0.8(1 -fl’)+2.6(1 -@‘)‘I

B’Formuta 6

Fomwk 7

Formula 2

Formula 4

K =(’ -f12122

8’

Kl4 - 04

--+##(Fomula2+Formula4)when8=180”

Subscript 1 defines dimensions andcoefficients with reference to thesmaller diameter.Subscript 2 refers to the largerdiameter.

If: 8 T 45” . . . . . . . . . . K2 = Formula 1

45* 4 ~180” . . . . K,=Formula2

.If: 9~45” . . . . . . . . . . K,=Formula3

4 5 ” d9 T 180“.... KpFormula4

Page 25: Crane Engineering Data2

B REPRESENTATIVE RESISTANCECOEFFICIENTS (.K)

FOR VALVES AND FITTINGS

For form&s&d friction datv, am page 104“K” is hamion use of scbdbh p&e as lknsdon w ?02

GATE VALVESWedge Disc, Double Disc, or PIug Type

If$= 1,8=0 . . . . . . . . . . . . . . K, =8fT

fi< land8r45’.......... K,=FormulaS/3< land 45”<6<180* . . K,=Formula6

GLOBE AND ANGLE VALVES

If: /3=1 K, =34of,

.lib+- I f : fl=l.. . .K, = !5S fT

l-4

I f : /3=1.. .K, = lSOfT If: j3= l.... K, =ssfT

All globe and angle valves,whether reduced seat or throttled,

i f : fl< l.... K,=Formula7

SWING CHECK VALVES a*

,K=lOOfT K=SOfT

Minimum pipe velocity (mps) for full disc lift

=4s@ =&Id7

LIFT CHECK VALVES

If: fl= l.... K, =600fTj3< l . . . . K, = Formula 7

Minimum pipe velocity (mps) for full disc lift

=SOfl’ q

If: @= l.... K, =SSf,#3< l.... K2 = Formula 7

Minimum pipe velocity (mps) for full disc lift

= 17Ofl’ G

TILTING DISC CHECK VALVES

.SiZeS a = 5” mf = 150.

50mm(2”)to2OOmm(8”)K= 4ofT 12OfT25Omm (lO-)to 350mm(14”)K= 3ofT mfT

4OOmm(16”)to 12OOmm(48-)K= 2OfT afTMinimum pipe velocity(mps) for full disc lift = MO* 40*

Note. mps = metres per second

Page 26: Crane Engineering Data2

lc3t~NElEngineering Data *

Flowof Fluids~Vak,httin~~Pipe

REPFiESENTATlVE RESISTANCECOEFFICIENTS (K)FOR VALVES AND’ FITTINGS

STOP-CHECK VALVES- -w

(Globe and Angh Types)

If: If:p= l.... &=dmfT fl= I.... K,=zmfTp< l.... K,=Formul~7 fl< l.... K,=Formula7

Minimum pipe velocity(mps) for full disc lift

Minimum pipe velocity(mps) for fulI disc lift

=70f12 G =95p JF

.

I=

4

a

a

If: If:p= l.... K, =300fT fi= I.... K,=350fTp< l.... K,=Formula7 fl< l.... K,=Formula7

Minimum pipe velocity (mps) for full disc lift

. =75f12 4F

p= I . . . . K, =ssfT /3= l.... K, =55fTfl< l.... K,=Formuh7 /k l..... #,=Formula7

Minimum pipe velocity (mps) for full disc lift

FOOT VALVES WITH STRAINER w

Poppet Disc Hinged Disc’

K = 42ofT K = 75fT

Minimum pipe velocity(mps) for full disc lift

=20 47

Minimum pipe velocity(mps) for fuli d&c lift

=4&r

BALL VALVES

If: fl=l$=O.. . . . . . . . . . . . . . . . K,=3fT/3< landh45”. . . . . . . . . . . . K,=Foxmula.Sfl< land45”<8<18@ . . . . . . K,rFonnuh6

BUTTERFLY VALVES

Sizes 50mm(2”)to2OOmm(8*)........ K=45fT

Sizes 250~(10’)tO350~(~4”)..... K=s!ifT -Sizes 4OOmm(16*)to6OOmm(24”)..... K=25fT

I6For nomendature refer psga NW

Page 27: Crane Engineering Data2

Engineering Data

REPRESENTATIVE RE!COEFFIC

FOR VALVES AND

ISTANCEIENTS (K)FITTINGS

Fof fonnulu 8nd ffibtkm &w, see p8g@ 104“K” is based on use of schedub p@e as listed on pl~rr 102

PLUG VALVES AND COCKS STANDARD ELBOWS

Straight-Way 3-Way 90"

K=30fr K= 16fT

If: fl=l, If: fl= 1, If= /3=1,K, = 18fT K, =3Of* K, =wfT

If= fl<l KS = Formula 6 FTANDPRD TEES

MITRE BENDS

KK --00-oo-

15”15”30”30”rsp45-O60”60”75”75”90”90”

2fT2fT4fT4fT*fT*fT

15fT15fTUfTUfT40 fT40 fT6ofT6ofT

Flowthrurun...,.....K=20fT- Flowthrubranch...... K=dOfT

PIPE ENTRANCE90” PIPE BENDS ANDFLANGED OR BUTT-WELDING 90” ELBOWS Inward

Pmjecting. Flush

K3ofT

fld KI0.00” 0.50.020.02 0.280.040.04 0.240.060.06 0.150.100.10 0.09

0.15 uk up 0.04*=W-bd

0.280.240.150.09

HfT38 fT42fT&fT5ofT

The resistance coefficient, KB , for pipe bends other than90" may be determined as follows:

For K,see table

Kr0.78

KB=(n- 1) + K

.n = number of 90” bendsK = resistance coeffsient for orre$o” bend (per iable)

PIPE EXIT

P&Cti?lg Rounded

r!

CLOSE PATTERN RETURN BENDS

K= 1.0 K= 1.01

K= 1.0K=sofT

Page 28: Crane Engineering Data2

Engineering Data

FRICTION FACTORSFOR CLEAN COMMERCIALSTEEL PIPES

Page 29: Crane Engineering Data2

Engineering Data

FIOVV of Fluids through Valves, Fittings & Pipe,

DENSITY OFAIR AND GASES

F Density of Air in Kilcqpams per Cubic MareFox Premum in Bat Gaw Iadicrted

(Based on an atmospheric pressure of 1.013 25 bar and a molecular weight of 28.97)

0bar

0” 1393

t

5 1.269

fS” :*442:20 1:204

2bar

3.8443.775

Et3381

3bar

t

%i4:93

t-z.

5 6 7bar bar bar

a 9bar ’ bar

11.50 12.77pg ;;u;

lo:90 i2:1110.71 11.90;$.g ‘; f.;;

lo:19 11:3210.03 11.14932 10.80

m iiizzii13 14bar bar

17.88 19.1517.55 18.8117.24 18.4716.95 la.1516.66 17.8416.38 17.5516.11 17.2615.85 16m9815.59 u5.7115.11 16.19Ma& .;g.7$

13:83 14:8 113.45 14.4113.09.14.0212.42 13.3111.82 12.66

K3 :22i10.3~,11.069.90 10.61g.g lg.;;

8:83 9:468.52 9.13

8.42 9.357.99 8.877.60 8.457.25 a.#6.93’ 7.706.64 7.376.37 7.08

;-ii d-ESk8 6:315.48 6.09

8.958.788.638:27.937.801-56x3$2:;;6356.215.915.645.395.16fz4Is84.424.2670bar5iz

5%

E-Z:y

80.379.076.6Tiz72.170.168.166.342959.9s7.1

Z%g

461444.743.2

14.05 15.32 16.6013.80

I15.05

I16.30

13.55 14.78 16.01

20.4320.06 213122.5619.71

I 21.70 II 229

20.94 22.119.36 20.57 21.7

t .

1.768 2.353'35221.739 2.314 3.463

12.87 I 14.04 I 15.2112.66 13.81 14.9612.45 13.58 14.7212.25 13.37 14.48

1.711 2.277 3.407I I1684 2.240 3.353

35 1.146

58 f*&60 l&O70 1.02880 -1.090 0.972

100 0.946120 0.898140 0.855

4.33t-4.20

1.537 2.044 3.0601.493 I 1.986 I 2.9731.452 1.932 2.8911.413 1.880 2.814

11.18 I 12.20 I 13.2110.87 11.85 12.8410.57 11.!53 12.4910.28 11.22 12.153.74t

t3.55;3.38d

9.76 I IO.65 I 11.539.29 10.13 10.978.86 9.66 10.478.47 9.24 10.01

160 0.815 1.217 1.620 21424 3.225180 0.779 I.164 1.54% 2.317 3.08t200 0.746 1.114 1.483 2.219 2.959220 0.716 LO69 1.423 2.129 2.836240 0.688 1.027 1.367 2.046 2.725260 0.662 0.989 1.316 l-969 2.623280 0638 0.953 1.268 1.898 2.52E300 0.616 0.920 1.224 1.832 2A4C

18 19 20 30 40bar bar bu

6 0barz

75.1

;1IiE

69:0

z-ii63.861.9

ft=57.0sJ.151.549.1

it-;43.141.4

3E37.1

80bar

103.3

so 120.50 2158 22.66 33.4 44.260 119.88 20.93 21.98 32.4 42.9

Air: Values in the table were calculated using the _perfect gas law. Correction for supercompressibility,the deviation from the perfqzt gas law, would be lessthan three percent and has nbt been applied.

*Gases other than air: The weight density of gasesother than air can be determined by multiplying thedensity listed for air by the s@&ific gravity @J of thegas relative to air.

Interpolate for values at intermediate pressures or temperatures.

Page 30: Crane Engineering Data2

Engineering Data

Fkwd Fluii~valves,Fihg.s&Pipe~CRANEJ

VISCOSITY OF GASESAND VA?OtJRS

-+he curves for hydrocarbon vapoursand natural gases in the chart at theupper right are adapted from datataken from Maxwell*; the curves forall other gases (except helium2) inthe chart are based upon .Sutherland’s formula, as follows:

cc = P*(+$-)($)3’2

where:

P = viscosity, in centipoise attemperature T.

cb = viscosity, in centipoise attemperature To.

T = absolute temperature, inKelvin (273 + “C), for whichviscosity is required.

To = absolute temperature, inKelvin, for which viscosity isknown.

c = Sutherland’s constant. .

IUote: The variation of viscositywith pressure is small for mostgases. For gases given on this page,the correction of viscosity forpressure is less than 10 per cent for

Viscosity of V8h0US GllSeS

.

g .0288.t, a026

.g .0248.g .022>

1 l 020

Hydra Cubon

-010

.006pressures up to 35 bar. .o 100 200 300 400 so0

t - Temperature, in degrees Celsius

Fluid

i

02Air

N2

Approximate -Values of “C”

127120111

Aliscosity of Refriger8nt Vapounbmtuf8t8d 8nd -bin)

.OlSr l . 1

.OlS ’I

240118416

(332c o

SO2

NH3H2

37072

.Li0’.S.OlSz .

c.-i.013c,.-g .012Y)a-

1 Data Book on Hydrocarbons byJ. 8. Maxwell. Courtesy of D.Van Nostrand Company, Inc. ofNew York City.

2 Handbook of Chemistry andPhysics, 44th Edition. Courtesyof the Chemical RubberPublishing Co. of Cleveland, Ohio.

7 -011

a.010

,009

.008Upper chart exampte: The viscosityof sulphur dioxide gas (SO,) at1 OO°C is 0.0162 centipoise.Lower chart example: The viscosityof carbon dioxide gas (CO, ) atabout 30°C is 0.0152 centipoise.For nomenclbtm’rSf;br page 100

- 4 0 - 2 0 0 20 40 60 80 100t - Temperature, in degrees Cekius

Page 31: Crane Engineering Data2

Engineering Data

Flow of Fluids thiwghUk,Fitt* & Pipe,

PHYSICAL PROPERTIESOF WATER

ADI:$20

:iz:92-012271

.017041-023368

25303540

.031663

:EK.073750

45505560

65707580

85

;;100

110

:3:140

25008.31160

I:XZ

157803

IEz1.01325

217012 :-%

3.6136

2170180

t -:z7:9203

10.0271

190 12552200 15.551.225 25.504250 39.776

275

%350374.15

59.4985.9212057165.37

- 221.20

P’

Bar Absolute

vx zisCubictkcimetres

per ~ogrpm

%E:1,%003

:=ixiI

1.00301.0044

:-E.

:-ET1:01451.0171

9 9 9 . 899$9

9 9 9 . 79 9 9 . 09 9 8 . 2

9 9 7 . 09 9 5 . 6

%I!

9 9 0 . 2 -9.88.0

. 9 8 5 . 79 8 3 . 2

1.0199 980 .51.022a 9 7 7 . 71 . 0 2 5 8 9 7 4 . 8I -0290 9 7 1 . 8

1 . 0 3 2 41.0359

:-izi.

:-ii%lb6971.0798

9 6 8 . 69 6 5 . 39 6 1 . 9958.3

1.09061.1021

:-::z.

:-:5:3

:::zz

w!1:52891.7413.170

9s 1.09 4 3 . 1

;2t.

916.9907.4897.3886.9

8&Y;g:;

.

759.4712.5654.1574.4315.5

P

To convert Specific Volume from cubic decimetres per kilogram (dd/k;g) tocubic metres per kilogram (m3/k) divide values in table by ld3.

TO convert Density from kilograms per cubic metre (kg/&) to kilograms perlitre (J&/We) .divide values in table by 103.

Specific gravity of water at 15°C = 1 .OO.

Data on pressure and volume abstracted from UK National EngineeringLaboratory “Steam Tables 1964” with permission of HMSO.

Page 32: Crane Engineering Data2

Engineering Data

Fkwvd Fluids~Wm,Fitting&Pi~,1 CRANE 1

VlSCOSlTY OF WATERAND STEAM’- IN CENTIPOISE (&I)

Temp,"C 5 1300 1400 1 So0 I600 700 8qO7s1

0 1.750 1.750 1.750 1.7101.750 1.750 1.750

SF 344 34s

.279 .280 .280

,181 -182 -182

-016 ,134 .135

.018 .018 .107

.544 ,544 545 s52

100 .012 .279 ,280 -293 -295

150 .183 .I99.014

.016

.197

l lSO

-123

200 ,016 .152.135

.lO8250

300

.018

.020

.018

-020I I I I I I

.U90 1 Jl92.i ,093 1 .095 1 .098 f JO1 1 .103.020 1 .020 Ai20

I-023 +24 l 024

,024 ,025 -025

JO6.020

350 I .073 1 .078 1 .(#I2 1 485 1 AI87 .089

375

400

.023 .023 .025 .026 .029$ .066 .072 .07Q ,079

.026 .027 .02!i A46 a63 .069 ,074

,027 .028 .029 -034 .OSQ Al61 .067

a82.024

.024 .024 .02!5 .077

*02!5 .075425

450

,025

l 026

.025 .026 .026l

-026 .027 .027

.027 .028 .028

,028 .029 -029

-030 .03i .031

.033 ,033 .033

.035 ,835 ,035

,026

.027

.028

.029

.a71

.a5,026

-027 360475 ,027

500 .O28 -028 AKiO --.030 .048 .053.030

.032

.034

550

600

.031

,033 l 046-032

,034

,037

- 6049

.048\ 650 .04S-038 1 ,039 f-035

-037709 .036 -037 I .037 I l 037 -037 1 .038 1 -038 1 -039 1 441 1 -042 i .dM .046 .048

Notes: (1) The entry shown for O°C and 1 bar relates to a metastable liqu’ti state. The stable stata is hera sotid.(21 Q Critical point, 374,15*C, 221.2 bars.

Sour& of data: NFL Steam Tables 1954 (HMSO, Edinburgh)’ --

Page 33: Crane Engineering Data2

tngmeermg uara

VISCOSITY OF WATER ANDLIQUID PETROLEUM PRODUCTS

Ethane tC,H,)

Propane (C,H,)

Butane lC,H,,l

Natural Gasoline .

G a s o l i n e

Wiltef

Kerosene

Distillate

46 Deg. API Crude

40 Deg. API Crude ’

35.6 Deg. API Crude

32.6 Deg. API Crude

Salt Creek Crude

Fuel 3 f&x.)

Fuel 5 (Min.)

SAE IO L&e (100 V.I.) -

SAE 30 Lube WI0 V.I.)

Fuel 5 (Max.1 or-Fuel 6 (Min.1

SAE 70 Lube (100 V.I.)

Bunker C Fuel (Max.1 andM.C. Residuum

Asphdt.

.

1.

2.

3.

4.

5.

6.

7.

6.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

, 800

600. . ,

10080

60

- .8

.6

.04

:* .03 f - Temperature in k&ins (K)260 300 400 500 600 700 800

Example: Find the viscosity of water at 6O*CSolution: 60°C = 273 + 60 = 333 K

Viscosity of titer at 333 K = 0.47 centipoise (curve 6)

Adapted from data extracted from “Ftow Measurement with Orifice Meters” byR. F. Stearns, R. R. Johnson and C. A. Larson; courtesy of D. Van &strand Co,Inc., New York (Curves 1,2 and 3); Curve 6 is a plot of the viscosity data shownin the table o_n page 112. All other curves reproduced with permission of the Oiland Gas Journal.

Page 34: Crane Engineering Data2

jiiiiiF( Engineering Data

HOVV of Fluids’~ i&es, Fittings & Pipec I

FLOW OF WATERTHROUGH SCHEDULE 40STEEL PtPE

3g

0 . 2 5 1 0 . 1 7y# yg O.i72’ 0 . 1 3 61:oo 2109 0.407 0.543 0.48 0.29

1 . 2 5 3 . 1 8 0 . 6 7 9 0 . 7 0

1.502 . 0 1 47-S2.51 111813 . 7 6 2 5 . 6 7 2 . 0 4 5 . 3 7

2’/2” 2 . 7 2 9 . 2 4

0.2 16 0 . 0 1 00 . 2 7 0 0 . 0 1 70 . 3 2 4 0 . 0 2 30 . 3 7 8 0 . 0 3 1 3”0 . 4 3 2 0 . 0 3 9 0 . 2 8 0 0 . 0 1 40;486 0 . 0 4 8 0 . 3 1 s 0 . 0 1 70 . 5 4 0 o.os9 0 . 3 5 0 0 . 0 2 0

~.~lO . 0.125 0.212 0.524 0.699 0.042 0.072

ltms und VdociVdoo Presr.

ity DropMstres

Sezd bars

Metres: perSecond bats

Dis-:hPrgcLittes‘per

dinute

ii

:s2 0

9881 0 0IS02 0 0

&83 5 0

tt8

5 0 0‘550

E8’.7 0 0

7508 0 08509 0 09 5 0

1 0 0 01100

X81400

15001 6 0 0

X881 9 0 0

Z882 4 0 0

if88

3 0 0 03 5 0 0

%85 0 0 0

%888 0 0 09 0 0 0

0 0 0 0

2 0 0 0

: 8 8 88 0 0 00 0 0 0

Me&es

Se:\d bars.-

v2’m 3Ji’‘43” I0 . 4 5 9

X8

0 . 7 2 6

11842*s9 5.599 . 5 7

2 . 2 9 14.45

8%0:340

8.8;:0:rst

0 . 4 2 5 ‘ 0 . 2 2 3

0.144 0.0230.192 04380.24 1 0.057

/ 0 . 1 2 0 0 . 0 1 2~0.150 0.017

P/4".0.138 0.0110.172 0.015,0.2S8 0.032

0 . 3 4 4 O.OS4

0 . 5 1 7 0 . 1 1 40 . 6 8 9 0 . 1 9 3ygl

I:21

pm&

0154 1

f-$9 0 . 6 9 0

1172

23’Z .

l’h”2 . 7 5 2 0 . 2 93 . 6 7 3 5 . 1 6

I

0.289 0.0770.385 0.1290.481 0.1930.722 . 0.4030.962 0.683

tip80:300

pJ2;0:061

0.450 . 0.1240.600 0.210

0.900 0.442i.30. .

:::o 8y.758

2.15 1.61

0.3800.507

0.05:0.09:

pa;

01888

8.; gj

01241

0.231 0.0160 . 3 0 8 0 . 0 2 70 . 3 8 5 0 . 0 3 90 . 4 6 2 0.0550.539 0.098

2.ss 6.173 . 4 0 10.72 :-ii;

1.45

2:41 3.E2.89 s:413.37 7,27 ,3 v2**

0 . 2 3 5 0 . 0 0 80 . 2 6 1 0 . 0 1 00 . 3 9 2 0 . 0 2 10 . 5 2 3 0 . 0 3 6

2 . 4 0 2 . 7 62 . 7 0 3 . 4 7E8 9.30 4.25

5”

3.85 9.270.616 0.0920.693 0.115

y;o1:54. 0.141, 0.295O.SlF

1.01 O-31!1.14 0.39'1.271.90 ?33'2.54 1181

4”0.304 0.0110.405 0.019

0.507 0.0280.608 0.0400.710 0.0530.811 0.0680.912 0.084

EZ 0.322

1:890.4490.606

t %. w3.

0.653 0.0530.784 0.074

7% s o*o991:18 8W .

6”0.3s7 0.0090.402 0.012

0.387 0.0140:4S2 0.0180.516 0.023O.S81 0.028

3.85 2.953.55

t l ::S:63

5.77 6.44

1.751.92 8 4 %2.10 Ok66

z3. 8%.

1.31 1.01 0.1011,ll 0.122

1:42 33

0.146

8%i .

8.m; p3030:775 0:0470.839 O.OSS0.904 0.063

0.447 0.0140.491 04160.536 0.0190.581 0.0220.62s 0.02s

0.670 0.0290.715 0.032$.g64

0:849

- t$O&

0:04S

8”4.05

to392.;:,g

.2.622.80 8%3-K 1:09

3:32 1.35 .

0.439 0.00'8.Mf ~.~~',. . a

1.29 0.122 0.894 0.0493.5 1.503.85 1.754.20 2.14

2.61 0.714

2.873.14 x0

?%i . 1:19 1.37

2.03 0.3772.23 0.4522:43 0.5342.642.84 8'672227 .

3.04 0.8183.243.4s x:'x . 1.28 1:16

1.94 0.2642.07 0.2975% 0.331

2145 8.3:: .

0.516 0.01:0.568 0.010.620 0.01$.fWi . yJg . 1 :

3.92 1 . 5 64 . 1 8 1 . 7 84 . 4 4 1.99

1.34 0.10s1.43 0.1181.52 0.132

1.611.70.

8 :#

0.77s 0.02'0.826 0.038.878 0.031

g.wy . pm; . 4

1.031.14. 8%~:-::

1:4s

0.074 0:06!

.O.OS'

1.5s O-09!1.81 0.13L2.07 - 0.17:2.322.S8

g*;g. ,

10”0.590 0.0120.622 0.014

0.6S.S 0.0150.721 0.0180.786 0.0210.852 0.0250.917 0.028

t :O i 1.411.70 ?a 0.452

pg. o":z;

3:61 .8'8758

1.79 0.181

5x3157.

0. 0. iI 87 26l 0 . 6 7 3

t.tg . ,ysfs3 .

18-zE.

2

14”0.573 0.0088*$3 . 8.8; . a .

8:K 8:812"

1.1s 0.031

2.29

3*%2 .

Z:Z

f*?36:68.

2% .

3 . 9 3

Zlf8-%07

s:90Oh76

w6.55 .

8 . 1 9 1.83

3.874.52 KX25.16 1172

0.692 0.0130.810 0.018.f.23 8.8;;

1:1s 0:034

:*:i1:84

8=8X0108s

2.08 0.1572.31 0.130

:-;I3169

0.184 0.2460.317

:*z . 833 .

5.776.92 !-:i8

,0:38 !E11462.39 1.90

16”0.658 0.0090.731 0.011 18”y177 ywp

1:17- 1.31

$33

1.46 0:04r

5.36 1.476.257.15 E9

0.37:

8%~0:Sli0.992

0.808

E041:1s

8.83p;.0.0320.044

848%01084

20”1.111.30 8.8::1.49

:*a

lp;-

. oh49

24”1.031.16 8.8::1.28 0:020

1.611.93 8.832.2s 0:057

9% . 8% .

1.75 0.0572.0s

8.897972:92 2.2 0.152 Oh24

6.20 1.41

2fi 1491. 2.48

3.65

5%S:SS6.58

2.893.46 8-i 30:2480.3190.400

2.32

if-z31724.18P 9.ss 1.81 7.31

8%

;.;$8 ;.$; 0.49.l

1:27 6:93 8%GE 1.49 7.50 8.08 oh22

11:o :*a!! . 8.66 ygs .c

1 cubic metre = 1000 litres.

For pressure drop and velocity for pipe other t)ran Schedule 40 and other than 100 metros long, see expfsnetions on paes 116.For nomsnclstum refer pw 100

Page 35: Crane Engineering Data2

Engineering Data

FLOW OF AIRTHROUGH SCHEthilE 40

STEEL PtPE

Free, Airqrn PressuttDropofAk

Cubic Metres C u b i c Metres In Bm per 100 Metres of &hd& 40 Pipeper Minute per Minuteat 15Cand at 15Cand For Air at 7 bu gauge pressure and 15 C Temperature1.013 bar abs 7 bar gauge

I&@’'14" '18"

0.03 0.0938-8~ 0.337

0.0210.072

YE:980:12 8%

0.011 0.005 1

.0.15 11942 0:4os 0.018 . 3/4" 1 880.027 _ 0.0067.

8-3 . 7.554 3.357 ?*E8 0.011 0.0035

0:6 8-Z

2171 l'/s"

f-:8 . 0.0066 1’/2@’0.0885 8.03 0.117 0.03s 0.0086 0.00410.1010.1140.126

1.2s - 0.158 2”

2:o %0.190

21/2”7.20

xi 318120.017 0.004a

0.221 0.253 9.79 0.029 0.022 0,0064

2.25 0.036 8-8Y822.5 8.23:: l 8-88~~ . 33': 4 0.045 0:012

3.0 838G 8.6 1.92 0.565 0.13s 0.063 0.0183 . 5

0:0123” g’~~ 0.754 0.184 0.086 0.024

0.016 0.0051 - 4132 Et41:s4

8%:0.110 0.0300.136

0.019 0.0063

‘ho’

5.34 01368 0.164 8.843: .

f 0.0273

7.68t 83435

8.8Z00:015 8.88%

5.43

$t#. . pm;4 .

3:858'8:;0.145 0:ris

10 f-:+3 . 003;3 .

.

q8' . EE . 0.179

11 1.391 0.085 0.028 8% 838253 7.29 1.71 0.774 0.217

12 1.517 0.101 0:019 0:0098 8.67 2.02l

I:896 f -%

0.119 ' E� 8*Z3

8-i . 3: ..- 83% . 0.013 0.011 22% 3:13 1:2s 1.44‘ 0.393 0:343_

:: 0.178 0.058 0.028 0.01s \

8;8% . 5"4.01 3.57 0.500 0.443

f! 0:OSl 23': 83f20 0.089 0.0072 5149 0:68s

.3: 2.781 3.034 0.107

3.287 wit8-8:;0:071

8.83:0:037

;.gM&6

0:171

0:0126" f*tE

91283%4122

8%~JhS

3.540 0.082 0.0433.793 0.197 0.094 0.049 8.8:t' . 8-88X . 5% . 32"

32

32

t&4&6 0.682 0.0069 _

4:ss f0.770 8-E:

0:134X.80;; 4%

8109:*97:

3 '5Ci~ . 8%::l:os 0.148 0.164 ;h:6 . 821172.412.6?

4s 5.689 0.287 0.013 3.36

g8 . 6.32 7.585 1

0.435

0.254

8%~

*:I88

8.03;

8%5 0:6390:oss 0.016 0.023

8”4.1s

0.0058 5.9818 8.850 1 8=!3ft . 0.080 0.104 0.031 0.040 8*8%i7 . 8.14

IOJ10”

‘:g.~~ 6.59 5.34 1.70 0.808' 0.0041

13:91120 is.17

7.97 22%3:02

Sf2

83fS

0:621

8-8:;

0:019 8*8%89.49 I:42

8% .0.022 0:0071

130 3.55 1.67 0.026 0.0082

140 4.12 1.93 1.00 0.120 0.02912”

‘SO

t*z3 l

3.22 1.1s 0.138 0.034

%SX 3.948-G

%4156

8.23ti0.059 8=88%0.090 0:012

3och . 0:sso 0.129 0.017

350 44.25 1.90 0.735 0.023400 SO.57 68":: .

33 3188$8 63.21 56.89 m l:so

8-8tf

0.112 0109 1

0.030

8-8::550 69.53 4.69 1.82. 0.134 0:oss

ff8 75.85 82.17 6.55 5.58 Ef 0.066

700 88.50

ii4674 .

2194 8%

38 101.1 94.82 xi 0:101 0.115850 107.5 4:34 0.319 0.130

For calcufations for pipe other than Schedule 40 and Oth8f than 100 met- long, and for other temperature/pressuredonditions, see page 116.

For nomenclature refer page 1 a0II!

Page 36: Crane Engineering Data2

Engineering Data

Flaw d FhJs thfo~&Valm, Fittings & Pipe[CRANEI ’.

PRESSURE DROP FORLENGTHS OF PIPE

OTHER THAN 100 METRES

\IELOCITY

PRESSURE DROP ANDVELOCITY FOR PIPE OTHER

THAN SCHEDULE 40

. PRESSURE DROP FORLENGTHS OF PIPE OTHER

THAN 100 METRES

PRESSURE DROP THROUGHPIPE OTHER THAN

SCHEDULE 40

LOW RATE OF COMPRESSED AIRTEMPERATURE AND PRESSURETHER THAN METRiC STANDARD

CONDfTIONS (MSC)

For notnencla turn ns fer p4gu 100

FLOW OF WATERTHROUGH SCHEDULE 40STEEL PIPE- continued from page 114

For lengths of pipe other than 100 metres the pressure drop is proportional tothe length. Thus, for 50 metres of pipe, the pressure drop is approximately one-half the value given in the table . . . for 300 metres, three times the given value,etc.

Velocity is a function of the ;cross sectional flow area; thus, it is constant for agiven flow rate and in independent of pipe length.

To determine the velocity or pressure drop of water through pipe other thanSchedule 40, use the following formulas:

Subscript “ti” refers to the Schedule of pipe through which velocity or pressuredrop is desired, .

Subscript “40” refers to the velocity or pressure drop through Schedule 40 pipe,. as given in the tables on page 114.

FLOW OF A(RTHROUGH SCHEDULE 40STEEL PIPE- continued from page 115

for lengths of pipe other than 100 metres the pressure drop is proportional tothe length..Thus, for 50 metres of pipe, the pressure drop is approximately one-half the value given in the table . . . for 300 metres, three times the given value,

The pressure drop is also inversely proportional to the absolute pressure anddirectly proportional to the absolute temperature.

Therefore, to determine the pressure drop for inlet or average pressures otherthan 7 bar and at temperatures other than 15 C, multiply’the values, given in thetable by the ratio:

where: “p” ii the inlet or average gauge pressure in bars, and“t” is the temperature in degrees Celsius under consideration.

To determine the pressure drop through pipe other than Schedule 40, use thefollowing formula:

Subscript “a” refers to the Schedule of pipe through which pressure drop isdesired.

Subscript “40” refers to the pressure drop through Schedule 40 pipe, as given inthe table on page 115.

The cubic metres per minute of compressed air at any pressure is inverselyproportional to the absolute pressure and directly proportional to the absolutetemperature.

To determine the cubic metres per minute of compressed air at any temperatureand pressure other than standard conditions (MSC),.multiply the vatue of cubicmetres per minute of free air by the ratio: ‘

Page 37: Crane Engineering Data2

Engineering Data

Flow of Fluids thtaigtj Vi&es, Fi(ti*gs& Pipe

SIMPLlFiEDFLOW FORMULA

FOR COMPRE’SSBLE FLUtDS

PIPE OR VALVE PRESSURE DROP,RATE OF FLOW, AND SIZE

The-simplified flow formula was developed from the Darcyformula and employs friction factors for the My turbulentrange (‘see page 108).

The Darcy formula can be written in the following form:

*hlO =62530fV vd’

Let C,W2

= 13 and C2 =62 530 x 1O’f

dS

The simplified flow formula can then be written:

CI = disch;ir$je factor, froh chart at right

C2.= size f+ctor from tables on pages 118 to 120.

The limjtp%io$)s of the Oarcy formula for compressible flow,as qutlined’& page 120 apply also to the simplified flowformula. . ‘.

Example1 .: __’ .

Given: Steam #:?a b&ahsolut.e and 250°C flows through an 8inchSchedute 40 piti.& a rate of 100 000 kilograms per hour.

c Solution: :- -’ .

,- Cl =io$;i.]- ’

G ~O~~<~~ . . . . . . . . . . . I . . . . . . . . . . . . . . . . . page.118

Cl= 1 x 9.?1. 3 o$j&

9.42’

W =9900.,.*;... . . . . . . . . . . . . . . . . . . . . . . . this page

qin = ws (73.5Sb)‘. . . . ..-................ p3ge 120

q;n=99QQi(73.5x11)~134.7m3/min

.6

Valu4g of Cl (metric) -W

ijji Cl’

r

10 .1.9

9 .a.7 l(r Cl

6000

BOO0

4000

3000

2500

2000

1000900000700

600

SW

300.

260

200

.

For ~zvalwsseepages118to 120

Converting Flow Rates sac page 120

Page 38: Crane Engineering Data2

ICRANEI Engineering Data

Flow of Fkrick ho& kh&, Fhngs & Pipe1 I

StMPtlFfED ’ *FLOW FORMULA

-

FOR COMPRESSIBLE FtUIDS

VAiJJES.OF Cz (METRIC) FOR STEEL PIPES TOANSI 636.10:. 1970 AND BSWOO: PART 2: 1970

Nomid Se&j&

T!!?

V&B8_-

- size NUJd88-Nom&l

ofctV&8

ches Tsize ?f!iizig

NOlIh8l

aches . of5 pipe- titi!ieVIlbre

inchesom4

-“r 408 r394oaOOBox. 5461ooooo 40s 279880x

1632590

10 QOOB 1s.

% 40s 2800000 120 4.7342030s %E

BOX 7 SSOOOO EKt+a 40s 561000 1 -6 . I

* I40s

I ’ I1.074I --~ I II Qn

Box 1260000 Box. l&)4 ,Mw a012 32I a014 15

?++ has 164 600 I---

I w 1 1.786 t l iZii CL016 30?2 a019 34

327 SO0 CL-1 DQ

@usdM51

40s 37 300 m468BOX 65 LOO 1 aa7 JV Ikwu6160 176 200

..* 1104mn I BOXI I1 0.326 [

1I

Y.* A J40 I EEE

160. . . xx i%

8 .20 a2i430408 iE--

AW

18.. ii

. . S2n

\!

v-w w-v

I 100

:z

60.‘.40s80x

MO* .. . .

1047017000.39600 ~

2OoaOO

80

:3140160

1

1020s30X

d: *80

1001 2 01 4 0160

. . . x x160

20 :.3040s

-60X.80loo .120

i::

101% 408

BOX: 160

l . .

2 48037206 140

24 OW

1 iO01590292a8 150

297 .4iS839

1582

1171622S7669

37.7SO385.0

17ao

20

z. 4os . .

. . . X

6080;g .140160

10.20

30s

. ? ? x6080

100

:z160.

408BOX

160. . .

122. 108

BOX1 6 0

. . .24 10

20s

*ii”4060

1:120

::8

2% 40s80x

160. . .

3 408Box

16Q. 0’.

14 t::t 3;0.018 41a01934 .Omo20 330.021 89

:z ;i0.033 40 ’09038 37a044 35

Extra Strongyand Double Extra Strong

3%

4

17.623.2

.I40s80x

ti:. . . xx

Example 3Given: A 6 bar gauge saturated steam line with 9000 kilograms perhour ‘flow is permitted a maximum pressure drop of 2.4 bar p6r 100

Referance to the table of C, values for IS0 336 pipes on m

metfes of pipe.119 shows that a 4 inch nominal sla pipe with 7.1 mm wallthickness has the c, value nearest to, but less than, 10.85.

Find: The smallest ti*e of IS0 336 steel pipe suitable.

Solution:’ c\p,, = 2.4 b 0.273 . . . . . . page 32

The actual pressure drop ‘per 100 metres of 4 inch, 7.1 mm WIthickness, pipe is:

400’ c&‘.$ = 0.81 x 10.22 x-O.273 = 2.28 bar .

c, = 0.81 c= 2-4’ 0.81 x 0.273 = 1o-85

Page 39: Crane Engineering Data2

e. . -eys. .

‘_ ’

En@eering D a t a.

.. SIMPLIFIED

FLQW FORMULAFOR ccw~ReS$IBLE FLUIDS

:

...

VALUES OIB. C2 tMETR8C) FOR STEEL PIP& Ti3 IS0 336 - 1974,

Page 40: Crane Engineering Data2

Engineering Data1 CRANE 1I J

SIMPLIFIEDFLOW FORMULAFOR COMPRESMLE FLUIDS

VALUES OF q (METRIC) FOR STEEL PlpEs TO IS0 336 - 1974

12 1 . Edo16 cm8 14

om% 31

iHEQW898acm26oboo!mi.

aw

EEzU.012 610.013 83@a014 90

t% t3QOl906a02148ao2s30

20

Be81tM

E14216mO17s

0.8lOb0

3143Id0178s

I* 2&o

x2235.0

2aa* 222

. EZ -3QO

I 320‘3690

18

14

24

L1MlTATIONS OF SIMPLIFIED FLOW FORMULA -

1: f%w rates through throttled or reduced se8t v&es maybe reStri&d by s&c velocity at the se8t; the formula is notspplicable for this condition of flow.

5. when pressure drop is greater than 40 per cent of theinlet (ia

7pressure, divide the pipe into shorter sections

and use or p based on an 8verage of the inlet and outletconditions of the shorter pipe section.. 2 The formula is accurate for the fully turbulent flow

rkge indicated by the frictiqn factor diegram, 8nd ehprovides 8 good approximation for most normal flowconditions.

CONVERTING FLOW RATES

To convert flow rates given in kilograms per hour (w), tometric standard cubic metres per hour (q’b) or to metricstandard cubic metres per minute (q’,), use the following _formulas:

3. whin pressure drop is less than 10 per cent of the inletgauge pressure, use t or p based on either inlet or outletconditions.

4. hen pressure drop is greater than .lO per cent but lessthan 40 per cent of the inlet g8uge pressure, use theaverage of Par p based on inlet’ and outlet conditions.

wq’h = rEq

I Wqm %3zg