Crane Engineering Data 1

56
, . . * L -. c ontents GENERAL Types of Valves Valves for every application S.I. Units Conversion equivalents Conversion tables Powers, roots and reciprocals Circumferences and areas of circles Saturated Steam, Properties of Superheated Steam, Properties of Corrosion data px Foreign language glossary PIPING Pipe data BS 1387 Steel pipes BS 3600 Steel pipes BS 1600 and ANSI 636.10 Commercial wrought steel pipe Pipe threads BS 21 Pipe threads * ANSI B2.1 Pipe threads Pipe flanges BS 4504, threaded and slip-on welding steel flanges ‘? r Bolt lengths for BS 4504 flanges BS 10 Pipe flanges Bolt lengths for BS 10 flanges ANSI Bl6.5 Steel flanges * ANSI 616.1 Cast iron flanges ANSI B16.24 Bronze flanges i&? IS0 Metric bolts $,+ > Integral flanges for valves and fittings. Summary of availability Pressure/temperature ratings Flange comparison tables - BS 4504 - BS 10 - ANSI FLOW OF FLUIDS Contents and Nomerdatufe Basic theory Resistance coefficient and equivalent length Flow coefficients, laminar flow conditions, reduced seat valves Representative resistance coefficients \ K factors) Pipe friction factors Formulae for calculating K factors K factors for valves and fittings Nornographs, charts and tables Friction factors for clean commercial steel pipe Density of air and gases’ Physical properties of water Viscosity of water, steam, other liquids and gases 110,112&113 Flow of water and air through steel pipe 114to 116 Simplified flow formula for compressible fluids 117 to 120 Page No. 2,& 3 4&5 6 to 9 lot014 15to23 24 25 to 29 30 to 33 34 to 39 40 to 47 48 to 51 52 to 55 56 & 57 58 to 60 61 to63 64 & 65 66 & 67 68 & 69 70 to 73 74 & 75 76 & 77 78 79 80 & 81 83 84 85 to 99 108 109 111

description

Crane Engineering Data 1

Transcript of Crane Engineering Data 1

Page 1: Crane Engineering Data 1

,

. . ’

* L

-.

contents

GENERALTypes of ValvesValves for every applicationS.I. UnitsConversion equivalentsConversion tables

Powers, roots and reciprocalsCircumferences and areas of circlesSaturated Steam, Properties ofSuperheated Steam, Properties ofCorrosion data

px Foreign language glossary

PIPINGPipe data

BS 1387 Steel pipesBS 3600 Steel pipesBS 1600 and ANSI 636.10 Commercial wrought steel

pipe

Pipe threadsBS 21 Pipe threads

* ANSI B2.1 Pipe threads

Pipe flangesBS 4504, threaded and slip-on welding steel flanges

‘?rBolt lengths for BS 4504 flangesBS 10 Pipe flangesBolt lengths for BS 10 flangesANSI Bl6.5 Steel flanges*ANSI 616.1 Cast iron flangesANSI B16.24 Bronze flanges

i&? IS0 Metric bolts

$,+ > Integral flanges for valves and fittings.Summary of availability

Pressure/temperature ratingsFlange comparison tables - BS 4504 - BS 10 - ANSI

FLOW OF FLUIDSContents and Nomerdatufe

Basic theoryResistance coefficient and equivalent lengthFlow coefficients, laminar flow conditions, reduced

seat valves

Representative resistance coefficients \ K factors)Pipe friction factorsFormulae for calculating K factorsK factors for valves and fittings

Nornographs, charts and tablesFriction factors for clean commercial steel pipeDensity of air and gases’Physical properties of waterViscosity of water, steam, other liquids and gases 110,112&113

Flow of water and air through steel pipe 114to 116

Simplified flow formula for compressible fluids 117 to 120

Page No.

2,& 34&56 to 9

lot01415to23

2425 to 2930 to 3334 to 3940 to 4748 to 51

52 to 5556 & 57

58 to 60

61 to6364 & 65

66 & 6768 & 6970 to 7374 & 7576 & 77

7879

80 & 81

8384

85 to 99

108109111

Page 2: Crane Engineering Data 1

TYPESOF VALVES

Y-Pattmn Globe ValveWith Stem 45 degrees from Run

Conventional Globe ValveWith Disc Guide

Globe Stop-Check Vdva

. cotwmtioMl swing ctkck v&v8.

Clearwry Swing Check Vaive

Cortvedod Angia Vatvo

Angie Stop-Chuk Valve

Globe Type Lift Check Vslvi

E2

. . it

Page 3: Crane Engineering Data 1

TYPESOF VALVES

Ftexibk Wdga Gacm Vdvo(Pmssuti’sesl Bonnet)

Foot Vdvr NY-Poppet and Hinged Tvpes SectioMl wtdow8ida vii

3

Page 4: Crane Engineering Data 1

THE RIGHT VALVEFOR EVERY APPLICATION

SCREWED-IN BONNETFor small. valves where fre-quent dismantling is not re-quired. Ordinarily used ongate, globe, and angle valves formoderate pressures.

UNION BONNETEm to dismantle and reas-semble without danger of in-jury to body-bonnet bearingsurfaces. Union ring gives ad-ded b and rigidity tobody against internal pressureand distortion. ideal for ser-vices ru2quiring frequent inspec-tion and cleaning of internalvalve parts. Use restricted tosmaller size v&es.

CLAMP-TYPE BONNETExcellent where frequent in-spection and cleaning of tinesam necessary. Easy to takeapart. Repeated opening doesnot affect bonnet joint tight-ness. Used only on certainmoderate pressure gate valves.

BOLTED BONNETPracticaf, commonly used de-sign adaptable to differenttypes of g&eting. Multiplebolting permiEs application ofequalized sealing pressure, Haspfacticatty no limitation forsize. Onfy the highest procuresand temperature tax its capa-city to permanently hold tight.

PRESSURE-SEALBONNET*t effective. Used for sealinghighest pressures and tempera-tures especially in steam sef-vice. Tightness of seal does notdepend on nuts, bolts, andthreads a s i n convention8ibonnet joints. Instead, utilizesline fluid pressure to seal thejoint. The greater the pressure,the higher the sealing load.

in any fluid handling system, valves are the controlling element . . .starting or stopping flow, regulating or throttling flow, preventingbackfiqw, or relieving and regulating pressure.

For twelve decades,’ Crane has provided solutions to flow prob-lems. And for almost the same period, Crane valves have beenuniversally accepted by industry for virtually every application.

For small or large lines, for service conditions ranging from vac-uum pressures and cryogenic temperatures to elevated pressuresand temperatures, or for tough corrosive applications, there’s aCrane valve to do the job . . . dependably.

GATECommonly used where minimum pressure drop isimportant. Serve as efficient stop valves with flowin either direction. Offer practically no resistanceto flow when fully open. Not recommended forthrottling or flow modulation because they exhibita flow characteristic curve not conducive to accu-rate and consistent flow control. Also, high veloc-ity across seats of a slightly open valve may resultin damage due to erosion. Therefore, normallyused in fully-open or fully-closed position.

GLOBEIdeal for throttling service bedause disc and seatdesigns provide flow characteristics in which pro-portionate relationships exist between valve .iiftand flow rate. Thus permitting accurate and re-peatable flow control.

Caution must be exercised to avoid extremelyclose throttling. Valve or piping damage and vibra-tion, or excessive noise, may be encountered ifvalves are throttled to provide a pressure dropin excess of about 20% of initiat pressure. This .iscaused by velocities at the restricted sectionsapproaching sonic velocity in the case of com-pressible fluids and by cavitation in the case ofnon-compresslbie fluids. When such conditionsare anticipated,. consult Crane customer servicesfor recommendations. I

ANGLEEffectively utilize the globe valve seating principlewhile providing for a 90° turn in piping. Anglevalves require fewer joints . . . save makeup timeand labor. Conditions regarding excessive thrutt-iing, as noted for globe Wves, also apply toangle valves.

1-

i.

i

Page 5: Crane Engineering Data 1

THE RIGHT VALVEFOR EVERY APPLICATION

SWING CHECKPrevent reversal of flow through pipelines. Offer low resistance to fhw‘hdare particularly suited to low velocityservice. Most Crane swing checks canbe installed in horizontal or verticalupward flow piping.

LIFTCHECKPrevent reversal of flow. Disc is seatedby backflow, or by gravity when thereis no flow, and is free to rise or faifdepending on pressure under it. Foruse in horizontal lines only.

TILTING DISC CHECKSimilar in application to swing checkvalves. In most installations, slammingwith resultant noise and vibration uponreversal of flow is minimized with thisconstruction.

STOP-CHECKEssentially the same as globe and anglevalves, except there is no mechanicalconnection between stem and disc.Generally installed in steam outlet pip-ing of a boiler when two or more boilersare connected to a common header.Must be installed with pressure underdisc. When the stem is raised, onlyboiler pressure can lift the disc. Valvewill not open until boiler pressurereaches header pressure.

Stop-checks also prevent backflow ofsteam from header to boiler. Operationis automatic; handwheel or otheroperating means is provided to permitsecuring the disc in seated positionduring boiler shut-down. K. +

BALL ri l

1

Feature quarter-turn, on-off operation,straight-through flow, minimum turbu-lence, low operating torque, tight cio-sure, compact design and light weight.Crane offers three different designs. . .fixed bafi, fioeting bail and double trun-nion with top entry, end entry, or bottomentry. . . to “job-match” each appiica-tion. Avaifabie with threaded, sold&r-joint,, or flanged ends.

BUTTERFLYAlso, in the “quarter-turn family.” Rec-ommended for on-off service and, insome cases, for non-critical throttlingappi ications. Valves have elastomerseats ancj seals. Are widely used inpaper mills, cement mills, chemfcai andfood processing pianis, water filtrationplants, petroleum product lines, etc.Wafer, lug wafer, and two-flange valvesavailable. .

COCKS AND STOPSLeast complicated of the basic valvetypes. When opening a gate or globevalve, the disc is lifted out of the pathof the fluid; in the cock, a plug is turnedto provide an opening which coincideswith the opening in the body. The aiign-ment of these two Openings (with theplug in wide open position) affords athrough passage for the fluid. Straight-way (two-way), three-way, and four-waypatterns with threaded or flanged endsare available. .

CONEPlug-type valves that can be actuatedby several types of controls to satisfyspecial requirements. Used as shutoffsin water systems or as pump dischargecheck valves. Specially fabricated iniron or carbon steel in sizes from 6 to484nch.

SLIDE.For special applications in petroleum refineries and COboilers. Essentially, enormous throttling valves used tocontrol flows of erosive catalysts, slurries, and flue gases.Special disc slide and ceramic liner make them ideal forcontrol of erosive flows. Custom built, usually of carbon oralloy steel. Sizes up to 854nch are operating successfully.

OTHER FLOW PRODUCTSThe Crane line also includes foot valves for use in suction‘fines on shallow well pumps and similar services, as wef fas a variety of specialties such as sediment separators,exhaust heads, and swing joints. Vaive accessories avaii-able include cylinder, gear, and motor operators, chainwheels, floor stands, extension stems, etc.

Page 6: Crane Engineering Data 1

1. ForewordThe information on pages 6 to 9 provides a simple accountof the SI metric system of units. General guide rules andrecommendations on the use of the units and symbols inactual practice are included and tables are provided showinga selection of SI units for general usage.

The principle sources of information used in the prepa-ration of this bul’letin have been Recommendation RlOWof the International Organisation for Standardization (ISO)and publication PD5666 issued by the British StandardsInstitution. Should further information be required on anyspecific aspect of the St system, not covered or made clearin this catalogue reference should be made to Crane Ltd.

2. lntmdwtionThe change to a metric system in the United Kingdom istaking place at a time when a rationalised system of metricunits, the St system, is coming into international use.

In 1964 a rationatised and coherent system of measurement. using six basic units was adopted by the General Conference

of Weights and Measures (C.G.P.M.), a world bodyresponsible for maintaining standards of measurement, ofwhich the U.K. is an active member. In 1960 this systemwas given the title “Systame International d’llnite’s”, forwhich the abbreviation is SI in all languages, and the.C.G.P.M. recommended that it should be taken into useinstead of existing metric systems. In 1962 both theInternational Organization for Standardization (ISO) andthe International Electrotechnical Commission (I EC.)endorsed that recommendation.

3. The Sl System3.1 The SI system of units includes the following:-

( a ) Base units(b) Supplementary units(c) Derived units(d) Decimal multiples and sub-multiples, formed by

the use of prefixes.

Note: The name “SI units” is reserved for the coherentunits only, i.e. (a), (b) and (c) above. In the senseimplied here coherent means that the product orquotient of any two units in the system will-provide theunit of the resultant quantity.

sm BaseUnitsThere are seven base units:-

Quantity Unit Name Unit Symbollen@h metremass kilogram .ztime second Selectric current ampere Athermodynamic temperature kelvin Kluminous intensity candela cdamount of substance mole mol

for definitions of the base units see facing page 5.3.3 Supplementary Units

The SI units for plane angle and solid angle, the radian(rad) and the steradian (sr) respectively are calledsuppNmentary ‘units.

3.4 Derived UnitsGenerally, the .expressions for derived SI units arestated in terms of the base-units, for example, the SIunit for velocity is metre per second (m/s) and fordensity, kilogram per cubic metre (kgIm3). In someinstances, however, the derived St units have specialnames and symbols. Those approved by the C.G.P.Mare listed below:

Quantity

frequencyforcepressure and stresswork, energy, quantity of heatpowerquantity of electricityelectric potential, potential difference, tension,electromotive forcee tectric capacitanceelectric resistanceelectric conductanceflux of magnetic induction, magnetic fluxmagnetic flux density, magnetic inductioninductanceluminous flux

illumination

Name ofSl Unit

hertznewtonPascaljouleW a t t

coulomb

voltfaradohm@ensweberteslahenrylumenlux

Symbol

HZNPa3WC

vFnSWbTHImlx

Expres@ in terms of Sl bae-unitj; derived units orsupplementwy units

1 Hz = t XycJe/s1N = 1 kg m/s21Pa = 1 N/m21J = 1Nmtw = 1 J/s1C = 1As

1v = 1 W/A.‘1 F = lAs/V1fI = t V/A1 s = In-1lWb= lVs1T = 1 Wb/mz .1H = 1 V s/A1 lm = 1 cd sr1 lx = 1 tm/m2

7

Page 7: Crane Engineering Data 1

3.5 Decimal Multiples and Sub-MultiplesA l t h o u g h the St units are Preferred it will not bepractical for everyday use to limit usage to these andtherefore their decimal multiples and sub-multiples willalso be used. These are formed by using the followingprefixes:

Factor by which theunit is multiplied

101210s10s‘103to210to-110-z10’310-e10-glo-12t O-15to-‘8 .

Prefix

tera 1

gkw G

mega Mkilo khecto hdeca dadeci dcenti C

milli mmicro Nnano npica Pfemto fatto a

Symbol

3.5.1 When a prefix is added to a unit it is considered tobe combined with that unit, forming a new unitsymbol which can be raised to a Positive or negativepower and which can be combined with other unitsymbols to form cornpound units. When a combinedprefix and symbol is raised to a Positive (or negative)power they must be consideied as one wholeindividual unit and not as separate entities.

Example: 1 cm3 = 1 [an)3 = (lo-2m)3 = lo-6m3not, 1 c(m3) = tO-2(m3) = lO-2m3

That is, lcrn3 (one cubic centimetre) is onemillionth of a cubic metre, and not onehundredth of a cubic metre as it appears if theprefix and unit are considered separately.

3.52 Compound prefixes should not be used, forexample, t O-9 metre is written 1 nm (nanometre) andnot 1 mum (milli-micrometre).

3.5.3 It is recommended that only one prefix be used informing the de&M multiples or sub-multiples of aderived Sl unit and that this should appear in thep.umerator of an expression. However, this will notalmys ma’ke for convenient usage and in certaincases a prefix may be attached to both numeratorand denominator in the same expression ati some-times o’nly to the denominator.

3.5.4 The u$e of prefixes representing 10 raised to apower which is a multiple of 3 .is especially recom-mended but again it will not always be convenientto follow this practice. -

3.6 Calculations

In order to avoid errors, it is strongly r-mendedthat in all calculatio-ns only basic or derived Sl units beused and not their decimal multiples and sub-multiples.

4. kunerical Values4.1 When a quantity is expressed in terms of a numerical

value and a unit or units; it has been found suitable inmost applications to use units resulting in numerical

values between 0.1 and 1000.

Units which are decimal multiples and sub-multiples ofthe SI uoits should therefore, be selected to providenumerical values in this range.

e.g. Observed or Cal- Can be Expressedculatd Values at-

12OOON l?kN0.003 94 m 3.94 mm14 010 N/m2 14.01 kN/m20.0003 s 0.3 ms

It would not be reasonable to apply this rule consistently.In the case of tabulated numerical quantities, forexample,. it is often appropriate to use the same unitthroughout fhe table and the numerical values mightthen welt exceed the preferred range of 0.1 to 1000.

5. ExceptionsAn important principle laid down by the IS0 is that anyunit, be it non-S1 or, a non-preferred.multiple of an SI unit,shall, if it at present enjoys international recognition anduse, continue to be used.

The most important units in thi! category are:

5.1 TimeIn addition to the second, the units minute, hour, d-ay,week, month and year, which are truly international,will continue in use.

5.2 Plane AngleAlthough the supplementary St unit is the radian, thiswill be used only where it is considered to be the moreconvenient unit, e.g. in certain scientific and techno-logical calculations. Othennrise we shall continue todivide the circle into 360 degrees and the degree intominutes and seconds.

5.3 TemperatureThe strict S I unit is the kelvin (K) relating to theabsolute or thermodynamic scale. Customary tem-peratures will be measured in degrees Celsius (OC),hitherto called Centigrade. This is a change i n n a m eo n l y . The degree intervals on the Kelvin and Celsiusscales are identical but whereas 0 kelvin is absolute zero,0 Celsius is the temperature of melting ice.

6. Special Cases6. t Mass and,Weight (force)

Strictly the mass of.a body is the quantitg of matter init while the weight of a body is the downward forceexerted upon it by the earth’s gravitational pull. Thisforce varies slightly over the earth’s surface. but may beregarded as constant for most Practical purposes. Thusweight can be regarded as being proportional to massad fbr all customary uses it will be quite satisfactory tocontinue our Present wactice of referring to weight,when we really mean mass. The units of measurementbeing the kilogram etc. in place of the presentavoirdupois units.

Page 8: Crane Engineering Data 1

r 1

1 CRANE (Engineering Data

Gerlerdl .

When it comes to calculations involving weight as a forcethe unit to be used within the framework of the SIsystem is the NEWTON. This name has been given tothe force unit which will produce unit acceleration in abody having unit mass, Applying the principle ofNewton’s second law of motion we then have:

Unit F&X =

1 newton =

in symbols, 1N =

The corresponding equationsmetric M.K.S. systems are:

1 lbf =

1 kgf . =

Unit Mass x UnitAcceleration1 kilogram x 1 metre/N?CWld*

1 kg x 1 m/s*

in existing British and

1 lb x 32.17 ft/s2(British)1 kg x 9.807 m/s*(M.K.S.)

where 32.17 ft/s2 and 9.807 m/s* represent the accelera-tion due to standard gravity in British and metric unitsrespectively. Cleariy neither of these two equations hasthe coherent relationship between units contained by theequation in SI units. ’ *Note: Although gravitational acceleration does not

enter the equation for force in terms of basicS1 units it must still be taken into considerationin atl problems directly concerned with theforce of gravity. See example given under 8.,“Gravitational Acceleration”.

6.2 Pressure and StressSince the unit of force is the newton it follows that theexpression for pressure and stress,*ould be in newtonsper unit area and in fact the preferred Sl unit is newtonper square metre (N/m*). The name pascal (symbol Pa)has been adopted as the special name for this unit(1 Pa = 1 N/m%

The unit N/m* should always be used for calculationsbut use will also be made of the multiples kN/m* andMN/m* or its numerical equivalent of N/mm*, wherequantities are more conveniently expressed in such units.

In many engineering fields including those associatedwith fluid control, the ‘BAR’ (10sN/mm2 ) is being usedfor fluid pressure and most international and nationalstandards, including British Standards, quote this unit.One bar is equal to 14.5 Ibf/in2 (nearly one atmosphere)and this is considered to be a practical unit of measure-ment for most fluid control applications.

Agreement on the use of N/mm* for expressing strengthproperties of steel has been reached by the ISOTechnicatCommittee concerned with such matters and this appearsto be the unit most likely to be adopted for expressingstress properties of metals in general. In some fields thehectobar (hbar) may be used. This is equal to 107 N/m*which approximates to 1 kgf/mm*, a unit presently inuse in sww European countries.

7. Energy and Power

7.1 Energy. .

Irrespective of its form, whether as mechanical, heat orelectrical, tb SI unit of energy is the JOULE. This isdefined as the work @one when the point of applicationof a force of one newton is displaced through a distanceof one metre in the direction of the force. In SI unitsthen:-

1 joule = 1 newton x 1 metreor 1J = 1Nm

7.2 PowerThis is the rate at which energy (or work) is expendedand in terms of St units may be expressed as joules persecond (J/s). The name given to the unit of power istheWATT and equated to joules per second we have .-

1 watt = 1 joule per secondor 1W * 1 J/s

8. Gravitational AccekationAs already mentioned this must still be considered inproblems .directly concerned with the force of gravity. Asimple example may serve to illustrate the point.

Problem: A mass of 100 kilograms is to be raised to aheight of 10 metres in 30 setinds.Calculate the theoretical power needed to dothis work.

Basic Equation: Force = Ma& x Acc&eration

In SI Units: 1N = 1 kg x 1 m/s* or 1 kg m/s*Standard gravity produces a downward acceleration of9.807 m/s* (g), see para. 6. I. .Oownward force on mass of 1 kg is, therefore:

1 kg x 9.807 m/s*= 9.807 kg m/s2

Force needed to raise a mass of 1 kg must, therefore, be atleast 9.807 N and for 100 kg the re&&d force must be100 times this amount, that is,

100 x 9.807 N = 980.7 N

Height lifted is 10 metres, .*. work done (Energy)

= 980.7NxlOm= 9807Nm

OR Cmetre = 1 joule)

Time to do this work is 30 seconds, . . rate of doing work(Power)

= 9807J30s

= 327 J/s approx.OR 327 wat& W) approx.l --+-(slrtce 1 Joule SecorKJ = 1 watt)

The above example shows that a mass must be multipliedby ‘g’ to obtain the gravitational force, in newtons, actingon the mass. This will apply in ail design calculatioris whereweight is a consideration, e.g. in structures. On the otherhand, for calculations on dynamic systems, i.e. thoseinvolving accelerations, the factor ‘g’ will not appear.

Page 9: Crane Engineering Data 1

Engineering Data

General

For common uses, such a s safe working loads of liftingdevices and permissible floor loadings, weight and mass willbe regarded as synonymous. Thus in the cases mentioned,safe working loads will be expressed in kilograms (kg) andfloor loadings in kilograms per square metre (kg/m*).

9. Presentation of Symbols and Prefixes9.1 Combined Symbo8s

When primary units are used in combination to form’derived units, a small space should be left between theprimary units,

e.g. N m (newton metre)kg m (kilogram metre)N s/m* (newton second per metre*)

9.2 Symbol with PrefixPrefixes are to be placed immediately in front of, andclose to, the unit symbols, ’

e.g. MN bwpmwton~kJ (kilojoule)

9.3 Symbol with Numerical ValueWhen’ a numerical value is attached to a symbol orsymbols, a small space should be left between thenumerical value and the first symbol,

e.g. 15m8.6 kg m

9.4 PluralsS i n g u l a r aild plural quantities have the same symbol,

e.g. 1 m25m

T’

The suffix Is’ must not be used to indicate plurality./ ‘s’ is the symbol for the time unit second.

9.5 Symbd Name in FullUnits may be written in full if this is thought desirableto avoid any misunderstanding. This should always bedone in the cases of titre and lux, where the symbolsare “I” and “lx” respectively,

e.g. Me, instead of I

9.6 Raising to a PowerSquaring. and cubing indices, e.g. m*, m3 may bereplaced by sq. and cu.tirespectively if difficulties arisein use of typewriters and &her office machines.

9.7 LetteringCare to e taken to use the correct type of letters for

tounit sym Is and prefixes. In some cases small Jettersare used and in other cases capital letters,

e.g. Units Prefixesmetre m millikilogram kg hecto. F:newton N mega Mjoule 3 gisa G

I)Unless used at the beginning of a sensence, or for someother special reason, small letters are used for the namesof all units, including the first letter,

e.g. kilogram, not Kilogram

9.8 Symbol ‘m’Caution should be taken in the use of the symbol ‘m’ asthis can mean the unit metre or the prefix milli (10-S).When used for metre there should be a definite spacebetween it and the second symbol and when used for

milli it should be placed as close as possible to the unitsymbol.

e.g. m s meaning metre secondms meaning mil I isecond

10. Presentation of Numerical Values10.1 Decimal SW

A point is to be used to separate whole numbers fromthe decimals.. It should be bold, given full letter space,and placed OR .the bsseiine,

e.g. 234.510.2 Cipher ‘0’

When a dimension is less than unity, the decimal sign isto be preceded by the cipher ‘0’.

e.g. 0.12

10.3 Number GroupingTo facilitate the reading of numbers consisting of morethan four digits on &her side of the decimal sign, thedigits shwld be separated into groups of three counting.from the decimal sign towa* the !eft and the right. Asmall sp8ce should separate each group, never 8 commawhich is used in Europe as a decimal sign. Four figurenumbers naed.not be grouped,

e.g. 48 289.51.035 260.5686

1532

11. Selection of SI Units, Muhipk and OtherUnits ,

Tables of S( units, multiples, sub-multiples and other unitsfor the use of Group companies operating in the U.K. are8ttached. .

.

.

These tables include the quantities and units considered tobe most commonly used in the Group operation and also anumber of others less frequently used. It is not intendedthat the lists should be comprehensive, even in resl#ct toour own requirements, and if information is needed onunits not included in the tables, reference may be made tothe following publications:

IS0 Recommendation RlWOBSI publication PO5686, April 1972 issueB.S.350 - Conversion Factors and Tables

Parts 1 and 2 and Supplement No. 1 (1967)to B.S.350:Part 2: 1962, PD6203.

National Physical Laboratory publication “Changing tothe Metric System

9

Page 10: Crane Engineering Data 1

Engineering Oata

CONVERSION .EQUIVALENTS

The following conversions have generally been based on l3S 350; The degree ofrounding has been adjusted to an extent considered to be of value to ‘a practicalengiWer.

LENGTH. millimetre . _ centimetra metrc inch foot Yard

110100025.4304.8914.4

0.11loo2.5430.4891.44

m in ft * ydI

0.001 0.0394 0.0033 0.00110.01 0.3937 0.0328 0.01’091 39.3701 3.2808.. 1 AI0360.0254 1 0.0833 0.02780.3048 12 1 0.33330.9144 36 3 1

.\

1 kilometre = 1000 metres = 0.62137 miles1 mile = 1609.34 metres = 1 SO934 kilometres

millimetre centimetre metre inch foot ifadmm’ cm2 m’ in2 f? vd2- ~~1 0.01 lOA 1.55 x lo* 1.076 10"x 1.196x106100 1 lo-' 0.155 1.076xlO~ 1.106 x lo-4loi lO.OaI 1 1550 10.764 1.196645.16 6.4516 6.452x lo-* 1 6.944 x 10" 7.716x 10"92 903 929.03 0.093 144 1 0.111836 127 8361.27 0.836 1296 9 -1

~VOLUME (1)cubic cubic cubic cubic cubic cubicmiClimetre centimetfe metre inch foot yardmm= cm8 ma in’ u vd’

cc. 1 0.001 l(j-9 6.1 x IO-’ 3.531 x lo- 1.308 x xi-'loo0 lo-‘ 0.061 3.531 x 10-s 1.308 x lo-‘10’

: a1. 610 24 35.31 1.308

16 387 16.39 1.639 x lo-s 1 5.787 x 10’ 2.143 x 10-s *2.832x 10' 2.832x 10' 0.0283 1728 1 0.03707.646 x 10' 7.646 x 1 OS 0.7646 4 6 6 5 6 27 1

.VOLUME (2)

Cubicmetrema

litre ~llif’~ UK gallon US gallon

I ml UKd .-al

1 1000 lO@ 264.2 ’0.001 1 1000 0.22 0.2642zA455 ‘6 4.546 0.001 . 4546 1 2.2 1 x . lo-4 2.642 1.201 x 1o-4

0.00378 3.785 3785 0.8327 1

1 litre = 10’ mm3 = 103 cm3 or 1 cubk dscimetra (1 drn31 wi1 litm - 1.76 UK pints

Page 11: Crane Engineering Data 1

Engineering Data

Genadl *~CRANEI

PROPERTIES OFSATURATED STEAMIMPER tAL UNIlS

Vacuum Btu per pound Btuper poundPounds orpounds volume Pounds Pounds Volumeper sq.in. per sq..h Temp. cu. ft. 8emsiMe Latent Total par $q.in. per sq:m. Temp. cu. ft. Sensible Latent Totalabdute gauge *F perlb. Heat hat Hegt absotvte gauge *F petlb. Heat Heat Heat

, ,V8cuum .v ::*

LS-Q

, v ’ :- I-;

I !

1.0 27.96 101.76 333.90 8B.W 1035.3 1105.0 70.0 55.31 302.92 6.203 272Jla 907.42 0

117o.g25.91 - 126.10 173%6 93.97 1021.6 1115.6 72.0 57.31 304.82 6.041 274.45 906.0 1180.5

3-O 23.87 141.49 118.86 109.33 10127 11220 74.0 59.31 308.88 5.607 276.37 .QO4.6 1181.04.0 21.83 152.99 90.74 120.83 1005.9 1126.8 76.0 61.31 308.60 5.741 278.25 903.2 1181.55.0 19.79 162.25 73.61. 130.10 1000.4 1130.6 78.0 63.31 310.28 5.602 280.m 901.9 11820

8.0 17.75 170.07 6205 137.92 995.8 1133.7 80.0 65.31 312.03 5.470 281.90 900.5 1182.47.0 15.70 176.85 53.70 144.71 901.7 1136.4 82.0 67.31 313.74 5.343 283.67 899.2 118298.0 13.66 18287 47.39 150.75 9881 1138.9 84.0 69.31 315.42 5.222 285.42 897.9 1183.49.0 11.62 188.28 4244 156.19 B84.8 1141.0 86.0 71.31 317.08 5.107 287.13 896.7 1183.5

10.0 9.58 193.21 38.45 161.13 981.8 1143.0 88.0 73.31 318.68 '4.997 288.80 805.4 1184.2

11.012.013.014.014.6Q6

7.545.493.451.410.00

Poundsp8rsq.h.0.311.312313.314.31

197.75 35.17 165.68 979.1 1144.8 90.0 75.31 320.27 4.892 290.45 894.2 1184.6201.96 32.42 168.91 976.5 1146.4 92.0 77.31 321.83 4.791 292.07 893.0 1185.0205.88 30.08 173.85 974.1 1147.9 94.0 79.31 323.37 4.694 2B3.67 891.8 1185.4209.56 28.08 177.55 971.8 1149.3 96.0 81.31 324.86 4.602 2a5.25 890.6 1185.821200 26.82 lSO.00 970.2 1150.2 98.0 83.31 326.37 4.512 296.80 889.4 1186.2

15.016.017.018.019.0

213.03 26.31 181.04 969.6 1150.6216.32 24.76 184.35 967.4 1151.821 a.43 23.40 187.48 965.4 11529222.40 22.18. lBOA8 063.5 _ 1154.0225.23 21.08 193.34 061.7 1155.0

100.0 85.31 327.83 4.426 298.33 888.2 1186.6-

'202.0 87.31 329.27 4.344 299.83 887.1 1186.9104.0 69.31 330.68 $4.265 3Ol.r) 886.0 1187.3 .I

106.0 91.31 332.08 4.189 302.76 884.9 1187.6 _a108.0 93.31 333.44 4.115 304.19 883.8 1188.0

20.0 5.31 227.98 20.095 lB6.09 959.9 1156.022.0 7.31 233.07 18.380 201.25 956.6 1157.824.0 9.31 237.82 16.941 206.05 953.4 1150.526.0 11.31 24225 15.718 210.43 o50.4 1161.028.0 13.31 246.41 14.664 214.75 947.7 11624

110.0 95.31 334.79 4.044 305.61 882.71120 97.31 336.12 3.976 307.00 881.6114.0 99.31 337.43 3.910 a3.36 - 880.6116.0 101.31 338.72 3846 309.71 879.5118.0 103.31 340.01 3.784 311.05 878.5

1168.31188.6 .1188.91189.21189.5

30.032.034.036.038.0

40.042.044.046.048.0

50.052054.056.058.0

60.062.064.066.068-O

15.31 250.34 13.745 218.73 945.0 1163.717.31 25405 12940 222m 9425 1165.019.31 257.58 12226 226.09 940.0 1166.121.31 260.94 11.587 229.51 9 3 7 . 7 1167.223.31 264.16 11.015 23279 935.5 1168.3

120.0 105.31 341.26 3.725 312.37 877.4122.0 107.31 34250 3.670 313.67 876.4124.0 109.31 343.73 3.616 314m 875.4126.0 111.31 344.94 3-560 316.23 874.4128.0 113.31 346.14 3.505 317.49 873.4

-1189.8 -1190.11190.41190.6lloo.s

25.3127.3129.3131.3133.31

35.3137.313Q.3141.3143.31

45.3147.3149.3151.3153.31

267.24 10.497 235.93 933.3 1169.2na21 10.027 238.95 931.2 1170.2273X@ 9.5BQ 241.86 o29.2 1171.1275.81 9.207 244.67 927.2 1171.9278.45 8.846 247.37 925.4 11727

' 30.0 115.31 347.31 3.451 318.73 8724 1191.2132.0 117.31 348.48 3.401 319.95 871.5 1191.4134.0 119.31 348-64 3.353 321.17 870.5 1191.7136.0 121.31 350.78 3.306 32237 869.6 1191.9138.0 123.31 351 .a1 3.260 323.56 868.6 11922

281.01 8.514 24o.98 923.5 1173.5283Ja9 8.206 25252 921.7 1174.3285.90 7.919 254.99 920.0 11750286.23 7.653 -7.38 918.3 1175.7290250 7.405 259.71 916.6 1176.4

140.0 125.31 353.03 3.216 324.74 867.7 119241420 127.31 354.14. 3.173 325.91 866.7 11926144.0 129.31 355.22 3.130 327.06 865.8 1192%146.0 131.31 356.31 3.089 328.20 864.9 1193.1148.0 133.31. 357.37 3.049 329.32 884.0 119x3

292.71 7.172 261.98 915.0 i i n . 0294.sg 6.955 264.18 913.4 lln.6296.94 6.749 266.33 911.9 1178.22Qa.m 6.556 268.43 910.4 1178.8300-m 6.375 270.49 908.9 1179.4

150.0 1s31 358.43 3.010 330.44 863.1152.0 137.31 350.47 2972 331.54 8622154.0 139.31 360.51 2935 zp2.64 861.3156.0 141.3.1 361.53 2900 333.72 860.4158.0 143.31 382.54 2864 334.80 859.5

119351193.71193.9llo4.11194.3

Page 12: Crane Engineering Data 1

Engineering Data

. Generdl

PROPERTlES OFSATURATED STEAM

IMPERIAL UNITS -

mu per pound 8tu per poundPounds Pounds .volume Pounds Pounds Volumepr sq.in. per sq.in. T$TIfJ. Cu. ft. Sensible Latent Total per sq.in. per sq.in. Temp. cu. ft. Sensible Latent Total~absolute gwQ8 per Ib. Heat Heat Heat abohte gaup “F per lb. l-bet Heat Heat. .

v.

. 160.0 145.31 33.55 2830 335.86 858.7 1194.5162.0 147.31 364.54 2797 336.91 857.8 1194.7164.0 149.31 365.52 2764 337.95 857.0 i 194.9166.0 151.31 366.50 2733 338.99 856.1 i 195.1168.0 153.31 367.46 2701 340.01 855.2 1195.3

170.0172.0

-, 174.0

D- 178.0 176.0 -.

155.31157.31159.31

.l61.31163.31

368.42 2671 341.03 654.4 1195.4369.37 2641 34204 853.6 1195.6370.31 2612 343.04 852.7 1195.8371.24 2584 344.03 651.9 1196.0372.16 2556 345.01 851.1 1196.1

180.0 165.31 373x8 252a 345.99 850.3 1 la6.31820 167.31 374.00 2.502 346.97 849.5 1196.4184.0 ma.31 374.90 2476 347.94 848.6 1198.6166.0 171.31 375.78 2451 348.89 847.9 1 lB6:8188.0 173.31 376.67 2425 349.83 847.1 1196.9

190.0 175.31 377.55 2.401 s0.n 646.3 1197.0192.0 177.31 378.42 2377 351.70 845.5 i 197.2194.0 179.31 37a.27 2353 352.61 644.7 1197.3la6.0 181.31 380.13 2.330 353.53 844.0 1197.5198.0 183.31 380.97 2307 354.43 843.2 1197.6

200.0 185.31 381.82210.0 195.31 385.93220.0 205.31 3aQ.89230.0 215.31 3Q3.70240.0 225.31 397.40

2.1602m41.99641.9156

35533 0424 1197.8369.76 838.6 1 la&4364.02 835.0 i i 99.0368.14 * 631.4 1199.637213 827.9 1200.1

250.0 235.31 400.97 1.8410260.0 245.31 404.43 . 1.7723

- 270.0 255.31 407.79 1 .%I83

376.02 824.5 woo.5379.78 821.2 1201.0*383.44 818.0 1201.4387.m 814.7 1201.8

796.6790.9765.3

290.0 275.31 414.24 .1,5B34 390.50 811.6

300.0 285.31 417.33 .1.5414 3a3.90 808.5320.0 305.31 423.29 l-r1469 400.47 802.5_340.0 325.31 428.96 1.3630 406.75360.0 345.31 43449 1.2881 41280380.0 365.31 439.59 1.2208 418.61

400.0 385.31 444.58 1.1601 424.2420.0 405.31 449.38 1.1047 429.6440.0 425.31 454.01 1.0540 434.8460.0 445.31. 458.48 1 AJo77 439.94’80.0 465.31 -‘. 462.80 0.9653 444.9

500.0 485.31 466.99 0.9261 449.7520.0 505.31 471.05 0.8899 454.4540.0 525.31 474.99 0.8562 459.0560.0 545.31 478.82 0.8247 463.6580.0 565.31 48255 0.7952 468.0

(wo.0 585.31 0.7677 472.3620.0 605.31 0.7419 476.6640.0 625.31 0.7175 480.8660.0 64S31 0.6948 484.9680.0 665.31 0.6732 q.9

12021

120241203.01203.41203.71203.9

no.8n 4 . 5789.3764.1759.0

1204.11204.11204.11204.01203.9

754.0749.0744.1739.3734.5

1203.71203.51203.21202.912025

466.17(489.71493.16496.53499.82

729.8725.1720.5715.9711.3

12021 .1201.71201.212OO.812och2

700.0 685.31 503.04 0.6527 4929 706.8 i 199.7720.0 706.31 506.19 0.6334 496.8 702.4 1199.2740.0 725.31 509.28 0.6151 5W6 697.9 1198.6760.0 745.31 51230 0.5977 504.4 693.5 1198.0780.0 765.31 515.27 0.5811 508.2 689.2 i 197.4

800.0 785.31 518.18 . 0.5653 511.8 684.9 1196.7

. .

3t

Page 13: Crane Engineering Data 1

Engineering Data

&fWYdi *ICRANEI

PROSATsi u

‘ERTIES OFJRATED STEAM .

UTS

Abs.PremTemp.

bar OC

SpecificVol.sr\'/kg

Specific Enthalpy Abs. Prtim. Temp.

JcJml baf "c

Specifii Specific EnthalpyVol.ti' IJcg kJ/kg

* “9 h9

o.1 45.833 14674.6 191.8 2392.9 2564.80.2 60.086 7649.8 251.5 2358.4 2809.90.3 69.124 5229.3 289.3 2336.1 2625.4a 4 75.886 3993.4 317.7 23t9.2 2636.9

0.5 81.345 3240.2 340.6 2305.4 2646.00.6 a5254 2731.6 35a.a 2293;6 2653.60.7 89,959 2364.7 376.8 2283.3 2660.10.8 93.512 2m7.0 3al.7 2274.0 2665.80.9 96.713 166a.2 405.2 2265.6 2670.9

1.0 99.632 1693.7 417.5 2257.9 2675.41.1 102.317 154a.2 426.8 2250.8 2679.612 104.808 1428.1 439.4 2244.1 2663.41.3 107.133 1325.1 449.2 2237.8 2687.01.4 109.315 1236.3 458.4 2231.9 2690.3

1.5 111.372 1158.0 467.1 2226.2 2693.41.6 113.326 tOa1.j . 475.4 2220.9 2696.21.7 115.170 io30.a 463.2 2215.7 2699.01.8 116.933 97723 490.7 2210.8 2701.51.9 118.617 929.00 497.8 22m.l 2704.0

2 0 120231 885.4421 121.760 845.9022 123.270 809.892 3 124.705 776.812 4 126.091 746.45

2’3.517.6523.7529.6

2201.6 2706.32197.2 2708.52193.0 n1o.e2188.9 271262w4.9 2714.5

2 5 127.430 718.44 535.3 218,l.O 2716.426 128.727 68251 .54Q.Q 2177.3 nl8.227 129.a64 888.44 546.2 21736 2719.928 131.203 646.04 551.4 2170.1 2721.529 132.386 625.13 556.5 2166.6 2723.t

3.0 133.540 605.56 561.4 2163.2 2724.73.1 134.661 587.22 566.2 215a.Q 2726.13.2 135.753 589.99 570.9 2156.7 n27.63.3 ma19 553.76 575.5 2153.5 2729.03.4 137.658 538.46 579.9 2150.4 2730.3

3.5 138.873 524.00 584.3 2147.4 2731.63.6 139.865 510.32 588.5 2144.4 2732.93.7 140.835 497.36 5927 2141.4 2734.13.8 141.764 fa8505 5a6.8 2138.6 2735.33.9 142713 473.s -8 2135.7 2736.5

4.0 143.623 462.22 604.7 2133.0 2737.64.2 145.396 441.50 6123 2127.5 2739.84.4 147.090 42260 619.6 2122.3 n4t.a4.6 148.729 405.28 626.7 2117.2 nea4.8 150.313 389.36 633.5 21122 2745.7

5.0 151.844 374.68 640.1 2t07.4 n47.55.2 153.327 361.08 646.5 2102.7 n49.35.4 154.765 348.46 6528 2098.1 2750.95.6 156.161 336.71 650.8 2m3.7 275255.8 157.518 325.74 664.7 2089.3 2754.0

6.0 158.838 315.47 670.4 2m5.0 2755.56.2 160.123 W5.85 676.0 2080.9 2756.96.4 161.376 296.81 681.5 2976.8 2758.26.6 162.598 288.30 088-a 20727 2759.56.8 163.791 280.27 6920 2068.8 2760.8

7.0 164.9567.2 166.0957.4 167.2697.6 166-m7.8 . ma.368

2064.92061.12057.42653.72056.1

276202763.22764.

bJ+276,:2766.+ !

8.0 170.4158 2 171.4418.4 172.4488.6 173.4368.8 174&E

2046.5 2767.52043.0 2768.52039.6 2769.42636.2 2770.420328 2771.3

9.0 175.3589.2 ~176.294a.4 i n . 2 1 49.6 176.1199.8 179,UlQ

2 W . 5 27721 -2026.2 2773.02023.0 2773.82019.8 2774.62016.7 n75.4

10.0 179.88410.5 18201511.0 184m711.5 186.048120 187.981

2.013.6 2776.22005.9 2778.0laQ8.5 n79.7 fl1991.3 ns1.31984.3 27827

-125 189.81413.0 191.6Oa13.5 193.35014.0 195.04214.5 19&688

1977.4 2784.11970.7 2x64lm4.2 2786.61957.71951.4

2787.8-2788-f

15.0 196.28915.5 199.85016.0 201.37216.5 26285717.0 204.397

17.5 205.72518.0 207.11118.5 208.46819.0 2Oa.79719.5 211.699

272.68 697.126550 7o2.0258.70 706.9252.24 711.7246.10 716.3

240.26 72o.a23439 725.4229.38 72a.a224.30 734.2219.45 738.5

214.81 742.6210.36 746.8208.10 750.8202.01 754.8la8.07 758.7

194.2a 7626t85.45 772.0177.38 781.1~9.99 ‘189.9163.20 7a8.4

156.93 -7151.13 814.7145.74 622.5ML72 830.1136.04 837.5

131.66 644.7127.55 851.7123.6a 858.6120.05 665.3116.62 871.8

113.38 878.3110.32 884.6107.41 890.7104.65 896.8iO203 a02.8

1945.2 2789.91939.2 2790.81933.2 2791.71927.3 no261921.5 2793.4

1915.9iaia31906.71899.318a3.9

2794.12794.82795.52796.127a6.7

20.0 212375 &I.536 908.6 1888.6 n 9 7 . 221.0 214.655 94.890 920.0 1878.2 27a8.2220 217.244 aoB2 931.0 1866.1 2799.1m0 219.552 86.769 941.6 1858.2 2799.824.0 221.763 63.199 951.9 1846.5 2800.4

25.0 223.943 79.905 9620 1838.0 2800.926.0 226.037 76.056 971.7 1829.6 2801.427.0 228.071 74.025 961.2 1-5 2801.728.0 23oB47 71.389 990.5 1811.5 2802.029.0 231-m 68s28 999.5 18026 2802.2

32

Page 14: Crane Engineering Data 1

Engineering Data

- &dt

PROPERTIES OFSATURATED STEAM

S1 UNITS

Abs. Prsst. Temp.

bar OC

Specific Specific ErHhdPyVol.dm3/kg W/kg

Abs. Press. Temp.

her OC

spfxific sp8cific Enthslpyvol.dm’/ka Wkg.

s % ‘a hf hfa ha66.626 1008.4 1793.9 2802.364.467 1017.0 1785.4 2802362439 3025.4 1776.9 2 8 0 2 360.529 1033.7 1768.6 2802358.728 1041.8 1760.3 2802.1

h S

30.031.032033.034.0

223841235.666237.445239.183240.881

90.0 3033a39 92.0 304.88794.0 306.44396.0 307.97398.0 3UQ.479

‘a hf hfa hg.2oAQ!5 1363.7 1380.9la.964 13728 1368.619.455 1381.7 1356.318.965 1390.6 1344.1la494 1399.3 1331.9

2744.6 .2741.42736-O2734.72731.2

SO 24254136.0 244.16437.0 24575438.0 247.31139.0 a8.836

57.925 1049.8 17522 2802.055.415 lQ67.6 1744.2 2801.7 .53.666 1665.2 1736.2 2801.452438 1072.7 1728.4 2801.151.061 1060.1 1720.6 2600.8

laO.o 310.961 18.641 14m.o 1319.7 2727.7- 104.0 313.858 17.184 1425.2 1295.3 2720.6108.0 316.669 16.365 1442.2 1270.9 2713.11120 319.402 15.630 1458.9 1246.5 2705.4116.0 322.059 14.940 1475.4 1222.0 26Q7.4

4QO 250.333 49.748 lQBf.4 17129 2800.3 320.0 1324.646 14.263 1481.8 1197.4 2689.241.0 251.800 46.500 tOQ4.6 1705.3 2799.9 124.0 ~7.165 13.664 1508.0 11726 2660.6420 253.241 47.307 1101.6 16Q7.8 2799.4 128.0 32QJEi 13.078 1524.0 1147.6 2671.643.0 254.656 46.168 1108.5 1690.3 2798.9 132.0 z&.01$ 12523 1540.0 1122.3 2662344.0 256.045 45.080 1115.4 1-9 2798.3 136.0 334.357 11.996 1555.8 lOQ6.7 2652.5

45.046.047.048.049.0

257.411258.753260.074261.373262652

26c%a11266.373268.763271.086273.347

275.550277.697279.791281.837283.835

285.790287.702289.574291AO82Q3.205

2949682Q6.697298.3943oomo301.697

44.037 1122.1 1675.6 2797.743.039 1128.8 1668.3 2797.042Xl81 1135.3 1661.1 27s.441.161 1141.8 1653.9 2795.740.278 1148.2 1646.8 2794.9

140.0144.0148.0152.01sQ.o

336.643 11.495 1571.6 1070.7. 26424338.874 11.017 1567.4 1044.4 2631.8341.057 10.561 1603.1 1017.6 2620.7343b193 10.125 1618.9 QQ0.3 2609.2.345.282 9.7072 1634.7 seZ6 2587.3

50.052054.0a058.0

39.429 1154.5 1639.7 27Q4.2 160.0 347.328 Q-w76 1650.5 934.3 2564.937.824 1166.8 1625.7 2792.6 164.0 349.332 8.9248 1666.5 905.6 2572136.334 1178.9 1611.9 2790.8 lge.0 351.295 8.5535 1683.0 873.3 2556.334.947 1190.8 1598.2 2789.0 1720 363.220 8.1912 1700.4 842.6 2543033.651 120?.3 1584.7 2787.0 176.0 355.105 7.8395 1717.6 811.1 2526.7

6CLO62064.066.068.0

32.438 1213.7 1571.3 2785.0 180.0 356.957 7.4Q77 1734.8 778.6 2513.431;300 1224.8 1558.0 27629 184.0 358.771 7.1647 17521 745.0 24Qf.l312230 1235.7 1544.9 27&X6 188.0 360.552 6.8386 1788.7 710.0 2479.729.223 1248.5 1531.9 2778.3 lp2.0 3g2301 6.5173 1787.8 673.3 2461 .o28.272 1257.0 1518.9 2775.9 198.0 364.107 6.1979 1806.6 634.2 2440.7

70.032074.076.078.0

27.373 1267.4 1506.0 2773.5 200.0 365.701 58767 1826.5 591.9 2418.426.522 1277.6 1493.3 277OeQ 204.0 367.356 5.5485 1846.1 545.2 2s3.325.715 1287.7 1480.5 2768.3 208.0 366.982 5.2651 18725 491.7 2364.324.949 1297.6 1487.9 2765.5 2120 370.580 4.8314 1901.5 427.4 2328.924.220 1307.4 1455.3 2762.8 216.0 372149 4.3Q19 1939.9 341.6 2261.6

80.0820840m088.0

23.525 1317.1 14428 2759.922.863 1326.6 1430.3 2757.022231 1336.1 1417.9 2 7 5 4 . 021.627 1345.4 1465.5 2750.921.049 1354.6 1393.2 2747.8

220.0 373.682 3.7279 2011.1 184.5 2195.6

221.2 374.150 3.1700 2107.4 o-o 2107.4

Quantity&SSSWlTempersture8p8clfic volum88peciflc Enthdpy

SV-Pt

z

Unitbut (10’ N/m2 1OCdm3/kgI10-‘m”/ke)kJ/kg (10’ J/k@)

the following suffixes are used for s8tufation ~~49~:S saturation s~~ret#l liquida satur8t8d v8pour b -ion incmment TI& tgttdes of properties of satumtd and sum rteam ham

been qxtmct8d from “Sm Tabhs in S.I. Units - TlW~odyn~~Nmhite pressure = Gau#epr8ssum+ 1.013b8r8pprox. Pmpertim of wster and srsam” by pwm-&ion of the au&on andhb8r = 10’ N/m2 = 14.51bf/in2 wrox. publ’blws, the C8ntd Et8ctricity Generating Bawd.

Page 15: Crane Engineering Data 1

) CRANE)1 J

Engineering Data

b3di ’

ixPROPERTiES OF 54)ISUPERHEATED STEAMllMPERIAL UNITS

PressweIb./sq.in. s8tumted Totaltempwturs-Oegreeskhrsnheittempar;sture

Absolute Gqp OF

P P t 360" 4ocT 440° 48v 5oo" 6w 7ar 8cw aw" 1oooO 1200°w

14.688 0.0

2QO 5.3

30.0 15.3

40.0 25.3

50.0 36.3

ep.0 45.3

70.0 55.3

80.0 65.3

90.0 75.3

100.0 65.3

120.0 105.3

140.0 125.3

160.0 145.3

180.0 165.3

2WO 165.3

220.0 205.3

240-O 225.3

260.0 245.3

280.0 265.3

300.0 285.3

320.0 305.3

340.0 325.3

360.0 345.3

21200

227.96

25033

267.25

281.01

29271

30292

312.03

320.27

327.81

34i.25

353A2

w3.53

373.06

381.79

MA Al

VhVhVhVhVhVhVhVhVhVh

VhVhV

33.031221.124.211220.316.0721218.6120011216.99.5571215.27.9271213.46.7621211.55.8881209.75208i 207.74.6631205.738441201.63.2561197.3

34.68i23Q.a25.431239.216.8971237.9126281236.510.6651235.18.3571233.67.1361232.16.2261230.755081229.14.9371227.64.0611224.43.4681221.180081217.62.6491214.02.3611210.32125

=.m ,, 1266.5397.37 ': 1.9276

12025

404.42 ':

411.05 ;

417.33 'h

423.29 ':

426.97 E

434.40 ':

37.961277.627.861277.118.5281276.213.8621275.211.0621274.29.1961273.27.663127226.8621271.16.0641270.15.4621269.0

36.321256.826.651258.217.7141257.013.2471255.910.5671254.7a.7791253.57.502125236.5441251.1.5.7991249.85.2021248.64.3071246.03.6671243.33.187 .1240.628135237.825131234.92267ml.920621228.81.88821225.71.7368122241.60901219.11.49501215.61.3941121211.30411208.4

4.5271266.938601264.73.3591262.42Q6a1260.226561257.824001255.421871253.020061250.51.85121247.91.71651245.31.5865124261.49411239.91.40121237.1

38.781287.128.481286.618.9331265.714.1661284.811.3091283.99.403 '1286.08.041128207.0201281.16.2251280.153891279.1 .4.6361277.23.9541275.23.4431273.13.0441271.02.7261268.9.24651266.722471264.520631262.31.90471260.01.76751257.61.64721255.21.54101252.81.44641250.3

42861334.831.471334.4m-951333.815.6861333.1125321332.510.4271331.88.9241331.17.7971330.56.9201329.86.2181329.15.1651327.74.4131326.43.84Q1325.03.4111323.53.0601322.12772

46.941363.23&471382.922.Q6 *1362417.1981381.9'13.7441361.411.441i380.99.7961380.48.562137Q.Q7.603137Q46.8351378.95.6631377.84.661..l-378.84.2441375.73.7641374.733801373.63.066

1320.7 137262533 28041319.2 1371.52330 25621317.7 1370.42.156 23921316.2 1369.42005 22271314.7 1366.31.8734 2.0631313.2 1367.21.7569 1.Q5621311.6 1366.11.6533 1.84311310.1 1365-O

51.001432.337.461432.124-w1431.718.7021431.314.Q501430.912.44-Q1430.510.6621430.19.3221429.78.2791429.37.4461428+96.1951426.15.3611427.34.6311426.44.1101425.63m31424.833521424.03.6681423.228271422.326211421.524421420.622851419.821471419.020251418.1

55.071482-34oA51482126.l351481.8m.m1481.416.1521461.113.4521480.811.5241460.5io.on1480.18.9521479.88.0521479.66.7fK1478.85.7381478.25.015t4n.54.4521476.84.0021476.286341475.53.3271474.8

1474.226451473.526521472.82.4631472123341471.522021470.8

5a.131533.143.441533.028.951532721.701532.417.3521532114.4541531.9123631531.610.8301531.39.6231531.089656i530.87.207153Q26.1721529.75.3961529.14.7821528&4.3081528.03.9131527.53.5641526.933051526.380661525.828581525.226?81524.725181524.123761523.5

67.251637.549.411637.43 2 . 9 31637.224.691637.019.74-

14.oQ71636.3123321636.210.9591-9.9.8801635.78.2121635.37.0351634.96.1521634.55.4661634.1 74.9171633.74.467-1633..4.09316329'3.7761632535041632.182691631.73.0631631.328811630.927191630.5

’ ( ,f) ,-

v=specificvdume,cubicfeetperpound h=totalheetofste&,8tuperpoundExtract fromThemrodynrmicPropsrtierofSteambyJ.H.Kesnsnsnd F.G.Kcycrr,l&6Edition,by permissionofthspublishen,JohnWiley8tSon&Inc.

. .0’,. I

_-34

Page 16: Crane Engineering Data 1

Engineering Data

Pre~~ureIb./sq.in. 68tunWd Total temperature - Oegrem hhrenheittempwature

Absdute Gauge OF

P P t 5oo" 540° 6cJcr 6400 660° 700" 74oe 8oe Qcur lootr 1200"

500.0 485.3

520.0 505.3

540.0 525.3‘.

560.0 545.3

580.0 565.3

600.0 565.3

62ao 605.3

640.0 625.3

660.0 645.3

750.0 735.3

800.0 785.3

850.0 635.3

QOCLO 685.3

950.0 Q35.3

1ooo.0 985.3x

439.60 ;

444.59 ;

449.39 ;

454.02 ‘:

458.50 ‘:

46262 ;

467.01 ':

471.07 ':

475.01 ;

478.85 ;

46256 ':

466.21 'h

489.75 ;

493.21 ;

496.58 ;

499.88 ':

503.10 ';

510.86 ':

518.23 ':

525.26 'h

531.Q8 'h

536.42 ;

544.61 ':

1.3616 1.4444 l&O5 1.6345 1.6707.1247.7 . 1273.1 1306.5 1331.0 134201.2851 1.3652 i .4no 1.5480 1.56271245.1 1271.0 i 306.9 1329.6 1340.81.2156 1.2936 1.4014 l&Q7 1.504012425 1266.9 1305.3 1326.3 1339.51.1526 1.2262 1.3327 1.3984 1.43061239.8 1266.7 lW3.6 1326.9 ‘1336.21.0948 1.1665 1.26Q6 1.3334 1.36441237.0 1.264.5 1302.0 1325.4 1336.9LQ417 1.1138 1.2122 1.2737 1.30381234.2 12623 1300.3 1324.0 1335.6O.Qa27 lJ633 1.15811231.3 1260.0 12Q6.&30.9473 1.0166 1.11011226.3 1257.7 I 296.90.9052 0.9733 1.0646lk25.3 1255.4 1295.20.8659 0.9330 1.022412222 12530 1293.4W2Ql1219.0o.7a471215.70.76241212467319-1208.00.70321205.40.67591201.8

4

a89541256.5Q86021248.1a82721245.50.79621243.00.76701240.40.73951237.70.71341235.0o.65401227.90.60151220.50.5546121270.51241204.40.4740llQ5.5

om3o 1.0368 1.66721291.7 1316.7 1328.8oA3463 a9988 1.(x241x839.9 1315.2. 1327.4CL9118 0.9633 098801288.1 1313.7 1326.00.8795 0.9299 095411286.2 13122 1324.60.8491 OS985 0.92221284.4 1310.6 1323.20.8205 0.8690 om2212825 13Oa.l 1321.70.7934 0.8411 0.86391280.6 1307.5 1320.30.7319 0.7778 0.79961275.7 1330.5 1316.60.67T9 0.7223 o.74331270.7 1299.4 13129a6301 0.6732 0.69341265.5 1295.2 13Oa.20.5673 0.6294 0.64911260.1 1290.9 1305.10.5489 05901 0.60821254.6 1286.4 1301.10.5140 0.5546 0.57331248.8 1281.9 1297.0

1.2186 1.247813226 1334.21.1&l l.lQ621321.1 . 133291.1211 1.14851319.7 1331.51.0775 .l.lWl1318.2 1330.2

1.7419 1.8118 1.91491363.8 1385.8 1417.31,650a 1.7177 1.81611%2.7 1364.3 1416.41.5664 1.63241361.6 1363.31.4934 1.554Q1360.4, 1362.3.1.4250 1.4842135a.3 1361.31.3622 1.4193.1358.2 r 1360.3l.& 1.35Q61357.0 1379.31.2511 1.30451355.8 1378.21.2017 1.25351354.6 1377.21.1558 1.2060 1.27941353.5 1376.1 1409.41.11-31 1.1619 1.233113523 1375.1 1406.61.0732 1.1207 1.18991351.1 137a.o 1407.71.0358 l-W21 1.14941349.9 1373.0 WCS.8l.OW6 l.O45a 1.1115W46.6 -137i.a 1405.90.9679 1.0119 1.0756)1347.4 1370.8 J4o5.00.9369 0.9800 1.04241346.2 136a.8 1404.10.9077 0.94W 1.01081-0 1366.7 1403.2(16414 0.8813 0.93911341.8 1366.0 1400.9(x7833 0.8215 0.87831338.6 1363.2 1398.60.7320 0.7665 0.82OQ1335.4 1360.4 1386.30.6863 0.7215 o.n1e13321 1357.5 13a3.90.6453 0.6793 0.72751326.7 1354.7 1391.60.6084 0.6413 CL66781325.3 1351.7 1389.2

1.7267-1415.51.64541414.71.57111413.81.5031141291.4405141211.36261411.21.32911410.3

2083 2249 25751470.1 1523.0 1630.01.9767 2134 2445146a.4 1522.4 162Q.61.8602 2031 23271466.7 1521.9 1629.21.3925 1.9368 22201466.1 1521.3 1628.81.7124 1.8506 21221467.4 1520.7 1628.41.6390 1.7720 20331466.7 162112 1628.01.5715 1.6QQ6 I .a5041466.0 1519.6 1627.61.5OQl 1.6326 1.87431465.3 1519.0 1627.21.4514 1.5707 1.80391464.6 1518.5 1626.81.3978 1.5132 1.738514639 1517.9 1626.41.3479 1.45a6 1.67761463.2 1517.3 1626.01.3013 1.4098 1.620614625 1516.7 1625.53.2577 1.3628 1.567fs1461.8 1516.2 1625.11.2166 1.3190 1.51781461.1 1515.6 1624.71.1784 1.2778 I.47091460.4 1515.0 1624.31.1423 1.2390 1.426914w.7 1514.5 1623.91.1662 1.2024 1.3653145Q.o 1513.9 1623.51.0310 l.llM 1.2Q121457.2 15124 16224QQ633 1.0470 1.20881455.4 1511.0 1621.403037 0.9830 1.13601453.6 1509.5 1620.4os5tn3 0.9262 1.07141451.8 1508.1 1619.30.8031 0.8753 1.0136145&o 1506.6 1616.30.7604 0.8294 0.96151-2 1505.1 1617.3

v=spsdficvdume,cubicfeutperpound h=tot&heatofrterun,Btuperpound

35

Page 17: Crane Engineering Data 1

Engineering Data

bdl -1 CRANE)

PROPERTIES OFSUPERHEATED STEAMIMi’ERlAL UNITS

PmssureIb./sq.in. - Degreer FahrenheitS8tU~ TotaItempmtumtempemtumOF

t 660" 7oo"

Absolute Gsu~

7406 760" iso" 1100” 1200"-0.871616152O-79671613.1'0.73331611.00.67891668.9-

P P looo”

Vh

a51 101288.5a4586x279.60.41391270.2037531260.30.34131249.80.31121236970.28421226.80.259'71214.0a23711200.20.21611184.9

0.5755 0.59041345.8 i358.9

0.54451318.30.490913.ll.O0.44541303.40.40621295.50.37191267.20.34171276.70.3148126Q.70.2QO7126c).3O-26881250.40.24891240.0

0.5206 0.53471339.6 1353.20.4739 0.48741333.3 1347.3oA338 0.44681326.7 1341.30.3989 0.41141320.0 1335.20.3682 0.38041313.0 1326.80.3410 0.35291305.8 132230.3166 0.32841298.4 1315.5

v 0.1962 0.2366642n h 1167.7 122Q.064Q-46 v 0.1768 0.2135

h 1147.8 1217.4655.91 v 0.1575 0.1976

h 1123.8 1204.9

66212 ':0.18281191.5

0.2947i2Q0.60.27481282.6AU5671274.3O.%WO1265.70.32471256.70,21051247.3

0.30631308.60.28631301.40.288212Q4.0o.25141286.30.2362ln8.40.22211270.2

0.60491371.1a54841366.40.50041381.00.45931355.40.4235.134Q.t0.39211343.90.36431337.90.3395133i.8

0.61911384.30.56171319.30.51311374.30.4714136Q.l0.43521363.80.40341356.40.375313529

0.66011426.8Q60031416.70.5496141250.50611406.20.46641403.9a43531399.5

0.88661444.50.62501440.70.57281437.00.5281'143x1a48931429.30.45531425.30.42531421.4039861417.40.37471413.30.35321409.2a33371406.00.31581400.80.299713Q6.50.2848138220.27101387.80.2584la.10.24661378.90.23561374.3OX2541369.70.21591365.00.20701360.30.19861355.50.19811355.2

0.81171558.80.74121556.40.68161553.90*6Xl51551.40.58621548.90.54741546.4

0.75031502.20.68431499.20.62841496.20.58051493.20.53901490.1a50271487.00.47061464.0a44211480.8a41651477.70.39351474.50.37271471.40.35381466.2a33651464.90.32071461.70.30611456.40.29261455.10.28Ql1451.8.0.26851446.50.25771445.10.24761441.8023821438.40.22931434;Q0.22881434.7

1100.0 1685.3 556.31

567.22

5n.48

587.10

VhVh

1zoao 1165.3

1300.0

14Oao

15w.o

1285.3

1385.3

1485.3

is85.3

1685.3

1785.3

1685.3

596.23

1600.0,

1706.0

1800.0.

lQw.o.

604.90

613.15

621.03

626.58

2000.0 1985.3 635.82

VhVhVh 1604.6

0.5542160250.52181600.4a492915Q8.2a466815Q6.1Q 4 4 3 315Q3.9

0.36ol

0.4CBl

13Qo.4

1395.0

0.35681385.80.33581381.20.31671376.40.29941371.50.28351366.60.26891361.6'0.25551356.50.24311351.40.23151346.10.22'm1340.80.21081335.30.2ol41329.70.19261324.10.1843i3ia3o.l.8381317.9

0.51321543.80.48281541.30.45561538.8ox3111536.20.40891533.6Q3887.1531.10.37031528.50.35341525.90.33791523.20.32361520.60.31031518.00.29791515:40.2864151270.27571510.00.26571507.40.25631504.70.25571564.5

0.42181591.8a40231589.60.38431667.46.3678

l=b0352 1615631 -

a0 . 3 3 8 5150o.9a32541578.70.31321576.50.30181574.30.2911157210.28111589.90.28m1569.8

0.35021347.20.32771341.50.30741335.50.28901329.5

0.31731325.40.29721319.002789131230.26211305.40.24661298.40.23271291.1

0.27211323.30.25671316.90.24251310.30.2294lXJ3.60.217212Q6.80.2059120Q.70.1953.1262.40.18531274.90.17601267.20.1672125%.30.15891251.10.15631250.5

Vh

2100.0 2085.3

2200.0 2185.3

2300.0 2285.3

2400.0 2385.3

-0 2465.3668.13 ': 0.1666

1176.8

2600.0 2565.367394 ; 0.154Q

1160.6

2700.0 2685.3

28oao 2785.3

2Qoo.o a.3

679.55 'h 0.1415. 11425

684.99 ;0.12611121.4

3om.o 2985.3

3100.0 3065.3

320(x0 3185.3

690.26 ; 0.1143lOQ5.9

gas.36 ': om841060.7

700.31 ;

705.11 ':

3206.2 3191.5 705.40 'h

0.1973 0.2090 0.21Q61237.6 1261.6 1283.6om49 0.1967 0.20741227.3 1252.Q 1275.80.1732 0.1853 0.19601216.5 1243.8 1267.90.1622 0.1745 0.18541205.1 1234.2 125Q.60.1517 0.1644 0.17641193.0 1224.3 1251.10.1416 0.1548 0.16601180.1 1213.8 124220.132o 0.1456 0.15711166.2 12029 1233.00.1226 0.1389 0.14661151.1 1191.4 1223.50.122o (x1363 0.14801150.2 llQO.6 1222.9

v=specificvolume,cubicfeetperpouf~I h-totalheatofstuam,Btuperpound

-

36

Page 18: Crane Engineering Data 1

Engineering Data

, Generdl

PROPERTIES OFSUPERHEATED STEAM

SI UNITS

Abs. Press. Sat.Temp. TOTACTEMPERATURE:DEGREESCELSlUSfCbar “CP % 160 180 ,206 220 250 300 350 400 456 550 650

1.0

1.2

1.4

1.8

2 2

f--,26

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

120

/q90

1 14.0

16.0

. 18.0

20.0

220

24.0

99.6

104.8

ma.3

116.9

123.3

126.7

133.5

.1!3.6

151.8

156.8

165.0

170.4

175.4

179.9

184.1

186.0

191.6

195.0

201.4

207.1

2124

217.2

221.8

VhVhVh

1:VhVhVhVhVhVhVhVhVhVhVhVhVhVhVhVhVhVh

h'

1983.827Q6.21650.527Q4.8141252793.4laQ5.12790.5893a92787.7753.192784.8650.572781.8463.712774.2383.472766.4316.552756.2'

2078.3

172Q.72834.61480.72833.51148.72831.1937.382628.8791.042826.468x722824.0509.262617.8404.512611.4334.612804.8284.612798.0247.062791.1217.712783.9 -194.382776.5

21723.2875.41808.42674.41548.4287a41201.72871.5-am.13286Q.5828-a2867.5716.352865.5534.26266Q4424.982855.1352.042849.72aa.922644.2260.792838.6230.3228327205.922626.8185.922620.7189.232814.4155.OQ2308.0142942801.4

2266.02915.01886.72914.11615.729133g254.42911.71024.52910.0665.342908.374fL5Q2@6.6558.8529023444.97-0369.022893.5314.752888.9274022684.2242312679.5216.932874.6lQ6.142868.5178.802864.5164.112859.3151.502854.0130.982843.1114.96283.7102&Q2819.991.5202807.5

2-1,2Q74.52003.72973.91716.32973.21333.02971.9106a.l29jO.6920.272989.2796.442967.9595.192Q64.5474.432981.13Q3.812957.6336.372954.02a3.212950.4259.632a46.8232.752943.0210.752939.3192402935.4176.672931.5163.552927.6141.872919.4KM.592911.0111.452Q02.4100.3528a3.491.07528842

2636.7307452197.93074.01863.0307z51463.1307261195.93071.61010.93070.6875.293089r7'654.653067.2522583064.8434.39‘.30623371.393069.8324.143057.3287.393m4.7257.9830521233.913049.6

2&!i'lQ6.&3cM4.3182.323041.6158.66

140.243030.7125.50a.0113.433019.3103363013.4

2870.8 3102.5 3334.03175.6 3278.2 338242391.5 2564.7 2777.73175.3 3277.9 33821204Q.l 22i4:a 2300.43174.9 3277.6 3381.315826 1721.8 1850.73174.1 3277.0 3381.81302.1 14u8.0 1513.63173.4 3276.4 3380.81101.0 1190.7 1260.231726 3275.8 3300.3ap.52 1031.4 llOQ.o3q-r.a 3275.2 337a.8713.85 772.50 830.923170.0 3273.6 3378.5570.05 617.16 664.053168.1 3272.1 3377.2

513.61 552.803270.33 3376.0

474.193166.2405.713164.3354.343162.4314.393160.5m2433158.5256.283156.6234.493154.6216.053152.72CKL243150.7174.543146.7154.5531427138563136.6

439.64.3269.0364.163267.5341.013265.9306.493264.42x2432629254-m3261.3234.793258.7217.723258.2180.973255.0168.393251.9151.133246.7

473.34337A.7'413.743373.4367.3Q33721330.303370.8299.963389.5274-g3366.2

3366.9234.953a5.6205.1533830181.973360.4163.423357.8

125.47 137.00 148.253134.5 3245.5 3355.2114.55 125.22 135.613130.3 32423 33526

37Qq.53595.63163.435Q5.42711.135195.22108.135a4.91724.43594.51458.73594.11263wQ3583.7947.3535928757.413581.8630.7835Q0.9540333589.94724a3589.0419.733588.1377.523567.134298

314.2035852289.853564.3268-m3583.3235.063581.4208.68357Q.5187.573577.6170.303575.7155.913573.8

4256.83815.73548.738i5.53041.53815.4236523615.11934.93614.81637.03614.51418.53814.2lm3.43613.5850.4238128708.4136121606.973811.453fmQ3010.7471.723810.0424.363809.3385.653808.53538383607.8326.073607.1m26638064264.623805bO23503=6211.3633021192003600.7175.863799.3

v = specific volume, cubic decimetres per kilogtamme.h t specific enthdpy (total heat), kilojoules per kilogmmne.

37

Page 19: Crane Engineering Data 1

Engineering Data

&rdt l .

I 1

ICRANEI

PROPERTIES OFSUPERHEATED STEAM

. .

SI UNITS

Abs-- OF’““* TOTALTEMPERATURE:DEGREESCEtSIUSt°CbarP fr 260 280 300 320 340 380 420 460 500 550 650

260

27.0

280

29.0

=-q

31.0

32.0

3 8 0

34.0

a0

38.0

4aO

420

MO

46.0

48.0

50.0_

52.0

540

560

58.0

60.0

64.0

68.0

720

226B

228.1

230.0

232a

-8

235.7

237.4

239.2

24O.Q

244.2

247.3

250.3

253.2

256.0

256.8

261.4

2639.

266.4

268.8

271.1

273.3

275.5

279.8

.283.8

287.7

-‘hVhVh

IVh

85.671 90.3702903.0 2956.782111 86.69528m.7 2953.178-W 8328O2894.2 2949.575.714 8aow2889.7 2946-872s29 77.1242885.1 2942.070.125 74.3402880.5 2938.267.587 71.72728758 2934.465.198 692692871.0 2Q3Q.562945 66.9542666.2 2926.658.804 62.70028563 2918.6so62 56.8852848.l 2910.451.716 55.440rn3!5.6 2902.048.654 523142824.8 2893.545.853 48.4632813.6 2884.743.278 46.8492802.0 2875.6

44.4432866.442219msa

Vh

90.1562847.1382352837.0s.4392826.7x7562616.033.1732804.9302652781.6

94.830 99.117 lO3.28 111.333oo7.4 3056.0 31o3.0 31Q4.391.036 95.199 99232 107.033oo4.4 3053.4 3100.8' 3192;587.510 . 91.560 95.476 lO3.033001.3 3U50.8 3098.5 31a0.z84.226 88,170 91.978 99.31529982 3O46.1 30882 3186.981.156) 85.005 88.713 95.8442995.1 3045.4 3093.9 3187,O

923963165.289.5523183.466.6al3181.583.9983179.779.0593175.974.6383172270.658

78.2872991.975.5832988.773.06129.85570.6752982266zQ72975.662.3722968.958.8332962.055.6252955.052.7022947.8

EiE47.56Q2a33.145.3012925.543.2012917.841.2512aW.839.4342901.737.7362893.536.145'2865.033.2412867.530.6522849.028.3212829.5

82.0433042779.2643040.076.6523037.374.1933ow.569.6813a26.965.6393023.361.9963017.558.6963011.655.6923005.752.944’2999.650.4212993.44aoQ7.2987.2459472980.8433522974.342.OQ62967.740.3642961.036.7442954.235.7962940.833.1802925.830.8392910.7

85.6573081.5827Ql'3089.2 .6O.OQ83086.8n-563.3084.472.91 t307a.668,7463074.864.9943069.861.5a73064.858.505 -305Q.f

3168.4 3263.3

55.6793054.653.085m4a.450.6973044.148.4893o38.746.4423033.344.5393027.7427643022.241.1053016.538.0923004.935.4232993.133.0412980.8

67.0553164.563.7793160.660.7853156.758.0403152.855.5133148.853.1783144.851.0163140.749.0063136.647.1343132.4453853128.342.2123119.839.4073111.136.9103102.3

119.143263.5114.5832820110953280.5166.413279.0102733277.5992863276.096.0683274.593.0263273.9Qo.1713271.584.9383266.480.2553265.476.03Q

72224325Q.268.7553256.065.m3252962382324Q.76oJxn3246.557.5403243.3562543240.153.1363236.951.1523233.649.3063230.345.9573223.742.9993216.940.3683210.1

[email protected]&.823365.7102.413364.499.2003363.196.1833361.890.6523350.285.7023356.6812473354.077.2163351.473.5513348.870.2o43348267.1363343.564.3133340.961.70733382692933335.557.0513332.954.9643330.253.0163327.44Q.4833322.0463643316.543.m3310.9

134.363460.6129.303458.5124,563456.4120.183457.3116.083456.2112.243455.1108.653454.0105.273452.8lO2OQ3451.796255 .3449.591.O383447266.3413445.062.0823442778.22934401574.7023438271.46a3435.968AQ43433.765.747 70.6793431.4 3547.163204 67.9733429.1 3545.160.843 65.4603426.8 3543.258.644 63.1203424.5 3541256.5Ql 6o.a373422.2 3539.352.871 56.9783417.6 3535.449.588 53.48634129 ,z3531.546-m 50.38134062 3527.6

143.743571.9138.333571.0133.303570.0128.623569.1124.263568.1120.173567.2116.343566.2112743565.3109.363564.3 *lo3.153562.497.W63560.5925973558.668.0753556b783.a633S54.7802m3552.8767663550.973.6023549.0

162213797.9156.143797.1150.503796.4145.265795.7146.363795.0135.78 A3794.3131.483793.61 2 7 . 4 537929123.653792.1116.6Q3790.7116.463789.3164.863767.999.7873706.495.1773785.090,9673783.687.1093782.183.5593780.7 /780.2823779.377.2463777.874.4363778471.8073775.069.3593773.564.9223770.76l.OO73767.857.5273764.9.

v*tpecif.~vdunre,cubicdecime~~~rkilogrammeh=specificenthalCy (t~hed,kilojouletp+rkilogramme.

3 8

Page 20: Crane Engineering Data 1

PROPERTIES OFSUPERHEATED STEAM

$1 UNITS

Abs. hss. fbct. Temp. 1OTAtTEMPERATURE:DEGREESCELSIUSt"Ctmr .P s 340 360 . 380 400 420 440 460 500 650 600 650

76.0

80.0

84.0

88.0

920

1050

tlO.O

115.0

120.0

125.0

130.0

135.0

140.0

150.0

160.0

f-70.0

180.0

190.0

200.0

210.0

220.0

291.4

295.0

2f38.4

301.7

'304.9

308.0

311.0

.3*4.6

318.0

321.4

324.6

327.8

330.8

333.8

336.6

3421

347.3

3523

357.0

361.4

3657

369.8

3737

v 30.901h 2968.2v 28.965h 2955.3v 27.203h 2941.9v a592h 2928.0v 24.110h 2913.7v 22.740h 2898.8v 21.468h 2883.4v 19.897h 2a63.1v la.639h 2841.7v 17.376h 2819.0v 16.19sb 2794.7v 15,077h 2768.7v 14.015h 2740.6v 12994h nos.9v 11.997h 2675.7VhVhVhvhVhVh

32858 34.671 36.380 38.01s 39.583 41.109 44.05@ 47.603303x.4 3083.3 3149.6 32a3.2 3254.9 3305.3 3403.5 p 3523.739.885 32352 34.310 saaa 37.405 38.874 41.704 45.102m22.7~3m4.2 3141.6 3196.2 3248.7 3299.7 3398.8 3519.729.094 30.821 32435 33265 35.432 36.850 39.576 42.8393011.7 3074.8 3133.5 3189.1 3242.3 3293.9 3394,o 3515.8n . 4 5 9 29.1.53 30.727 32.215 33.638 35.ooB 37.640 49.782sm.4 3Os.3 3125.3 3181.9 3235.9 32882 3389.2 3511.825.961 n . 6 2 5 29.165 30.615 31m7 33.328 35.872 38.9042988.9 3055.7 3117.0 3174.6 3229.4 =4. 3384.4 3507.824.581 26.221 27.730 29.146 30.493 31.785 34.252 37.1822977.0 30488 3108.5 3167.2 32229 3276.5 3379.5 3503.923,306 24.926 26.408 27.793 29.107 30.365 32.760 35.5972964.8 3935.7 3oQB.9 3159.7 3216.2 3270.5 3374.6 3499.821.838 23.440 24.893 26.245 27.521 28.741 31.054 33.7862949.1 3022.8 3089.0 315CL2 3207.9 3263.1 336a.4 34Q4.820.494 22083 23.512 24.834 26.078 27262 2B.503 32.1392932.8 300B.6 3077.8 3140.5 31QQ.4 3255.5 3362.2 3489.719.255 20.838 22.247 23.543 24.758 25.911 28.066 30.6352915.8 2996.0 3m6.4 3130.7 3190.7 3247.8 335&o 3484.7la.lga 19ml 21.084 22.357 23.546 24.672 26.786 29.2562898.1 2982.0 3054.8 3120.7 3182.0 3240.0 3349.6 3479.617.041 18.62B 20.010 21.264 22.429 23.530 25.590 27.B872879.6 2967.6 30429 3110.5 3173.3 3232.2 3343.3 3474.416.041 17.641 19.015 20.252 21.397 22474 24.465 26.8162860.2 2952.7 3030.7 3100.2 3164.t 32242 3336.8 3469.315.102 16.720 la.090 19.313 m-439 21.496 23.461 25.7312839.7 2937.3 3018.3 3m9.7 3155.0 3216.2 3330.4 3464.114.213 15.858 17.227 18.438 19.549 20.586 22509 24.7232818.1 2921.4 3Oo5.6 307B.O 31458 3208.1 3323.8 3458.812562 14.282 15.661 16.857 17.940 18.946 20.795 229092770.8 2887.7 2979.1 3057.0 3126.9 3191.5 3310.6 3448.311.036.~ 12871 14.275 15.464 16.527 17.506 19.293 21.3202716.5 . 2861.1 2951.3 3034.2 3107.5 3174.5 3297.1 3437.79.5837 11.588 13.034 14.225 16274 16.232 17.966 39.9ia2652.4 2811.0 2921.7 3010.5 3087.5 3157.2 3283.5 3427.0a.1042 10.405 ll.Bl3 13.115 14.155 15.OQ6 16.785 18.6202568.7 nss.gr 2890.3. 2985.8 3H3&9 3139.4 3269.6 3416.1 .

9.2983 10.889 12111 13.148 14.075 15.726 17.5542716.8 2856.7' 2B60.0 3045.6 3121.3 3255.4 3495.2a.2458 9.9470 11.197 12.236 13.154 14.771 16.54826602 2820.5 29329 3023.7 3102.7 3241.1 3394.17.2076 9.0714 10.360 11.405 12.316 13.907 15.6382593.1 2781.3 2904.5 3001.0 3083.6 3226.5 3a2.96.1105 8.2510 9.0883 10.645 11.552 13.119 14.8102504.5 2738.8 2874.6 2977.5 3064.0 3211.7 3371.6

51.0453642948.3943639.545.9963636.243.8153632.841 .a24362Q.439.9993626.138.3203622736.4013618.534.6563614233.0633610.031.6033605.730.2593601.429.0193597.12X8703592.826.8043588.524,8843579.823.2033571.021.721

20.4033553.419.2233544.5la.1613535.517.2013526.516.3273517.4

54.413 -3762151.6113759.249.0763756.346.7713753.444.6673750.5427383747.6403633744.738.9353741.137.6913737.535.4083733.933.8653730.232.4463726.631.1353722929.9223719.328.7953715.62 6 . 7 6 83700.324.9943706923.4283693.522.03732586-l20.7923678.619.6723g71.118.6583663.617.7373556.1

V’ spesific volume, cubic decimetres per kilogramme.h= specific enthdpy Itotd heat), WojoUler pW kilogwmne.

Page 21: Crane Engineering Data 1

r -I Engineering Data) CRANE) General .

CORROSION.DATARUBBER AND PLASTICS .

RNONORRNDRRNORR R R l R . RR c R R NONodmta*R RR

R RR R RR RRR R RR R

RRR Nod&a RR. R R RR R R RR R R RR RRR R RNONDRR RR R

R R

20

No data

RARRR R ND R’R NO RNodata R R

R NO ND R R NodataRR R R NOR R R R ND

R ND ND Nodata NOCW9Nod~ta R R

RNDNO R R NO:: ::::: NoR RR R RNOND R RPID R RRNONDRRNORRNDRR

-ahydeAmtk add IlCWAcettc acid @z. 6 ‘WI.)AaBtkanhydrkb

chher-

Acstyt@-A&l fumfwAtcohots htumt fatty)Aliphattc~AIkyt chItwithAtomAlumtniwn chloridbAmmonia, tiydrous-zs,rqueausAmrnoniunl~

ml=@-AntttneAnttmonytrfbrl#kleAquareoksAronlatksdvents

BanzokacidBorkactd .Brineq uturatadBromtneCadctum chkxtdoc8rbon d-lsulPhi.decarkxmk~cbrbonmiortdeCBUStiCsode&OoOsshcllmqf)9q,tc,Bachlo@m, drychlorine, w%tChlorides of Na, K. Mg

Cht-k actdscht-

- ChlordamCtttorosutphonk actdChromic a&J 030%)cltrk addcoppersetts(moa)cresyliiaclds mwC&ohcrxwle-w-a w-kEmutstfters (att cow)EtherFattyacIds(>cI)Ferric chtor-w¶Ferrous sutphm

Ftuorlnut8d refrlgsrants,aarosots, sg Freon

t=tuorsne, dryFluorb, waFluosttkk acid

Fotmddehydu MO%lFormic acidFrutt jukesG&tineGlytmine

Gtycotst-htX4WIhBHydrarineHydrobmmtc actd Wt’%)Hydrochloric add (1 US)

Nodala Nodeta Nodsta R R RR R R R R R

RR R RR R RR R RR RR R R R N D R R R RR R R RNDNO RNDND No&&a

::R”R R

R R R R R R R R R RR R R RRR R R R N O R R R RR R R RNodeta ‘RN0ND.R R R R R R R R

R R N D R N O N D R R R R R R R RRR R RR R RR R RR R R RR R R RNDND R R R R R

R R R ND R R RRNbNb Nodnta

R R R RbRyRR R RR R RR RR RR R R R R R R R R R R RNodta R R R NO .R R RRR R RR R RR R RR RRR R RR R RR R RR R

RR R RR R

R”

::RRR R

RR R R RRRRRRR R ND R R R ND R R RNocbta R R N O R R R R R R

R R R R N D N D R R R RRRRRRRRRRRR R

R R

R R

R R NO R R R R R RR R R R R RRR R RR R

RR R RR R RR R RR RR R R R R R

R R R Rt64O.R R R RR R R R RRR

R R NO R R RRR R RR R

R RR RRR RR RR R

RR R‘

RR.R RR R RR R R-R RRR R RR R RR R RR R

R AA R

R R NO R R AR R R R N D N D R R R R R ARR R RR R RR R RR RRRR RRRRRR RR RR R R RNOND RR RR R N O R N D N O R R R R R RR R R R R R R R RRR R RR R RR R RR R

R R’R R

:: .iR R

Nodata R N D N O R ‘RRRR R R.R RR R Nodeta

R R Nodata Nodeta

R R R R NO R R RR R R R

R R N O R R R R R R R R RR R NO R R R R R NO R R RR R R R R RR R RR R

R R R R R N O R R R R R RR R R Nodata R R N D R R RNo&m Nodrcs Nodata R R R

RR R RR RR R R R R R

R R

R RR R

R RRR RR RR R

R R

R NDR RR R

NodetaNodataNodata

Nodata

R RR RRR RRR R R RR R R R

R RR R

R R R R

Nodata R

ii:: ii::R R R RR R R R

R R R R

R R R R

R R ZRR R R R

::R R R RNodata RN0

RR

R R NO ‘fiRR RRR R R R

R RNodsta R R

RR RRRR RR

RNodeta R R

R RR R R”::

Nodeta R

R R R R

R R RR R

:R RRNoWa R R

R R R R

R R R RNodata R RNodata R R

R R R RR R R R

NO

NDNDR RR R

RR R

ND

NDR RR NO

EiNDND

R RR RR

NDR

RNONONOR R

ND R R ND RNONO \pR ND ND R R

RNDND R R NO R RND -

RR RRNDNO R R N D Nodata

R RR

RNDND R R NO R RR R ND R

RNDNO R R NO RR R ND R R ND R R

RR R RR R RRR

RNDND R R ND R R

RR R RRR R R ND Nodata

NO

RNDNDRR R RRNodata No data

NodataR NONDR R ND RRRNORNodata No data

R R R R RR R N D NodataR R NOR R NO R RR R ND R RR R R R R

R R ND

R R NDR NDNDR R NDR R NOR R R

R R NDNodata

R NDNDR R- RR R R

Nodata

RR

. NodataR R

R RNodetaNo dimNo date

R

An R indicatesND=NoData

Page 22: Crane Engineering Data 1

‘Engineering Data

&Wrdt

CORROSION DATARUBBER AND PLASTlCS

AcetaldehydeAcetic ecid (10961Acetic actd &CL & anh.)‘rrbwfcan.hydrkle4Acetone

Other kstones

R R NDR R RR R dR R RR RR R RR RR R RR R

R R R R R N D No Ma R R R aR R R RRR R R R R R N D R R R RR-R R R R N D N O R R R R RR R R RN0 Nodata RAN0 RR R RR R R R R N D RNDNO R R RR R R R R R R R

NodataR R RR R R R R RR R R R R

R R RA R RR R R

No Ma

RNONO R R R No dataR R R R R R RR R R R R R R R R

R R RR R R

R R R R R R R R: RRR R./RR R RR RR R RNOND R R RR R R R R R R RR R R R R R R R RR NDND R R R

RNDNO R R RNodata R R R R R R

RR R R R R .R R R R R R R R RR R R Nodata R - R RR R R R R R R R RR R R R R R R R R

NodataR R

AcetybActd fumerAtcohds (most fatty)

’ AltphatkestenAtkyl chtortdes

AlumAtuminium chtcwldaAmmonk, anhydrousAmmonia, ~QWOUSAmmonium chlor’lck

NobtaR RR

R R RR R RR R RR R RR R R

R RR R

::R R

Ati acetateAnilineAnttmony tfkhtorkbNwresisAromm3ticsolventsBeerBwuok aktBark acidBrines, sawatedBtwnhC&turn chlortdeCarbondlsutphide . *Qwbonkac’rdC8rbondstrachlortdeC0UStt~SOdiSdrpOt8S#l

Chlora- of Na, K, BaChlorine, d!v *Chlwtne, mChbkbsof Na, K, Mg

R R RR R RR R NDR R RR R R

R R R R R RR R R R R RRRR RR R R R R RR R R R R R

R RR R

R R R R R R R R R No data R R R R

R R RR R RR R RR R R

R R R R R aR R R R R.RR R R R R RR R R R R R

R R

E::R A

R RR RR RR R

R R RR R RR R RR R R

R R R R R R R R R R R R R R R R R R R R RRNOND R R- RR R R R R R R R R

R R RR R ND R R R R R R

R R

R R

R R

R R

R R R R R R R R R R R R R R

R RR RR .RR RR R

R R RR R.RR R RR R RR R R

R

R R R R R R R R RR R R R RR R RR R RR R R R R RR R R

Nodeta NodetaNaid8t8Nodata

RR R RR RR R N D Nod&a

R R RNod&J

R NDNdR R R

R R RR R RR R RR R RR R RR R

R NO

RR RNo data1 Chloroi&wttc actds

CM-Chtoroformc tow+honii actdc Iimnicackl mwCitric addc0pper~t.s hnost)Cmsytii acids (50%)~clotmxiilneDete~tynthetkEnnktf’Hm btt cor’c)ErhefFatty acids bCi)Ferric chtorideFewroussutphata

Fluorinated refrtgwantsaerosokaq Fnscm

Fluorine, dryFluorine, wettf tuostlkk acid

Formetdehyde C&IFarmk actdF r u i t j u i c e sGatetineGtycertfleGlycols

tiexamineHydraztneHydrobromii acid (50%)Hydrochlortc ac-ti (1OW

Nodata ‘Nodata

. RNodataR R NO No data

R R NDNockta

R R RR R RR R RR R RR ND NOR R R

R R R

R‘R RR R

R R RR R l?R

R RR R

R R RR R RR

R R R R RR R R R R RNo data No-

RR R RR RR R R R R N D

R R ‘RR R R R R R

R R R RRAR R ND

R R R R RR R R R R RR R R RRR

R R RR R R

R R R R R R R R RR R RNodata

R R RR R RR R R

R R

R R

R RR RR R

R

NodataR R R

R R RR R RR R R

R RR RR R

R R Rfl l R R R

R R R

R RR R R R R RR R R R R R

Nodata Nodata R R N D R R R R N D N D R NodataR R ND Nodata Nodata Nodata NodetaR R ND No data Nodata No data NodetaR R R R R R R R R Nodata R R R R R R Nodata

R NON0R NDNOR N D N OR R RRR R RR RR R RR R RR R RR R NOR R NOR R RR R R

R R R R R R R R R RR R RN0R R R R R R R R R R RNDND RR R R R R R R R R R R R R R R ’ R R R RR R R R R R R R R R R R R R R RFiR R RR R R R R R R R R R R R R R R R R R R R

R RR R

EtR R

R R R R R R R R R R R R R R R R R R RR R N D RRNO.RR R Nodata R R R Nodata NodataR R N O N D R R Nodeta Nodata No dutaR R R R R R NDND R R R ND No dataR R R R R R R R R R R R R R R R R

NodateRR R

Page 23: Crane Engineering Data 1

EngineMng Data

General ’

I 1

1 CRANE 1I J

CORROSION DATARUBBER AND PlASTIkS

RRRRRRRRR R ND R R R R RRR R RR R RR R R R R RR R R R R RRRRRNDRRReR

RND.NDRR R R R R RFIRR R RR R RRR R ND R R R A A

R R N D Nodrb R R R R RR R N D R R R RR’R R RRNDNDRRNDRR R RflR R R R R N D R R R R RR RR R RR RRR R RR R RR R RRRRR R R R R R R R RRR R RR R RR R RRRR R RR R RR R RRNoehta R R R R R R

RNDND R R RRR R RR R RR

.RRNDRR R R R R R RRR R RR R RRR R R R R R RR R R R R RR R ND R R R

R R R No&w R R R R RRRR R R R R R R R RR R R R R ND R R R R AR N D N D R R R R R R R RRWDND R R R R R R R

‘R R R R R R R R R R AR R R R R R R R

FZRE~XRR R R FtRR R RirR R RR R RR

No&f-m R N D N D R R R’R R N D Nobtr Nqtbta R’

:: -R R N D R R R R RNodmta R R A R R

R N D N D R R N D R R RRR R RR R-RR R RRNoti RR R RR R RR

KRR RRR RR KiR R RRR fjRR R

:::::“A RRRR RRR R R RNoWa R R

R R R RR R R RRR RRNodem R R

R R R RR R

R R xRR RRR R R RR R

R R RR R N D NgmRNDNDRND

RN o m

R R N DR R R RR R N DRRNDRNDNbR R R R

RRNDRRNDRRNDRIUDNDR R N D R RR R R R RRR R RR R R R RRRND No&aR NDNDR R RR R R R RR R N D R R N DR R R

R R RRR R RR R R RN o m

R R N D R

R RN D

RR R

No

Nodmt8

RR R RR R RR R RNodata

R R RR R N DR R RR R RR R NDR R RNodm

R R R

-

R R

ARR

N DNoND

::Noam

R R RR R RR R RR NDNDNothlm

Nodata RR R ND R RR R RR R R R

RNDNDR R ii:

R R

xiND RRrm

.R RR RR R

R R R

R RR R

RRNDRR R R R RRRNDRRND’NoWN o m NodEtaN o m NomNodaIm Noti

R R N D NocbfmR ND NDR R RRRrNodata R R ’

RR RR RN o m

R

Nodata

No&mNodrar

R R RR R RRNDND :: NDR R R R N D N D R R R R R R Nodatm R

RtiNDRR R R R R R RR . RR R RR R RR

RR R RR R RRRR R RR R RR R RRR N D N D R R R R R R R RR N D N D R R R R R R R RRR R RR R RR R RRRR R RR R RR R RRNoda@ N o m No6fr R A

RRR RR R RR R RRNom RR R RR R RR

Nodrb R R R R RNo&m RR R RR R RR

R N D N D R R R RRR R RR R R R R R R R

Nocbta R R R

R RR RR RR RR RR RR R

t&k

ii::Nodrtl

A RR RR

R R R RRND N o & mSihmnitme R R A

R R RR R R ND RRRRRA R R R N D R

ND!? ND

No&Ha NodrrR R R No&m

R R NodHa R R R hlobtrRR\ NaW R R RRR

RR R RR R RRRR R RR R RRRR R RR R RRR R RR R

N o m NmMaRRRR N D N D R R R R R R R RRHDNDRRNDRR R R RR R Fi RRfWRR R R RR R R R R RR N D N D R R R R R R R RRR R RR R RR R RRRR R RR R RR R RRRRR R R A R R R R RR N D N D R R R R R R R R

RR R RR R RR

R R AA R ND

R R RR R RR R RR R RNo&m

R R R ND R R R R RR R R A R R N D R RNOW NodHa RRND Nodata

RRNDRRNDRRx Nom R R N D R RR N D N D Nobk NoMa Nodsta

KNobtl R R N D No&t@NodEa N o m

RR NO Nod&aNo Nom

NomEzi

R RA RR

RR RR RR RR R R R ND R . R.R R RR FiNom Nom Nodem

R N D N D RN0 R R N D RRR ND RRPlDRR R R R R N D R RR RR R NoWa R R N D RR R R R R R R R R RR R RR R RR R RRR R RR R RR R RRRR ND RRND NodmaR R R R R R N D R R

NDNDR

K

R R RRNDNDRNDNDR R R

R RR RR RR RRR R

R R RR R RR R RR R RR R R

Page 24: Crane Engineering Data 1

Engineering Data

CORROSION DATARUBBER AN0 PLAS’WS

RAR RRRR R R RRRR R R RRR

R RR R RR R

R R NORRR R.irNDND R N D N DR RNONDR R R RR R R.NDR R R RR R No&mRRR R RR R R No&WR R R R R RRR R NORRR R R RRRR R RRRR RRRR R R RR.RR R R R’RLRRRR R N D N D

R RRR R.R R R RR R R RRRR R R

RRRNDR R NDRRNDR R RR R RRNDNDR R RR R R

R”Rd”RNodaM

R R RR R RR R AR RR R RR R RR

RNodrtl

R R R R R N DR R ND R R R

R R RR R RNOdab

R R RR R RR R RR R RR R RR R RR R RR R RR R RR R RR R RR R RR R AR R RR R R

.R R RRR

R R R

R R R R R RR R R R R RA R ND R R RR R R RRRhRR R R RRRR RRRR R R R R - RR R R RRRR R R RRRR R R RRR

R R RR RRR R RR R .RR R RR R RRRRR R R

R NDRR RR RR RR RR RR NDR RR RR RR R

Ncfd8taR RR RR RR RR RR RRR RRR RRR

R R R R R RR R R R R R

R R RR R R

RR RR RR R

R R R R R RR R R R R RR’R R

R R RR R RR RR RRR

R RR R

RRRR R A

R R ND R No&a RNDNDRNONDRNDNDR R RR R RR R R

R RR R RR R RR RRR R R

No&m -RRNodIm

R R RR R ANodEta

RRRRR R R

R R RR R RRRRR R RR R RR R RNodate

R R R-R R RR R RR R RNod8ta

R R RR R RNoda

R”Ad”RR R RhR RR R RR R RR R RR R RR R RR R RR R RR R RNo&t8

R R RR R RNo&t8

R R RR R NDR R N DR R R

R RR RR RR

RR RRR RR NDR R‘Nodem

R R R R RRRR RRRR R R R RR R R R R R

R RR R R

R RNodMa

R R NDR R RR R RR R R

R”“Rd”NoR R RR R R

R NDNDR R RR R RR R RNoda

R RR R* RR R R

R R RR R R

R R RR R RR R RNo&t8

R R RR R RR R RNo&ta

R R RR R RR R RR R RR R RR R NDR R,RR R RR R RR R RR R RRNDNDR R RR R RR R RR R RR R RR R R

R R NORR

R RR

RRR

EEzNo&bNod&a

R R RNo&a

R R

R R RNo&t8

R RNo&t8NodMeNo&8

R RNom

R RR RR RRR RR RR RR RR RNo&t8

R RnRNo&t8Nodata

A RR RNoma

EZR R R

RhR?R R RRRRR R RR R RR R RR R RNodat

R R RR R RR R RRRRR R RR R R‘R R RR R R

RNDNDNoMa

NDR R R

NDR R RR R N DR R RNo&t8

RRNDR R NDR R RR R RR R RNod8t8

R R RR R R

NDR R RR RR RNod&a

R R RR R RR R NDR R RR R. RR R RR R RR R RR R R

R R RR R -RR R RRR R.RR RRR RR R RR R RR R RR R RR RR R ‘RR R RR R RR R RR R RR R R

R R RR R RRRRR RRRRR R NOR R RR-R RR R RR R AR R RNodata

R R RR R

R RR RNode*

R R

:: N:RR

R R R RR RNod8te

R RRNo&t8

R NORRR R

NodataR R RR R RNodata

R R RR’R RRRR

R

R R R

RRR RRR R R RRR R R R R RRR R RR R R R R R Nodata

R R R R

No&t8 NowR RR NDR R

NodataR RNod&w

R R ’

R R R R R R R R ‘R R RRRR R R R RRR R R RR R R RRR R R R RRR

R R RR RA R

R R R R R RR R R RRRRRR RRR

R R RR R R R R RR R R RRRRRR RRRRRR R R RR R R R R RR R R RRR

R R R R R R RR R R RRR R R R R RA AR RR RRR R

R R R RR.R R R R R R RR R R R R R R R R RRRR R R RRR RRRRRRRRR RRR R R R RRRRRR RRR R R R R R R

R R RR R RR R RR ND NDR R NO

R RR RR RR RR R

AflRND-

indic8teBNoData

thenrrlriJhdstmttodmnmMn#ndm8ter&l i8 wmIitrbl8et this tmnpmawa

kornuitrbk.

43.

Page 25: Crane Engineering Data 1

Engineering Oata

General \

CORROS1ON OATAMETALS

.- --_~-wdehyds RR R RR R RR R RNONORR R RR R RR R R Nodata R R R

” Acmkacld WM * R R RR R RRRRRRRRR RR RAcwicadd (gki & anh.1Aarticanhydrid8Acstomothdrlcsronrir

RR RRR RRR RR’R R

RR R RR R RR R RR RRR R RR R RR R RR RR RRR R RR R RR R RR R RR R RR A RRRR R RR R RR R RR R RR R RR R RR

RR RRR R

R RR RNo&m R R A

Mdfum8sAkahob~mo3tfatty~Aliph8tk eslsrsAJkyl chkrklesAlumAlumlnkJm chlor&bAmmanb, nhydrowA-,-Ammonkrmchlorids

-vl-AnilineAntimony trichlorhj8Jm@WArom8tic sidunts *

B88rl3muoicacidBoric aid6rlrnq saturatadBromifm

c8lcium chlorkbc8rbon dlsulphichrbonic8cldc8dxmastr8chloridrc8u8tksod88lpot#h

Chloratus~of Na, K, &chlorine.*chtorin8, nr%tChlcxides of Na, K, Mg

chrofo8c8tk8cld8chlwobhnn#w,cMoroformchlorc8ulphonicacklChromkacidW3%l

citrlcddcappw dls Imo8tlCtlBsylic acids l#)w~Cti-IM8qmtq synthetic

Emubifkn bll umc.1EtherFatty acids tX,IFerric chlorideIWIWS su4(xlnltm

Fluorinatad rMgwants,88rwag Frmn

Fluorins, dryFluorhm, ms2Fluosilkk acid

l=omddehyd8 Ho%IFormk addFruit juicesG8btimGlycwlfM

Glycolsl-b%amkmHydtati-Hydrobromic: acid mmHydrochiork acid Mbbj

Hydrochlork acid tcon4Hydrocy8nicsddHydrofkrork acid WIWHydrolluor& Eid mwWdfwnmxlbs OOW

USQDW

RRRRRR RR R RRRR R R RRR R RR.R RR R RR R RR R RR R RRRR R RR R RR R RR R RR RRR R RRRR R RR R RR R RR R RR R fl

RR R RR R RR R RR R RR R

RR R RR RRR RRR RRR RRR RNodata

RR R RR RNodata RR R

R RR R

RR R RRNONOR R R RR R RR RRRRRRRRR RR RR R RR RRR R R RRR R R

RR R RR R RR R RR RRR R RR R

Nocbta RRR NO&B R

R RRR ARR RRR R

RR RRR RRR R

RR RR RRR RRR R

RNONO NohaR R NodmtaR R

RR R

RR RRR RRR R

RR A RR R RR R RR R RR R RR A

R R R R R A R R R R R NO R R R R R RRR R RR R RR R RRRRRR

‘RR RR R RR R RR R RR RRR R RR R R R RR R RRRR R

RR R RR R R R RR R RR RRR R Nodata RR R RR R RR R RR RRR R RR RR t?R R RR R RR R RR R RR R

RR R A R RR R RR R

RR R RR R RRRRRRRR R RR R RR R RR R RR R

RR R

A R NORR RRR RRR RR

RR RRR RRR RRR RR R

RR RRR RRR RRR R

R R R RR R

RR RRR RRR RRR R

RR RR RR

RRR R

RR RRRRR RRR R

RR RRR R

R R R RR R

RR R RR RR RR R

NO&t8R R R RR R R R

ERR

R RR R

RR R RR R RRRRRRRRR

No data Nodata No C&B&RNONO Nodata Nodata RR R Nodata RRRRR R RR R RR R RR RR R RR R

Nodata RR R

RR R

RR RRR RRR R

RR RNO&t8

R RR R

RR RRR RRR RRR RNod&

NodataRR RRR RRRR R

R.R RRRR RRR RRR R

Nod&mRR RRR R

RR R RR R RR R RR RRR R

RR A RR R RRRRRRRR R RR R RR R RR R RR A RR RR A R No&a R R R Nochta R R R R A R

RR R RR R Nodata No’i R R R. Nods&R R R R R R. R A R R R R R R R. R R RR’R R R R R RR R RR-R

R RR R

NodataNodata

R”::Nodmta

RR RRR R

R R

R R R NON0R R RR R

RR R NodataRRRRR RRR R

RR RRR RRR RRR RRR R

RNONORR R RR R RR R RR R RR RRR R RR R RR R RR R

Noduta

R RR RR R RR R RR RR- RRR Nod& RRRRRRRR R RR R RR R RR RRR R RR R RR R RR R RR R RR RRR R RR R RR R RR R RR R RR R

RR R RR R RR R RR R RR R RR R

RR RRR RRR RRR RRR R

RR RRR R

Nod8t8

RR RR R

NodataR R No&t8R R R R

R RR R No&a

RR R

RR RRR RRNONOR NON0 Now

ND NOR

RRR R RR R

R

RR A

RRRRRR

RR R R R13

RR RRR R

AnRNO-

Wk8t8sNoD8t8

Page 26: Crane Engineering Data 1

Engineering Data

. bX3dl-ICRANE

I 1

CORROS.ION DATAMETALS

--Id@ACMC 8cid ttowAa9tic acid Cgte & anh.1Acstk anhydricbAcebone

oth8rk8toms

A#rty-kidfumesAlcot?ols hc6t fatty)Atiphatic esW8Atkyt chtorides

RRRRR RR RR RRRRRR R

NodamR RR RRR RRR RRR R

RR R

RR R RR R RRRRRR R RR R RR RRRR R RR R.RR RRR R RR R R RRR R RR R RR R RRR R RR R RR.R A

RR R RR R RR RRRR R RR R RR R RRR R RR R RR RRRR R RR R RR R RRR R RR-R RR 17 A

RRRRRRRR RRR R RR RR RRR R RR R RR R RRR R RR RRR R RRR R RR R R *R

R R AiR R R,R A RR R

R R RR R R

R R RR R AR R R

*R R R‘R R R

R::: -R

R.R AR R R

:e A

R’ R RR R R

I R RR

R R A

R A RR RR R R RR R RR R RR R R R-R RRRRRRR

RR RRRRRRR::RRRRRRR R R RR R R R

R R A RR R R RRRRRRRR R R AR R R R

IRRRRRRR RRRR R RRRRR RR RRRRRR’R R.RR R

‘NON0 R R RRR RRRRR RRRRR RRR

1.R R R R R

‘R R RR R‘R R RR R

R R RR RR R RRR

iRRRRR

‘R R RR R;RNORR R1RCilONoda-m .

RR RRR R?R R9R R

3 RR3R R

RR RNodata

RR R

i3 RRRR RRR RRR R

n Alum

DAluminium chlorideAmmo& anhydrousAmma’& 8weousArnmontumchtorkb R

RRRRR NDND

R R R AR R R RR R RR R RRRRRRR

Amyl acetateAniline

Antimony trichkwicbAqua mgisAmmatksotvunts

BeerBmzoic 8cidBark acidBrhlm, atummdBromim

Calcium chtortdecarbon dtsulphllCarbonic actdc8rbontetmchlor~Caustksoda&potash

CMomtasof Na, K, BaChlorlno. drychlorine, nretChlorides of Na, K, Mg

RR RRR RRR R

RRRRRRRRRRRRRRRRRRRRNo dam Nodata R. R

RR AR‘R R-R R R R R R RRR R RR R

RRR- RR R

R RRR RRRR

RRNDRR R RR R RR R RR R RR RRRRRRRRRRRRRRRRRRRR R R R’R R R‘R R RR R R R R RR RRR R RR R RR RR. R RR R

RR R RR R RR R

R RRRR RR

RR RR RRRRRR RRR R

RRRRRRRRR R RR RR R R R R R R R R R R NO R R ND R R RRR R RR R RR R RR R RR RRR RRR R RR R RR R RR R RR R RR RR R R R R R R R ‘R R R A R R R R R

RR RRR RR R R.

RRR R

:RR

R R

RR R

RR RRRRR R

R’R R RR R RR R RR R RR R RR RR RR R RR R RR R RR R RR RR RR R RR R RR RRR R RR R RR R R R R RR R

RRRRRR RR ARR R RR R RR R RRND.RR R RR RNocbta RR R RR R RR R RR R RR R

A R A A R R RNDNO RNONO R R. RR RR R RR R

’ R NO R R R

R R-R R R RRR R RRRRR R RR RRRRRRRR RR R

RRRRRRRR’RRRRRR R RR RRR R RR RRRRRRR

RRRRRRRR R

RR RR R R R R .R

RRRRRRNo deta RRR

R R NOR R-RR R

RR R RR R

Chloroaeetk acidsC&t-ChloroformChlorosutphonic acidChromic acid (80%)

Citrk acidcof3p8rsalh hlost)Cresylkrrctds W96ICyClOtWM8-sm% ryfl-ticEmutstfii btt canc.~EttxwFatty acids (X6)Ferric chlcrribrFerroussulphate

Fluorinated mfrlgesants,tmrosds, 8.g Freon

Ftuorii,dryFluorine, wetFluwitkk acid

No damRR R

RR R

RR RR RRRRR RRR R

No&mRR RRR R

R RR R RR R RR R RR R RR RRR R RR R RR R RR R RR R

RNONDRR R RR R RR R RR R RR RRR R RR R RR R RR R RR R RR RNodsta RR R RR R RR R RR A RR R

RR R RR RRRRRRRR NO NO R R RRR R RR RRRNORRR .

No data RR RR R ND R R .RRR R RR RRR RRR R RRR

RR’R RRR R

RRR RR R

Nodam IRR R tRR R t

IR I

R R RR R RR R RR R RR RR R RR RRRRRR R R R RR R RR R RR R RR R RR A

:: RRR R

R R R- R R R R R R

Formaldehyde MO96jFormica&dFruit juiae,GelattneGlycwin8

GlymlrHmtmnhHydrazineHydrobromk acid 6096tHydrochtaric acid (10961

Hydrochtoric acid &csnc.tHydracyantc acidHyctrofluork actd MOWHyctroftuoric actd (75%)Hydrogen peroxi* UO%j

K304CW

R R

RR R RR RNodata R R R

RR RR R NO R R R

RR R RR R

::RR RRR R

RRR RRRRRRRRR

RR R RR RNodata RR RNodsta R R R

RR RR RR R

RR RRRRRR RRRR Nodata No dataRR R NodataRR R

RR R RR R RR RRR R R R RRR R RR R RR RRR R RRR RR RRR R RR R RR R

RR R RRR.RRRRRRRR R

RR RRR RRR RRR R

RR RRR RRR RRRRRR R

R R RRRRRRRRRRRRR NO NO R R RRRNORR RRRNORRR

R R NO R R RNod- R R RNocbm RNONO

R R NO R R RRR RRRR

RR RR R

:RdR

RR RRR RRR R

RR RR R NOR .

RR RR

RR R RR R RR RRR R RR R RR RRR R RR R RR R

RR AR R ,R

No damRR RR R R:R

RRRR RRR RR RR

RR RR R ND R R RNo data No data.

RR RRR R

RR RR R R R R. R

RR RRR RRR RRR R

R RNodata R R R RRRRRR R

RR R RR RRR R R

A R RR RR R RR R

R R AR R R

Page 27: Crane Engineering Data 1

t

Engineering Data

General ’~CRANE(

CORROSION DATAMETALS

‘Hydmgm suiphkbHypochioritmLactk acid WMWbadaumml .Lirw ICaO)

MabkacidMeat jukesMercuric chloride~cwfMifk&ltsw

Moist airM0lm

Nrrp)rtha

!iiizzr

Nittams of &, K. NH,Nitric ac$d (a%)Nitric acid tS%)Nitrk rrcid (95%)Nitric acid, furnina

Oils, esmntblOilt. mineralOils, v#ptabb a animelOxalic acidchnm

Paraffin waxI%rchloric acidPhRflOl

~~~~ :z

PhosOhwlc acid ws%)PhosphonachloriderPtlosphonw pentoxkbPhthalkscidPicric acid

pVridineseammtSilkk acidslllcone flu-UsSilver nitmta

Sodium c&mnateSodiumporoxida

sodium swamsodium sulphideStannk chloridrr

StWChsrrorrr, wwP% mSulphamk acidSUM-~ 0% K. W, CdSulpilitUS

su;+htBic adds ’

Sulphur dioxide, drySulphur dioxide, wetSuiphur trioxide

Sulphurk acid MCM1Sulphutic acid (70%)Su~phurk acid 195%)Sulphurk acid. fumingSulphur chlorides

TallanTatmk acid 1109&jTartakk acidTrichkwe&ybneVj=WWater, distilledWsdet, softWatet, hardYfUlStzinc chloride

. RR R RR R RR R RR R RR R RRR RRRR R RRRR

RR R RR R

RR R’RRRR RR RR A

RR R R RR RRR RRR R

NocbtaRR RRR R

No data

RR R

AR R

RR R

Noam

RR R R

R R NONochta Nodata

RRR RNodm

RR R

NodutmNodam

RR R

RR RRR RRR RNodam

RRRRRRRR RNodsta R RRRR RRRRR RR

No damRA

RR RRRR RRR RRR R

RR RRR RRR RRR ANo data

RRR NodataRR R RRRR R RRRR RRR R No data

RRNORRRR RRR R RR ARR R RR RRR R RR R

RR

R RR RA R

RR R

RR R

R R

RR R Nodam

RR R

RR R RRR R R R’R RRR RRR R RRRR R R

RR RRR RNo data

RR RNo dataRR R

RR R RRRR R RRRRNORRNodataRR R

Nocbta

NodataNodata

RR R RR R

RR R

RR R RRRR RRR R RR

::Y?RR R

R‘ R R

RR RRR R

RR RRR R

Nocbta

RRR No&mRR R NodamRR RRR R RRRR RR

NodataNodataNodata

RR R

RR R

RR R RRRR R

RR RRR R

RR R RR A

No damRR RRR R

RR R

RR R RR RRR R RR RRR R RRRR RNodata R

RRR R

R”R?RR RRR R

RR R RRRR RRR R RR RRRNDRRRR R

No data

R R

RR RRR RRR RRR R

RR R RR RRR RRRRRRRRR R No&mR R R

RR RRR RRR RNodata

RRR NodataRR R

RRRNodamNodata

RRRNodata

RR RRR R

RR RRR RRRR RRR R

RR R

RR R

RR R RR RRR R RR RRR R RR RR R R Nodata

RR RRR RRR RRR R

:::: RNo&m

RR RRR RRRRNodmta

RR RRR R

RR RA NDND

RR R RR RRR R RR R

.R R R R R RR RR RRR R Nodata

RR R RR R

RR RRR RRR RNodutaNodata

RR RNodata

RR R

RR RRRRRR R

RR RRR RRR RRR A

RR RRR RRR R

R NO NO

RR R

No cbta No&m

RRRRR R

RR R No&mR No data

Nodata

RR R RR R RR R

No dataRR RR R

RbR-R

RR RR NON0RRNDRR R

I ND NO;R R RR RNON0

No data RR R

,R RIR R RR RIR AIR R RR R

RR RR RRR R

No detaRR R

RR RRR RRR R

NO NO

fl R RR R RR R

RR R

RR RR R R’RR RRR R

RR R

RR R

RR RRR RRR ARR R

RR R RR R

RR R RR RRR R RR RRRR R RR RRR R RR R

NodataRR R

RR R

RR RR R NO

RR RRR R

RR RRR R

RR RRR RNo dataRR RRR R

RR RRR R

RR RR R

Nodam Nodata. RRR

RR R RR RRR R RR R

RR R

RR RR RR

R

Nodam

RR R

RR R

NodateRR RRR RRR R

RR R

RR R

RR R

R

R”:: RR R

RR R

R R

RR RRR RRR RRR R

NodataRR R RR RRRRRRRRR R RR RRR R RR ARR R

RR R RRRR R RR RRR R RR RRR R Nodata

NodamRR RRR RRR R

No dataR NON0RR RRR RRRR

RR RRR RRR R

‘R R RRR R

R RR RA RR R

R RRRRRR RRR R

RR RRR RNodata

Page 28: Crane Engineering Data 1

Engineering Data

&I43di

CORROSION DATAMETALS

R R Rk RR RR RR R RR RR R RR RNodata RR R RR RRR R RR R RR R

NDNDRR R RR RRR A RR R RR R

NDND R R R R R RRR R RR RNodata RR R RR R

R R R R R R R R R‘RR R RR R RR RRR R RR R RR RRR R RR R RR RRNDNDRR R RR R

RR R RR R RR RRR RRR RRR R

RR R RR R RR R RR R Re R RR RRR R RR R RR RRR R RR R RR RRR R RNDND NodataNotMa R Nodata RR R

RR R RR R RR R RR RRR R RR R Nodata R R RRR R RR R RR RRR R RRNDRR ARR R RR R Nodata RR R

RR R RR R RR R R.R RRR R RR R Nodata RR RRR R RR R Nodata RR RR R R R R R R R ND R R RRR R RR R RR A

RR R RR R RR R RR RRR R RR R RR RRR R RR R RR RRR R RRRRRRRR R R R

RR R RR R RRNDRR RR R R R R R R R ND R R RR R R R R R R R ND R R RRR R RR R R RR RRR R RRND Nodata No da+

Hydrogsn sulphidsH~pOChlCKlt6SLactk8cid~lawLed-Lime (CaDI

*.-.

Mdeic acidMeat jukesMercurk chlorkla-ryMilk 6 its products

Molistdr

Nitratus of Na, K, NH*Nitrk acid f<25K)Nitric mid 6D96~Nitrk acid (QS%lNitric acid, fuming

Oils, essantidOils. mineraloh, kfegmble & mirrmlOxalk acid

hraffh mxperchlork acidPhenolehosphoricaEid 125961PhosphoricrrddR5D%l

phasphwk add mmphosphorus drlcK)cksPhospbw pentoxibbPhthalk addPkrk acid

PyridineseawaterSHkk addSilicons fluidssiher nitrate

b

sodium c8rboMw..sodiumFlarox~

sodium sik0teSodium suiphidsStannic chl#de

+;E$Jvws&-

Sulk Ma, K. Mg, CalSulphlbfB

Sulphonk ucidsSulphurSulphur dioxids, drysulphurdioxide, msulphur trioxida

Sulphurk acid (<#I%)sulphurk acid (7096)Sulphurk qid W3961sulphurk add, fumingsulphur chloridas

lallowTannk acid IlOWTartwkacidTrkhlorethyhVinegfw

water, diiwadwater, softWmBr, hardvemtZinc chloride

R RR RR R .R

RRRRRR R

RR RR R

R .RR RRR R

RR RR R

R RNodata

RR RR

RR RRR RRR RRR RRR R

R R

RR R RR RRR R RR R

RR RRR RRR RRR RR R* R

RR RRR RR RRR R

RR RRR RRR RRR RRR R

R‘R j,RR RR AR

RR RRR RRR RRRR R

RR RRR RdR AR RR R .R

RR R RR R

RR R RR R RR R RR RRR R RR R RR A RR RRR R RR R RR R RR RR R R RR R RR R

RR R RR R RR R

R R R R R R R R R.R R ARR R RR R

R RNDNDRR R RR RR R A RR R RR RR R R RR R RR R

R RR A RR RR RNDNDRR R RR RR Nodata R R R R R RRR R RNDNDRR R RR RR NDNDRR R RR R

R RR R RR R RR RRR R RR RR R RR RRR R Nodata RR R RR RRR R Nodata RR R RR R

NDNDND R R R R R R

RRRRR RRR R

R R

RR RNo dataRRR

RR RRRR RRR RRR R

RR R RR R RR R RR RNodata R R R R R R R R R

RR A RR k RR R RR RNodata RR R RR R

RR RRRR RR R

RR R R

RR R RR R RR R RR RRR R RR R RR R RR RR Nodate RR R RR RRR R RR R RR R RR R

RR R RR R RR R

R R Nodata R R R NodataRR R RR R RR RR R RR R RR R RR R

R R RR R RR RRR R RR R

RR RRR RRRR RRR R

No dataRR RRR RR

R RR R RR RR RR R RR RR RR R

RR R RR RA R RR R RR R

RR R RR R RR R RR RRR R RR R RR RRR R RR R RR R RR RRR R RR R RR R RR RRR R R RR R RR R

RR R RR R RR R RR RRR R RR R RR R RR RRR R RR R RR R RR RNodata RR R RR R RR RRR R RR RR R RR R

RR R

RRRRRRRR RRR RRR R

RR RRR RRR RRR R

RR R RR R RR R RR RRR R RRNDRR’RRR R RR R R ND R R .RRR R RR R RR RRR R RR R RR R

RR RRR RRR R

R R RR R R RRR R R R ND R

R R R’lRNDND R R Nodata NodataNodota RR R R RNDND RNDNDRR R RR R No da* No data

RR RRRR RRR RRR R

RR RRR RRR RR’ R

R R R R R ND R R ND R R RRR R RR R RR R RR RRR R RR R Nodata R R RRR R RR R RR R RR RR i3 -R R R ND R R R

RRR R RR R RR.RRR R Nodata .R R RR R R R R R R R ND R R ARR R RNDR RR RRR R RR R RR R

RR RRR RR RRR RRR R

RR R RR R RRNDRR RRRR RR R Nodata RR RRR R NodataRR R RR R RR R RR RRR R RR R RNDR RR R

Node8RR RRR RRF!RR R

R

RR R Nodata RRRRR R RR RR R RR RRR R RR R RRNDRR RRR R RR R RR RRR R

RR R RR R RR RRR R R R RR RRR RR

R RRR R No data

RR RRR RRR RRR RRR R

RR RRR RRR RRR R

RR R RR RRRRRRRR R RR RR R RR RRR R RR R RR R RRRRR R RR R RR R RR RRR R R RRRRRR

RR R RR R RR R RR RRR R RR R RR R RR RRR R RR R RR R RRRRR R RR Nodata R R RRR R RRRRRR

Af#RND-

indicatesNo Data

the matw’bl is resistant to the named chemiil = material is unaritath 8t his tenperaturel

ShaWn. A blank indkates thattha tmterial is unsuitable.

47

Page 29: Crane Engineering Data 1

Enginwiing Data

Metii ,

STEEL PIPESMEDIUIWAND HEAVY SERIESTECHNICAt DATA

+btWGrack slJrfac4B Motnant Section content centr8s Nominalofpb@ . Mornal Intwnd permetre of Mod&s P- of Bate

tenQth hewa Supportz. E!Ez

MediumH=fY

17.1 12.4.17.1 11.3

1515

Med’wmHeavy

21.4 16.121.4 14.9

2020

26-9 21.6 366 0.085 1.50 1.11 0.366 2.2 2.026.9 20.4 327 .0.085 1.72 1.28 0.327 2.2 20 -.

2525

33.8 27.3 585 0.106 3.68 2.18 0.585 2.5 2533.8 26.7 519 CL106 4.26 252 0.519 2.5 25

3232

Med’wmH-w

Medium 42542.5

40 Medium40 H-w

MediumH-Y

65 Medium65 Heavy-

.76.07$.0

a0a0

MediumH-Y

88.888.8

100106

MediumH-W

114.1114.1

125 Medium 139.6125 Heavy la.6

Medium 165.1

.mm

IS.034.4

41.940.3

53.051.3

68.767.0

80.779.1

105.1103.3

130.0i 28.9

155.4154.3

fnm’ m’ cm’ cm’ litres * m nun .

121100

0.0540.054

0.300.34

0.3500.397

0.1210.106

1.71.7

1010

1740.067 0.70 0.652 0200 2.0 150.067 0.79 0.734 -0.174 2 0 15

1018 0.134 7.76 3.66 1.018 2.7 32929 0.134 9.12 4.29 0.929 2.7 32

1379 0.1521276 0.152

11.7913.96

I26.130.8

4.87 1.379 3.05b77 1.276 3.0

4 04 0

0.1890.w

8.66 2266 3 2 50lOz3 2.067 3.2 50

37073526

02390239

14.317.0

3.7073.526

5115 0.2774914 6.277

21.8 5.11525.4 4.914

8676 0.3566361 0.356

40.8 8.67647.8 8.381

100100

13273 0.43813040 0.438

66.773.5

94.9104.5

13.2613.04

18 970 0.51818 700 0.518

18.9718.70

3.53.5

3.73.7

4.14.1

4.44.4

4.74.7

CENTRES OF PIPE SUPPORTS

The distances given in the above table for the centres of pipe supports have been derived from the following formula whichassumes the pipe to be a simply supported beam with an evenly distributed load.

4szL -= [ 1

‘A

5vv

where L = Centms of supports . . . . . . . . . . . . . .S = Tensile stress due to bending . . . . . . . . . . . . . . .z = hibd~lus of section . .

Weight per metre ~,i pipe plus water... . . . . . . . . .

W = . . . . . . . . . .

Units

E&/macm’kg/m

Values of ‘W’ can be obtained by adding together the weight of pipe given in the table on page 53 and the weight ofwater content derived from the above table. Values of ‘Z’ can be read directly from the above table. The values shown for‘L’ in the above table assumes a value for ‘S’ of approximately 10% of the permissible stress for steel taken as being110 MN/m2 (110 MPa). The stress ‘S’ is the stress due to bending and will be additional to any longitudinal fibre stresses

12which may arise due to the pressure of the water in the pipe.

Page 30: Crane Engineering Data 1

Engineering Data

Metric

STEEL PIPES BS1387PLAIN, SCREWED AND SOCKETED 1967

DIMENSIONS AND WEIGHTS

Outside diameter of black tube Thicknesses

Nomind Approx, Light Medium md Hsavybore outside Lit Medium bavv

diameter Max. Min. Max. Min.

m m m m m m m m S.W.G. mm S.W.G. mm S.W.G. mm

10 10.1 9.7 '9.8 1.8 14 .6 10.4 15 2 0 12 2658 13.5 13.6 13.2 13.9 13.3 15 1.8 13. 2.35 11 1.9.

10 17 17.1 16.7 17.4 16.8 15 1.8 ?3 235 11 29

15 21.5 21.4 21.0 21.7 21.1 14 2 020 27 26.9 25.4 27.2 26.6 13 2.3525 34 33.8 33.2 34.2 33.4 12 2.65

12 2.65 10 3.252.65 10 3.253.25 8 4.05

1210

D32 43 425 41.9 42.9 421 . 12. 2.65 10 3.25 8 4.0540 49 48.4 47.8 46.8 48.0 11 29 10 3.25 8 4.0550 60 60.2 59.6 60.8 58.8 11 29 9 3.05 7 4.5

7 6 76.0 75.2 76.6 75.4 10 3.25 c 9 3.65 7 4.589 88.7 87.9 89.5 88.1 10 3.25 8 4.05 6 4.85114 113.9 113.0 114.9 113.3 9 . 3.65 7 4.5 5 5.4

iii'100

125 140 140.6 136.7 6 4.65 5 5.4150 165 166.1 164.1 6 4.85 5 5.4

wei#Ns per metre of Mack pipe sor;kets -

Li#Bt

Plain Ends

Medium

screwed and Socbted Minimum Min. Lengthouts’we Nominal

Lit Medium Diameter ordinary Longscrew bore

kg. kg- @-. k;e- hl- fTWfL mm. mm. ITtWL

0.361 0.407 0.493 0.364 0.410 0.496 15 19 17 60.517 0.650 0.76Q 0.521 0.654 0.773 18.5 '27 25 80.674 0.852 1.02 0.680 0.858 1.03 22 28 25 10

0.952 1.22 1.45 0.961 1.23 1.46 27 371.41 1.58 1.90 1.42 1.5Q 1.91 32.5 39201 244 2.97 203 246 299 39.5 46

35 1537 2043. 25

258 3.14 3.84 261 817' 3.87 49 51 48 323.25 3.61 4.43 3.29 3.65 4.47 56 51 48 404.11 5.10 6.17 4.18 5.17 6.24 68 60 57 50

5.60 6.516.81 8.479.89 121

7.9010.1k 44.. . ,*

5.92 6.63 8.02 84 696.98 8.64 10.3 , 98 75

10.2 124 14.7 1.24 87

65

ii

6580100

16.7 18.3 151 96 92 12519.8 21:8 178 96 92 150

16.2 17.819.2 21.2

The above tables are based on infwmation given in British Standard 1387:1Q67s For compbta tables and other information direct referenceshould be made to this standar$.

Page 31: Crane Engineering Data 1

Engineering Data1 CRANE 1I I

lmperidl

BS13871967 STEEL PIPES

MEDWM AND HEAVY SERIES

WaterNominal Grade

Diameters ARMIS MechanicId Pmpertles

bore of- Mean Mean . surface Moment SCtiOflcontent CentYes Nominal

Outside htefnal lntemal per foot of ‘Modulus fZdsupportr k#8

in ‘in in in’ ft2 in’ in’ gal l ft in

“‘3“.

MediumHeavy-

0.672 0.469 0.188 0.1760.672 0.441 0.153 0.176

0.0070.008

0.0210.624

0.0080.007

55

‘35H

MediumHeavy

0.843 0.636 0.318 0.221 0.017 0.040 0.014 60.843 0.588 0.271 0.221 0.019 0.045 0.012 6

w%

%#

MediumH-w

l.o!s 0.852 0.569 0.277 0.036 o.cm6 0.025 71.059 0.804 0208 0.277 0.041 0.078 0.022 7

11

MediumHeavy

1.331 1.075 0.908 0.348 0.088 0.133 0.039 8I.331 1.011 0.803 0.348 0.103 0.154 0.035 8

11

1% Medium1% H-Y

1.672 1.416 1.575 0.436 0.186 0.222 0.066 81.672 1.352 lA36 0.438 0.219 0.262 0.062 8

1%1%

1%1%

22

MediumHeavy

MediumH-W

1.9041.904 ::iE

2.133 0.498 0.283 0.297 0.092 9 1%1.971 0.498 0.335 0.352 0.065 9 1%

2374 2086 3.418 0.621 0.629 0.529 0.148 10 22374 '2022 3.211' 0.62 1 0.737 0.621 0.139 10 2

2%2%

MediumH-w

2991 2704 5.743 0.763 1.30 0.871 0.249 112991 2.640 5.474 0.783 1.54 1.031 0.237 11

2%2%

3 Medium 3.496 3.177 7.927 0.915 2.33 1.33 0.343 12 33 Heavy 3.496 3.113 7.611 0.915 272 1.55 0.329 12 3

4 Medium 4.491 4.1404 H-W 4.491 4.068

Ill76 5.54 2.47 0562 13 41.176 6.51 290 0.562 13 4

5.5

MediumH-Y

54965.496

5.1135 . 0 7 3

6 Medium 6.4Q9 6.1156 Heavy 6.499 6.075

13.451.3.0

20.5320.21

2Q.3728.99

1.4391.439

1.7011.701

11.22 4.08 0.88812.25 4.46 0.874

55

18.9 5.82 1.27120.67 6.36 1.254

1414

1515

66

- ~ ~- ~~l 1 Imperial gallon of water has a volume of 277.42 cubic inchm and weighs 10 pounds

The distances given in the above table for the centres of pipe supports have been derived from the following formula whichassumes the pipe to be a simply supported beam with an evenly distributed load.

IrbrL = 2sz[ 13w

Unitsw h e r e L = Centfes of supports . . . . . . . . . . . . . . . . . . . . . ft

S = Tensite stress due to bending . . . . . . . . . . . . . . . . . . lbf /in’z= Modulus of section of pipe . . . . . . . . . . . . . . . . . . in3w= Weight per foot of pipe plus water . . . . . . . . . . . . . . . lb/h

Values of ‘W’ can be obtained by adding together the weight of pipe given in the table on page 55 and the weight ofwater content derived from the above table. Values of ‘2’ can be read directly from the above table. The values shown for‘L’ in the above table assume a value for ‘S’ of approximately 10% of the permissible stress for steel taken as being 16 000Ibf/in2 . The stress ‘S’ is the stress due to bending and will be additional tq any longitudinal fibre stresses which may arisedue to the pressure of the water in the pipe.

Page 32: Crane Engineering Data 1

Engineering Data

hperidl

STEEL PIPES

.

BS1387PLAIN, SCREWED AND SOCKET

DIMENSIONS AND Wf.lGHTS1967

LOutside diameter of black tube Thicknesses

Nominal Approx. Light Medium and Heavybore oueide bx Min. Max. Min. Liit Medium H-w

diameter *

inches inches inches inches inches indms S.W.G. inches S.W.G. inches S.W.G. inches

‘436%H#1

5 5%6 6%

13‘32

17‘32

11‘16

0.3960.5320.671

0.8411.05Q1.328

1.6701.9032370

0.3830.5180.656

0.8251.0411.309

1.6501.8822.347

0.4110.5470.685

0.8561.0721.346

1.6871.9192394

3.0143.5244.524

5.5346.539

0.3860.5220.660

0.8311.0471.316

1.6571.8892354

2.9693 . 4 6 944563

5.4596.458

0.072 140.072 130.072 13

0.080 120.092 120.104 10

0.1040.1160.116

0.1280.1280.144

10109

987

+ 66

0.080 12 0.1040.092 11 0.116o.oB2 11 0.116

0.104 10 0.1280.104 10 0.1280.128 8 0.160

0.126 80.126 80.144 7

0.144 70.160 60.176 5

O.lsz 50.192 5'

0.1600.1600.176

0.1760.1920.212

0.2120.212

Light

lb.

Weights per foot of black pipe SOCkfltS

Plain Ends Screwed and Socketed MinimumOutside

Min. Length. NominalMedium - H-w Light .Mediim Hw Diameter Ordinary LOngSfeW - bore

\lb. lb. lb. lb. lb. in. in. in. in.

0.2430.3470.4530.640

10,9441.35

1.73219276

3.904.5%6.64

0.2730.4370.573

0.8221.061.64

2112.433.42

4.365.698.14

10.912.9

0.331 --0.5170.666

0.9771.27200

zi4.14

5.316.76 .9.71

12614.3

0.245 0.275 *0.350 0.4400.457 0.577

0.646 0.8280.954 1.071.36 1.65

1.75 2.13222 246281 3.47

398 4.46469 5.606.84 8.34

11.213.3

0.333 932

0.520 *‘a2

0.690 ‘40.983 1’461.28 1*4,201 1*'rIL;2.60 1 lSf,‘3.01 2%‘4.19 2” I16

5.39 3%6.87 3'rL9.91 47%

12.3 5%1614.7 7

2%3 ,4

56

The above tables are g’rven as e&x&s from British Standard 1387:1967. For complete tables and other information direct rebrenca sfaould bemade to this standard.

x

55

Page 33: Crane Engineering Data 1

/CRANEI1 I

Engineering Data

Metri

1973STEEL PIPESWELDED AN0 SEAMLESS CARBON AND ALLOYDiMENSlONS AND WEIGHTS

Thickness millimetres/S.W.G.

mm in m m c Ws-tit kg/m

6 ‘8. 10.28 % 13.510 =‘, P7.215 w 21.320 3c 26.925 1 33.732 1% 42.440 1% 48.35 0 2 60.365 2% 76.18 0 3 88.990. 355 101.6loo 4 114.3125 5 139.7150 6 168.3

0.2700.3660.4770.6010.7670.9691.231.41

0.308 0.3440.420 0.4720.549 0.6200.694 0.7850.888 1.011.12 1.281.43 1.621.63 1.862.95 2.33

i

0.378 0.4100.522 0.5710.688 0.7540.874 0.9621.12 1.241.43 1.571.82 2.01208 2302.62 2903.32 3.683.89 4.32

0.4540.6390.8501.091.411.79

2633.314.224955.676.40

0.4930.7030.9421.211.572.012.572.953.734.755.576.39721

0.7621.031.331.732.222.843.274.145.286.207.118.03

0.817 0.8931.11 1.211.44 1.591.89 2.092.42 2.693.11 3.473.59 4.004.54 5.075.80 6.496.81 7.637.82 8.768.83 9.90

10.9 12213.1 14.7

1.31 1.411.72 1.872.28 2.482.95 3233.81 4.194.41 4.855.59 6.177.17 7.928.43 9.339.70 10.711.0 12.113.5 . 14.916.3 18.1

Thickness millimetrsb/S.W.G.

mm in-

Weight kg/m

15 w 21.329 36 26.925 1 33.732 1% 42.440 1% 48.35 0 2 60.365 2% 76.18 0 3 88.990 3% 101.6loo 4 114.3125 5 139.7150 6 168.3

::E3.484.535.246.658.6010.211.713.216.319.7

201 2.12270 2863.54 3.76461 4.925.34 5.716x2 7.308.77 9.4110.3 11.111.9 12.613.5 14.516.6 17.920.1 21.7

294 3.96 3.21 3.483.87 4.04 4.27 4.675.07 5.31 5.62 6.195.89 6.17 6.55 7.247.53 7.91 8.42 9.349.71 10.2 10.9 12.111.5 12.1 12.9 14.4132 13.9 14.9 16.615.0 15.8 16.8 18.818.5 19.4 20.8 23.322.4 23.6 25.3 28.3

5.05 5.396.76 7277.93 8.56

10.3 11.113.4 14.615.9 17.318.4 20.120.9 22.8259 28.331.5 34.5

7.719.08 9.45

11.9 12.415.6 16.318.6 19.521.6 22.624.6 25.730.5 32037.2 39.0

Em&t kr the thickness indiited by astewisks ali tb sizes and thicknesses shown in the above tabbe ore hwzludsd in 160 Stanbard 336 -‘Rain end steel tubes, welded GI seamless. Guned tables of dhensions and masses per unit length’.

Page 34: Crane Engineering Data 1

Yp Engineering Data ..L

lmperiil

STEEL PIPESWELDED AND SEAMLESS CARBON AN0 ALLOY 1973

DIMENSIONS AIUO WEIGHTS

B-

‘h 6 0.402‘% 8 0.531% 10 0.677w34 i!i

0.8401.059

1 25 1.3271% 32 1.6691% 40 1.9CMI2 50 2.375

2% 65 3.aIO‘3 80 3.5003% 90 4.0004 100 4.5005 125 5.5006 150 6.625

0.18102460.3210.4040.5150.6510.8270.947

0207 0.2310.282 0.3170.369 0.4170.466 0.5270.597 0.6790.753 0.8600.961 1.091.10 * 1.251.38 1.57

0.254 0.2760.351 0940.462 0.5070.587 0.6460.753 0.8330.961 1.051.22 1.351.40 1.551.76 1.95223 2.472.61 2.90

0.305 0.3310.429 0.4720.571 0.6330.732 0.8130.947 1.051.20 1.351.54 1.731.77 1.982.22 251284 3.19333 3743.81 4.29430 4.84

0.5+!2 -0.6920.8941.161.491.912.202.783.554.174.785.40

0.549 0.5930.746 0.8130.968 1.071.27 1.401.63 1.812.09 2.33241 2.693.95 3.413.90 4.364.58 5.135.25 5.895.93 6.657.32 8.208.60 9.88

0.8801.161.531.982562963.764.82566.6.527.399.0711.00

Thickness WSWG

NOWdbore

in

43uch!~ O.‘Z 0.1% 0.2% a2ly “p3r: ai50/ 0.28y “13/ “34444 a37j/ O.“/

in Weight It&t

‘1. 10 0.677H 15 0.84034 m 1.0591 25 1.3271% 32 1.6691% 40 1.9002 50 2.3752% 65 3.ooo3 80 3.5003% 90 4.0004 100 4.5005 125 5.5006 150 6.625

0.9471.26 1.341.67 1.792.17 2.33282 3.033.264.15

y&:

5.32 6766.27 6.787.19 7.818.13 8.84

10.0 10.912.2 13.2

1.421.92253a313.844.916.327.468.609.7412014.6

1.98 206 216 234260 271 287 j 3.143.41 3.57 3.78 4.163.96 4.15 4.40 4.865.06 5.32 666 6.286.52 6.85 7.32 8.137.73 813 867 9.688.87 9.34 10.0 11.2

10.1 * 10.6 11.3 12.612.4 13.0 14.0 15.715.1 15.9 17.0 19.0

3.394.545.336.929.0010.712414.017.421.2

3.624.895757.469.81

11.613.515.319.023.2

51186.138.0110.512.514.516.520.525.0

6.346.33

11.013.116217.321.526.2

All the sizes and thick- shown in the &owe tablo are induded in IS0 Standard 336 - ‘Plain end steel tubes, weHed 01 mmless.General tables of dimensions and mases per unit length’.

.5’1

Page 35: Crane Engineering Data 1

] CRANE 1Engineering Oata

A meficdn

COMMERCIALWROUGHT STEEL PIPE DATA

ANSI 936.10: 1970 - American Nationsl Standard for wrought rteec and wrought iron pipe.

69 WOO: PART 1: 1970 - BdtiSh Standerd for dbnensions of stdd pipe fw the petrdeum intfuttry. t

Nate 1: The btten OS’, 'X8, and 'Xx‘ in the column of Sch8dufe Numbers indicate Standard, Extra Strong, and Double Extfa Strong PiperespeCtiVC3l~.Note 2: The v&es shown in square feet for the Transverse httemal Area JSO represent the volume in cubic%& per foot of pipe tength.

Nominal Outside Schedule Wall Inside Area RMMVWSOpipe size diameter N o . thick- diameter ofmet&’

Moment Wemtwei?t

External SeCtiCXlintemd area of inertia of surfm modulus

inches

(D)

inches

(t)

inches

(1)(d) iA)

P* WatCrssSMH82 inches pounds sq. foot (2% GEsquare SQUWB D-

inches Yzzmto fourth pounds

inches inchesper foot per foot

power per foot HPipe of Pipe -i,-:. /’

‘4’ 0.405 40s 0.068 0269 0.0720 0.0568 o.wo4o 0.00106 0.244 0.02580X 0.095 0.215 0.0925 0.0364 o.wO25 0.00122 0.314 0.016

34 0.540 0.088 034 0.1250 0.1041 0.00072 0.00331 0.424 0.0450.119 0.302 0.1574 0.0716 o.ooo5o 0.00377 0.535 0.031 0.141 0.01395- -

=% 0.675 O.Wl 0.493 0.1670 0.1910 0.00133 o.OQ729 0.567 0.083 0.17880x

0.021600.126 0.423 0.2173 0.1405 o.ooo98 0.00862 0.738 0.061 0.178 0.025540.1 cl9 0.622 0.2503 0.3040 0.00211 0.01709 0.850 0.132 0.220 0.04059

H 0.840 80x 0.147 0.546 0.3200 0.2340 0.00163 0.02008 1.087 0.102 0.220 0.04780160 0.187 0.466 0.3836 0.1706 0.00118 UI2212 1.300 0.074 0.220 0.05269-.-xx 0.294 0.252 0.5043 0.050 o.oo(i35 0.02420 1.714 0.022 0.220 0.65772

0.113 0.824 0.3326 0.5330 0.00371 0.03704 1.130 0.231 0.275 0.07055

-# 1.050 $x 0.154 0.742 0.4335 0.4330 o.oo300 0.04479 1.473 0.188 0.275 0.085310.218 0.614 0.5698 0.2961 o.oo2o6 0.05269 1.940 0.128 0.275 O.lOa38

. ..xx 0.308 0.434 0.7189 0.148 0.00103 0.05792 2.449 0.064 0.275 0.110300.133 . 1.049 0.4939 0.6640 o.oo8oO q.08734 1.678 0.375 0.344 0.1328

1 1.315 0.179 0.957 0.6388 0.7190 0.00499 0.1056 2171 0.312. 0.344 0.1606160 0.250 0.815 0.8365 0.5217 0.00362 0.1251 2840 0.230 0.344 0.1903. ..xx 0.358 0.599 1.0760 0.282 0.00196 0.1405 3.659 0.122 0.344 0.213640s 0.140 1.380 0.6685 1.495 0.01040 0.1947 2.272 0.649 0.435 0.2346

1% 1.660 80x 0.191 1.278 0.6815 1.283 0.00891 0.2418 .2996 0.555 0.435 0.2Ql3160 0.250 1.160 1.1070 1.057 0.00734 0.2839 3.764 0.459 0.435 0.3421. ..xx 0.382 0.896 1534 0.630 o.w438 0.3411 5.214 - 0.273 0.435 0.4110

0.145 X619 0.7995 2= 0.01414 0.3099 2717 0.8S! 0.497 0.32621% 1.900 0.200 1X00 1.066 1.767 0.0122,5 0.3912 3.631 0.765 0.497 0.4118

160 0.281 1.338 1.429 1.406 0.m76 0.4824 4.862 0.608 0.497 0.5080. ..xx 0400 1.100 1.885 0.950 0.0066q .0.5678 6.406 0.42 0.497 0.5977

0.154 2067 1.075 3.355 0.02330 0.6657 3.652 1.45 0.622 0.56062 2375 80x 0.218 1.939 1.477 ‘2.953 0.02050 0.8679 5.022 1.29 0.622 0.7309

-160 0.343 1.689 2190 _ 2.241 0.01556 1.162 7.440 0.97 0.622 0.979 ’. ..xx 0.436 1.503 2.656 1.774 0.01232 1.311 9.029 0.77 0.622 1.3110.

0.203 2.469 1.704 4.788 0.03322 1.530 5.79 2.07 0.753 1.0642% 2875 1g 0.276 2.323 2254 4.238 0.02942 1.924 7.66 . 1.87 0.753 1.339

0.375 2125 2.945 3.546 0.02463 2.353 lO.Oi 1.54 0.753 1.638. ..xx 0.552 1.771 4.028 2.464 0.01710 2.871 13.70 1.07 0.753 1.997

40s 0.216 3.068 2.228 7.393 0.05130 3.017 7.58 3.20 0.916 1.7243 3.500 0.300 2900 3.016 6.605 0.04587 3.894 10.25 2.86 0.916 2.225

160 0.437 2626 4.205 5.416 0.03761 5.032 14.32 235 0.9 16 2.876. ..xx 0.600 2300 5.466 4.155 0.02885 5.993 18.58 1.80 0.916 ’ 3.424

3% 4.ooo 0.226 3.546 2.680 9.m 0.06870 4.788 9.11 4.29 1.047 239480X 0.318 3.364 . 3.678 8.688 0.06170 6.260 12.51 3.84 1.047 3.140

-40s 0.237 4.026 3.174 12.73 0.08840 7.233 10.79 5.50 1.178 3.21480x am 3.826 4.407 11.50 0.07986 9.610 14.96 * 4.98 1.178 4.27 1

4 4.500 120 0.437 3.626 5.578 10.33 0.0717 11.65 19.00 4.47 1.178 5.176160 0.531 3.438 6.621 9.28 0.0645 13.27 22.51 4.02 1.178 5.900. ..xx 0.674 3.152 8.101-. 7.80 0.0642 15.28 27.54 3.36 1.178 6.793

0.258 5.047 4.300 20.01 0.1390 15.16 14.62 8.67 1.456 . 5.451.80X 0.375 4.813 -6.112 18.19 0.1263 20.67 . 20.78 7.88 1.456 7.431

5 5.563 120 0.500 4.563 7.953 ‘16.35 0.1136 25.73 27.10 7.69 1.456 9.253160 0.625 4.313 9.696 14.6 1 0.1015 30.03 32.96 6.33 1.456. ..xx 0.750 4.063 11.340 12.97 0.0991 33.63 38.55 5.61 1.456

r 1

3 1 :

Page 36: Crane Engineering Data 1

Engineering Data

Ameii

COMMERCIALWROUGHT STEEL PIPE DATA

. - I--’

Nominal Outisde Schdute Wail Inside Area Tm- Moment weight swtionpipe size diameter No. thickness diameter of metal inthaI aree ofinertia of

We@p Em=modulus

(1) pipe water(0) ses’ (t) (d) (A) SeNota,2 inches pou- sq. foot

Notic t sqmm wan to fourth pounds per foot per footinches inches inches h&es inches EZ feet PaHlw perfoot dPipc ofp-@e

4jl .-,it; c .

40s 0.280 6.065 5.581 28.89 0.2006 28.14 18.97 12.51 1.734 8,4680x 0.432 5.76 1 8.405 26.07 0.1810 do.49 28.57 11.29 1.734 12.22

6 6.625 120 0.562 5.501 10.70 23.77 0.1650 49.61 36.40 10.30 1.734 15.07160 0.718 5.189 13.32 21.15 0.1469 58.97 4530 9.16 1.734 17.81. ..xx 0.864 4.697 15.64 18.84 0.1308 66.33 53.16 8.16 1.734 20.02

203040s60

0.250 8.125 6.57 51.85 O.-l 57.72 22.360.277 8.07 1 7.26 51.16 0.3553 63.35 24.700.322 7.981 8.40 50.03, 0.3474 72.49 28.550.406 7.813 10.48 47.94 0.3329 88.73 35.yO.sQo 7.625 1276 45.66 0.3171 105.7 43.390.593 7.4s9 14.96 43.46 0.3018 121.3 50.870.718 7.189 17.84 40.59 0.2819 w&5 60.630.812 7.001 19.93 3830 0.2673 153.7’ 67.760.875 6.875 21.30 37.12 0.2578 1 SZO-’ 72420.906 6.813 21.97 36-M 0.2532 165.9 74.69

22.47 -2258 13.39 .22.17 2258 14.6921.70 2.258 16.8120.77 2.258 20.5819.78 2258 24.5118.83 2.258 28.1417.59 2.258 326116.68 2.258 35.65 ’16.10 2.258 37.56

8.625 lz

im140. ..xx160

fl 8

P .‘..

15.80 38.462258m 0.250 10.250 8.24 82.52 0.5731 113.7 28.04 35.76 2814 21.12 !

w. 30 0.307 10.136 10.07 80.69 0.5603 137.4 34.24 34.96 2.814 25.5740s 0.365 10.020 11.90 78.86 0.5475 160.7 40.48 34.20 2.814 29.9060X 0.500 9.750 IS.‘, 0 74.66 0.5185 212.0 b4.74 32.35 2814 39.43

10 10.750 80 . oh93 9.564 18.92 71.84 0.4989 244.8 64.33 31.13 2.814 45.56100 0.718 9.314 2263 68.13 0.4732 286.1 76.93 29.53 2.814 53.25120: 0.843 9.064 26.24 64.53 0.4481 324.2 89.20 2796 2814 60.34140 1.000 8.750 30.63 60.13 0.4176 357.8 104.13 26.06 2.814 68.43160 1.125 8.500 34.02 56.75 0.3941 399.3 115.65 24.59 2.814 74.31

0.250 12.250 9.82 117.66 0.8185 191.8 33.38 51.07 3.338 30.20.330 12690 12.87 114.80 0.7972 246.4 43.77 49.74 3.338 39.90.375 12.OaIl 14.58 113.10 0.7864 279.3 49.56 49.00 3.336 43.80.406 11.938 15.77 111.93 0.7773 360.3 53.53 48.50 3.338 47.10.500 11.750 19.24 108.43 a7528 361.5 65.42 46.92 3.338 56.70.562 11.626 21.52 106.16 0.7372 400.4 73.16 46.00 3.338 6280.687 11.376 26.03 101.64 0.7058 475.1 88.51 44.04 3.338 74.60.843 11.064 31.53 96.14 0.6677 561.6 107.29 41.66 3.338 88.1l.CKMJ 10.750 36.91 90.76 0.6303 641.6 125.49 39.33 3.338 100.7‘1.125 10.500 41.08 86.59 0.6013 700.5 133.68 37.52 3.339 109.91.312 10.126 47.14 80.53 0.5592 781.1 160.27 34.89 3.338 122.6

m30

“&

12 12.75 -‘ii&80100im140160

10m30s40

14 14.00 ‘G80100129140160

0.250 13.500 10.80 143.14 0.9940 255.3 36.71 62.03 3.6650.312 13.376 13.42 140,52 0.9758 . 3i4.4 45.68 60.89 3.6650.375 13.250 16.05 137.88 0.9575 372.8 54.57 59.25 3.6650.437 13.126 18.61 135.32 0.9397 429.1 63.37 58.64 3.6650.500 13.000 21.21 132.73 0.9217 483.9 72.09 57.46 3.6650.593 12.814 24.m 128.96 0.8956 562.3 84.91 55.86 3.6650.750 12.500 31.22 122.72 0.8522 687.3 106.13 53.18 3.6650.937 12.126 38.45 115.49 0.8020 824.4 139.73 50.04 3.6651.093 11.814 44.32 109.62 0.7612 929.5 150.67 47.45 3.6651.250 11.500 50.07 103.87 0.7213 1027.0 170.22 45.01 3.6651.406 11.188 55.63 98.31 0.6827 1117.0 189.12 42.60 3.665

36.645.053.261.3

iii-:98:2117.2132.8146.8159.6

.&250 15.500 12.37 188.69 1.3103 383.7 42.05 81.74 4.189 4&l0.312 15.376 15.38 185.69 1.2895 473.2 53.36 80.50 4.189 59.20.375 15.250 18.41 182.65 1.2684 5621 62.58 79.12 4.189 7 0 . 30.500 15.cxKI 24.35 176.72 1.2272 731.9 8277 76.58 4.189 91.50.656 14.688 31.62 169.44 1.1766 9324 107.50 73.42 4.189 116.60.843 14.314 40.14 160.92 1.1175 1156.6 136.46 69.73 4.189 144.6 - .1.031 13.936 48.48 152.58 1.0596 1364.0 164.83 66.12 4.189 170.71.218 13.564 56.56 144.50 1.0035 1555.8 192.29 62.62 4.189 194.51.437 13.126 65.74 135.32 0.9397 1760.3 223.64 58.64 4.189 220.01.593 12.814 72.10 126.96 0.8956 1893.5 245.11 55.83 4.189 236.7

10 dm

40X6080

:*.16 16.00

looim140160

59

Page 37: Crane Engineering Data 1

Engineering Oata

American * I

COMMERCIALWROUGHT STEEL PIPE DATA

.10 0.25020 0.312

. . h . 0.3750.437

. . . X 0.500

18 18.00 40 0.56260 0.75080 0.937100 1.156120 1.375

17.500 13.94 240.53 1.6703 549.117.376 17.34 237.13 1.6467 678.217.250 20.76 233.71 1.6230 806.517.126 24.11 230.36 1.5997 Q30.317.000 27.49 22&a 1.5763' 1053.216.876 30.79 223.68 1.5533 1172016.500 40164 276.83 1.4849 1514.416.126 50.23 2SIkI.24 1.4183 1833.015Ba6 61.17 193.30 1.3423 2180.015.250 71.81 18266 1.2684 2497.9

--47.3959.0370.59a2069245lW.75138.17170.75207.96244.14

104.21 4.712102.77 4.712101.18 4.712QQ.a4 4.71298.27 4.71296.93 4.71292.57 4.71288.50 4.71283.76 4.71279.07 4.712

61.175.588.6

104.0150.5130.9168.3203.82423277.6

20

24

140 1.562 14.876 80.66 173.60 1.2070 2479.0 274.23 75.32 4.712 305.5160 1.761 14.436 90.75 163.72 1.1369 3020.0 308.51 7886 4.712 335.6

iii!3 0.375 0250 19.500 19.250 23.12 15.51 298.65 2Qom 2.0142 2.iI740 1113.0 756.4 5273 70.60 129.42 . 5.236 75.9125.67 5.236

.111.3

30x 0.500 19.ooo 30.63 283.53 1.9690 1457.0 104.13 122.87 5.23q 145740 0.583 18.814 36.15 276.00 1.9305 1703.0 12zQl 120.46 5.226 . 170.4

20.00 60 0.812 18.376 48.95 265.21 1.8417 2257.0 le6.40 114.92 5.236 225.7a0 1.031 17.936 61.44 252.72 1-m 2772.0 2u8.87 109.51 5.236 277.1100 1.261 17.436 75.33 238.83 1.6595 3314.9 256.10 163.39 5.236 331.5120 1.500 17.000 87.18 226.98 1.5762 3754.0 2Q6.37 9835 5.236 375.5 -

140 1.750 16.500 106.33 213.82 1.4849 4216-O 341.10 9266 5.236 421.7 -160 1.968 16.064 111.49 262.67 1.4074 4585.4 -379.01 87:74 5.236 458.5

10 0250 23.500 la.65 43A.74 3.0121 1315.0 63.41 187.95 6.283 110.0.208 0;375 23250 27.83 424.56 2.9483 1942.0 94.62 183.95 6.263 161.9

. . Gil . 0.500 23&O 36.91 415.49 2.8653 2549.1 125.49 17Q.87 6.263 364.20.562 22.876 41.39 411.00 2.8542 2843.0 140.60 178.09 6.283 237.0

40 0.697 22.626 50.31 402.07 27921 3424.0 171.17 174.23 6.283 285.224.00 60 0.96a 22.064 70.04 38235 2.6552 4652.5 238.11 165.52 6.283 387.7 i

80 1218 21.564 87.17 365.22 25362 5672.0 296.36 158.26 6.263 472.8100 1.531 20.838 188.07 344.32 2.3911 6851.6 367.40 14Q.tB6 6.283 571.0120 1.812 20.376 126.31 326.68 2.2645 7824.8 429.39 141.17 6.263 652.1140 2062 19.876 14211 31028 2.1547 6625.0 463.13 134.46 6283160 2.343 19.314 15Q.41 2b2.98

718.920346 9455.3 541.94 126.84 6.2a3 787.9 I

Page 38: Crane Engineering Data 1

Engineering Data.

.MetiiImperial

PIPE THREADSTERMS AND DESIGNATIONS

Dimensions and tolerantis. The dimensions and tolerances of taper externalthreads shall be in accordance with those given in the Tables on pages 62 and63.

The basic diameters of taper internal threads shall be in accordance withColumns 5,6 and 7 of the Tables, and the tolerances shall be in accordance withColumn 17 of the Tables.Designation. British Standard taper pipe threads shall be designated by the lettersR or Rc, together with the thread size.

It is recommend&d that these screw thrqads should be referred to on drawingsand related documents in the following manner:

Internal taper: R&External taper: RX

Usefu I thread .--

t ncomplete threadComplete thread

--j

.

I.

I

f

i

P

s!stl~ut

Parallelto axis

Gauge length* Wrenching allowance

Total thread

,Fitting allowance

Dimensions and tolerances. The basic diameters of parallel internal threads shallbe in accordance with Cqlumns 5,6 and 7 of the Tables on pw 62 and 63 andthe tolerances shall be in acc$rdance with Column 18 of the Tables.

4

Designation. British Standard parallel internal threads to BS 21 shall be designatedby the letters R,, together with the thread size.

It is rea&mended that these screw threads should be referred to on drawingsand related documents in the following manner:

R,H-

Bs21

TAPER EXTERNAL ANDTAPER INTERNAL PiPETHREADS

PIPE THREADJERMSTaper bhown exaggerated~ 1 in 16 mmasumdon diafnemr.

*This length is“t”

ivalant to the positivetolerance on tha nternal thmd.

PARALLEL INTERNAL PIPETHREADS

Note. The above information and the T8Mes on p8g8s 62 8nd 63 tare4 giwen as extractsfrom 8S21: 1973. For other informwion direct reference should be made to this standard.

61

Page 39: Crane Engineering Data 1

Engineering Data

Met ric ,

-i!.-

PIPE THREADSBASIC DtMENSIONSAND LiMlTS OF SIZE

5 6 7 a 9 10 11 12 13 14 15 16, 17 - 18

‘I’% 6’8, 6%6.5 7.4 5.67’% 8’~ 6’#,6.5 7.4 5B7% 6% 6%9.7 11.0 8.4

75% an 83%10.1 11.4 8s

7% 8% 6%13.2 15.0 11.48 9 7

14.5 16.3 12.7

7% 8% 6%16.8 19.1 14.58% 9% 7%

19.1 21.4 16.88% 9% 7%

19-l 21.4 16.8

1O’f. ll’* 9’+23.4 25.7 21.111’1,‘ ‘8

i2‘10’884

26.7 23212’ ‘5 14’/,, 1 1 “,‘29.8 33.3 26.3

15% 1735.8 39.3 g.3171% 18’% 15’*40.1 43.6 36.61 Pr, 18’Q 15’*40.1 43.6 36.6

“&r‘c

%

“8wY

1

1%

1%

2

2%

3

4

5 ’

6

?a

28

0.907 0.581

0.581

4’1, 1 5’~’4.0 0.9 4.94’% 1 5’J.4.0 0.9 4.9

3’S3.13%3.1

4% 1 5% 3%6.0 1.3 7.3 4.7

4% 1 5%6.4 1.3 7.74% .l 5n6.2 1.8 10.05% 1 6%9.5 1.8 -11.3

4% 1 5%10.4 2.3 12.75% 1 634

12.7 2.3 15.05% 1 6n

12.7 2.3 16.0

6’~ 1 7’1,15.9 2.3 18.2

7’116 1% - 9”r‘21.0

17-5 95 ‘I8%18 1% 10 La29.6 3.5 24.1

3%5.13%6.44%7.7

3%8.14%

10.44n

10.4

s’ll13.6fj’nr

14.07’*,*

1.7.1

93521.9107%25.1107%25.1

2% 1%2.6 1.42% 1%2.5 1.42%3.7 Fo

2% 1%3.7 2.02% 1%5.0 2.7

TO :::

2% 1%3.5

2 1%6.4 3.52% 1%6.4 3.5

3% 27.5 4.6

2%ii2 584’ 2i492 5.8

4n 310.4 6.95 34

11.5 8.15

11.5 ii?

7.723 7.142 6v561

9.728 .9.147 8 . 5 6 6

13.157 12.301 11.445

0.071

19 1.337 0.856

19

14

14

1.337 0.856

I.162

1.162

16.662 15.m 14.950

20.955 19.793 18.631

1%1.7

:“3tic2.3

0.1421.814

X814 .26.441 25.279 ,2y17

33.249 31.770 30.291

41.910 .#A31 38.952

47.803 46.324 44.845

59.614 58.135 56.656

75.164 ’ 73.795 72.226

87.884 86.405 84.928

113.030 li1.551 110.072

138.430 136.951 135.472

163.830 162.351 160.872

0.142

0.189 -11

11

11

2.309

2.al9

2.309

1.479

1.479

1.479

1342.91%2.91%2.9

0.180

0.180

11

11

11

2.309

2.309

2309

1.479

1.479

1.479

1%2.91%351%3.5

0.180

0.216

0.216

0.216 ;

0.216

11

11

11

2.309

2.309

2309

1.479

1.479

1.479

w3.51%3.5

it

Dimensions in millimetres.

Basic gauge lengths and limits of size are based on turns of thread and the linear equivebws are given below (see Note 1).

NOTE 1. Linear equ’haIents are r&ded to 0.1 mm.

NOTE 2. The design of internally thn&ed pa& shalt make dlowanca for receiving pipe ends up to the lengths in Column 13 and theminimum lengths of useful thread rhrrll be not (srs than 80% of *the values in Cohnn 14.

NOTE 3. The above table has been extracted from British Standard 21:1973. For other information on thesa threads direct mferenca should 4be made to BS2 1: 1973.

_ iiIf-I;i-9:zsgb%s>f’B“i:;<..I

Page 40: Crane Engineering Data 1

lmperiil

PIPE THREADSBASIC DIMENSIONS

AlUD LIMITS OF StZE1973

5 .6 7 ‘8 9 10 I1

Gruolr mm

bEsk Tder- rfmlc mfn.

z8ndminus

:*m bw3 i!Eo26 E974

::214 kO714 i?i928 ikiO0

%50 0.0714 1 6i 0.4464 4% 0.a

4% 1 5% 3%

;I.091 . XlB909 1 03000 6% 0.3182 4%OsKio 0.0909 a5809 a40916% 1. 6% 4%a5ooo 0.09m 03909 o.4061

6'6 1 7xaflaxi 0.0908 0.715Q

5'%0.5341

7+,, 1n 9%. 6%0.6875 0.1364 0.8238 a551t8‘ =r0.8&

1% 10%‘ 7'4‘0.1364 0.9489 0.6761

1% 12%:1&rIoOo136411364I&‘ lir

i!lk36l& l&l,

1.1250 0.1364 1.2614 OS68612'* 1 % 137h 10'61.1250 0.1364 12614 0.9886

15 16 171 2 3 4-

12 13 14

7'r, 81% 6'k0.2545 02902 0.21867'1 I 6%oai45 i!Lixn a21867%0.3614 it!&40 r&

7%. ,a%- 6%0.3647 a4473 o.34217% 8% 6%0.5178 cwa92 a44648 9 70.5714 0.6428 a5ooo

7% 8% 6%OS@2 0.7500 0.86828% 9% 7%a7500 a8409 d65el8% 9% 7%0.7500 a84o9 a65e1

10% ll"% **a9204 1.0113 a82w1l.h 13h lO'r*,1.9511 1.1875 0.914712’Jtu 147#8‘ 1 1 ‘1,.1.1761 13125 1.0397

15% 17 141.4991 1.5455 1.272717*+ 18’f. 1 57~,

LgQ5l&B6

1.7159 18$ 1.4431 15'*1.7159 1.4431

No.

Nom zfrmdsid per Pitch 7size inch thmad %

minus1

Fitting kgallour JlowmcI mw

‘h 28 0.03571 0.6229 2% 1%a0mo.0538

ft902 t&362i li,0.1447 o.o786

0.304 0.2812 0.2563

a383 o.3601 0.3372

a618 0.4843 a4666

a656 0.6223 os8m

0.825 a7763 0.7336

I.041 0.9953 0.9496

1.309 1.2506 1.1926

1.650 1;5818 1.6336

1.882 1.8238 1.7856

“a 28 0.03571 0.0229Y--h Ia 99 0.05263 0.0337

“a 19 0.06263 0.0337 2% 1%0.1447 on7802% 1%a1664 0.10712% 1%0.1964 0.1071

K 14 0.07143 0.0457

14 0.07143 0.0457

1 11 0.09091 0.0582

1% 11 0.08091 0.0582

2* 1%0.2soo 0.13642% 1%0.2soo 0.13642% 1%0.2wo 6.1364

3% 20.2654 0.1818

2%lL636 0227i

2%L336 a2273

1%0.1?361% .0.1.136

&I31% 11 OAm9lw582

2 11 0.09091 0.q 2.347 22888223m

266o 2QO1828436

8460 3.4018 33436

4.450 4.3618 4.3336

5.450 5.3618 5.3336

6.4M) 6.3918 t3i3336

1%0.11361%0.1364

%4

2% 1 1 0.09obl 0.0562

3 11 ao9Woms82

4 11 0.09owa0k82 4% 30.4001027275044; El82

L45 z!k2

&64&t34z64

5 11 0.09091 0.0592

6 11 0.09091 0.0692~

T

Basic gauge lengths and limits of size are based on turns of thread. (Sac Note 1.)All dimensiorw in inches

NOTE 1. Linear equivalents are given below.NOTE 2. The &sign of internally threaded parts ohall make allowance for receiving pipe ends up to tha lengths in Column 13 and the minimumlengths of US&JI thraad shall be not less than 80% of the values in Column 14.NOTE 3. The &we table has bwn extracti from British Standard 21: 1973. For other information on these threads direct kference shouldbe made to BS21: 1973.

63

Page 41: Crane Engineering Data 1

Engineering O&a

Amekdn

Pif

+F’.i’\ TAPER f’lPE THREADS

(EXCEPT DRYSEAC) NPT

Pitsh Handtight eqe8mentdiameter at

Outside beginning ofdiameter of * Theads Pitch of

mm*A,extmml

Len(l*” # L,

a Pipe p?rindl dlmed tlweed in thds. Dis’, E, inD

thcb.n P 5

Dia., E,

h“r%=“#3411%1%

.h33%4568101214 0016 00180020 0024 00

-0.3125 -0.4050.5400.6750.8401.9501.3151.6601.9002.375

. 28753.5004.ooo .4.50055636.6258.62510.75012.75014.mtmoo18.000io.ooo24,ooO

27271818141411%11%11%!I%88888

s888

t888

0.03704 0.27118cm3704 0.38351cm5556 0.477390.05556 0.612010.07 143 0.75643‘0.07143 0.967680.08696 1.213830.08696 1.557130.08896 1.79609o.lm696 2.269020.125w 2.719530.12500 3.340620.12500 3.837500.12500 4.334380.12500 5.390730.12500 6.446090.12500 8.4336Q0.12500 10.545310.12500 12.532810.12500 13.775000.12500 15.762500,125ab 17.750000.12500 19.737590.12500 23.71250

0.160 4.32 0.261180.1615 4.36 0.373600.2278 4.10 0.4?91630.240 4.32 0.627010.320 4.46 0.778430.330 4.75 0.988870.400 4.60 1.238630.420 4.63 1.563380.420 4.63 1 a22340.436 5.01 2a6270.682 5.46 2.762160.766 6.13 3.368500.82 1 6.57 3.888810.844 6.75 4.367120.937 7.50 5.4492Q0.958 7.66 6.505B71.063 8.50 8.500031.210 9.68 10.620941.360 10.68 12.617811562 12.50 13.672621.812 14.50 15.675752am 16.00 17.875002125 17.00 19.870312.375 - 19.00 23.mm4

0.2611 7.05 0.287500.2639 7.12 0.380000.4018 723 0.502500.4078 7.34 0.637500.5337 7.47 0.791790 . 5 4 5 7 7.64 1.00179OS828 7.65 1.256300*7066 8.13 1 SO1300.7235 8.32 1.841300.7565 8.70 2316301.1975 9.10 2790621.2CMIO 9.60 3.4156212500 10.00 3.915521.3axI 10.40 4.415621.4063 1125 5.476621.6125 12.10 6.540621.7125 13.70 8.540621.9250 15.49 to.6656221250 17.00 12.6656222500 18.90 13.9156224m 19.60 15.9.156226500 21.20 17.915622.8500 2280 19.91m23025m 26.00 23.91562

1. The basic dimensions of the American Standard Taper Pipe Thread are given in inches to four or five decimal places. While ’this implies a greater degree of precision than is ordinarily attained, these dimensions are the basis of gauge dimensions andare so expressed for the purpose of eliminating errors in computations.

2. Also length of thin ring gauge and length from gauging notch to small end of plug gauge

3. Also pitch diameter at gauging notch (handtight plane).

4. Also length of plug gauge.

5. The length L o from the end of the pipe determines the plane beyond which the thread form is imperfect at the crest. Thenext two threads are perfect at the root. At this plane the cone formed by the crests of the thread intersects the cylinderforming the external surface of the pipe. L L = L t - 2~.

6. Given as information for use in selecting tap drills.2

..;.--

:i

7. Military Specification MI L-P-7105 gives the wrench make-up as three threads for 3 inch and smaller. The E,dime&ions areas follows: Size 2’% inch 2.69609 and size 3 inch 3.31719. - 1F._

8. Oesignated, for example, as 31r NPT or 0.675 NPT.

Page 42: Crane Engineering Data 1

Engineering Data

American

TAPER PIPE THREADS(EXCEPT DRYSEAL) NPT

1968

BASK DIMENSIONS

12 13 14 15 16 17

Wmch makeup length for internal ttmmd’

Length, L, Dia. E, Vanish thread, W overall

18 19 20 21 22 23

Nominal perfect external threads*

hcrmsein Basic‘1errg* dir. per minor

exterfial thread dia.at

i n . thds. in.mead, Height of small end

thds. brrgh Dia. thed OfPicM Nominal. L4 % 5 h 0.062% K. Pit313 size .

0.11110.11110.1667

~A367I.21 430.21430.26000.26090.26000.26000.2500’‘0.2500’0.25000.25000.25000.25000.25000.25000.25000.25000.2!soo0.25000.25000.2500

3 0.26424 0.1285 3.47 0.3896 0.18703 0.35656 0.1285 3.47 0.3924 0.16983 0.46697 0.1928 3.47 0.5946 0.29073 0.60160 0.1928 3.47 0.6006 0.29673 0.74504 0.2478 3.47 0.7815 0.39003 0.95429 0.2478 3.47 0.7035 0.40203 1.19733 0.3017 3.47 0.9845 0.50803 1.54063 0.3017 3.47 l-m65 0.53293 1.77978 0.3017 3.47 1.0252 m4o63 225272 0.3017 3.47 1.0582 0.56262 270391 0.4337 3.47 1.5712 0.86752 w2500 0.4337 3.47 1.6337 0.95002 3.82186 04337 3.47 1.6837 l.OOCKI2 4.31875 0.4337 3.47 1.7337 1.05002 5.37511 0.4337 3.47 1.84cKI 1.15632 6.43047 0.4337 3.47 1.9462 1.26252 8.41797 0.4337 3.47 21462 1 A6252 10.52969 0.4337 3.47 23597 1.67502 12.51719 0.4337 a47 25587 1.67502 13.75936 0.4337 3.47 2.6837 2OOOo2 1574668 0.4337 3.47 2.8837 220002 17.73438 0.4337 3.47 30837 240002 19.72188 0.4337 3.47 3.2837 2.60002 23.69688 0.4337 3.47 3.6837 3.OOoO

0.282870.375370.495560.630560.762660.992861,.24543 l

1.59043 - -1.8304323Ow32775003.4Omo3.9oooo4.4Oooo5.46m6.525008S250010.65cm12.65Om~3.9oOOo1hMlOOO17.9Oow19.9Oooo23.9oooo

0 . 0 2 9 6 30 . 0 2 9 6 3

t-Eoh57140.057140.069570.069570.069570.069570.1alOoO.loooO0.1wOoO.loaIoO.looOoO.lwooO.lOalO0.3WOOO.loOoo0.1OOcm0.1ooooO.lamoO.lOOaI0.1OoOo

0.00231 0.2416o.aE231 0.33390.90347 0.43290.09347 0.56760.00446 0.70130.00446 0.91050.00543 1.1441ogO543 1.46760.00543 1.72650.00543 219950.00761 261950.90781 3.24060.00781 3.73750.00781 4.23440.00781 5.29970.00781 6.34610.00781 8.33360.00781 10.44530.09781 1243260.00761 13.67500.09781 . 15.66250.00781 17.65000.00781 19.63750.00761 23.6125

“1‘‘6n%HY11%1%

L33%4568

lo-121400160018 00200024 00

Extracted from USA Standard Pipe Threads (except Dryseal) (ANSI 62.1 - 1968) with the permission of the publisherAmerican National Standards Institute, 1430 Broadway, New York, NY 10018

.A.P.I. (Amer.-n Petroleum Inrtitute)keads to’API 5LThe basic dimensions of these threads are practically the same as for NPT threads. The principal difference is in respect tothe gauging.

Briggs Standard ThreadsThis is the name by which American Standard Taper Pipe Threads were formerly known.

65

Page 43: Crane Engineering Data 1

-

r I

1 CRANE 1I 1

Engineering Data

Metric .

-

PART 1 : l&39-

Flanges bored, or threaded to 6S 21, to suitPipe.

dz 1

-D-

All clhwmiionr hcept inch nominal size

STEEL FLANGESTHREADED (UP TO 6 INCH)AND SLIP ON WELDtNG

NOMINAL PRESSURE 6 BAR

Nominal Sue Flmnge . Baes Raimd ha Bdtiinp Drillingin nun D b h 6 f No. dr k

“a 6 65 i0 18 26 2 Ml0 4 11 4034 8 70 10 Ml0 4 11 45.“‘ 10 75 12 Ml0 4 11 50

:: 2) 90 80 12 14 Ml0 Ml0 . 4 4 11 11 ii

1 25 100 14 60 Ml0 4 111% 32 120 141% 40

:z14 26 iii

Ml2 4 14 23 Ml2 4 14 160

2 50 14 28 00 3 Ml2 4 14 1102% 65 160 14 32 110 3 Ml2 4 14 130

I’3 80 190 16 34 128 3 Ml6 4 18 160ii 100 125 210 240 16 18 ii 148 : Ml6 Ml6 8 4 18 18 170

6 150 265 18 44 z 3 Ml6 8 18 z200320 20 44 258 3 Ml6 6 18 200

*250 375. 22 44 312 3 Ml6 12 3353 0 0 4 4 0 22 a4 365 4 M20 12

;395

NOMINAL PRBSURE 10 BAR

Nomind Size Fmw WsedFace 8dt.ing OrWingin mm D b h 6 ‘f hdt k

“a 6 75 12 18 32 2 Ml0 4 11 50n 8 80 12 16 2 Ml0 4 11‘4j

5510 90 14 20 iii Ml2 4 14 60; g 106 95 14 16 24 20 45 68 - ‘2 2 Ml2 Ml2 4 4 14 65

14 75

66

1 25 115 16 24 68 2 Ml2 4 14 861% 32 140 16 26 78

3Ml6 4 18 100

1% 40 150 16 26 88 Ml6 18 1102 50 165 18 2% 102 3 Ml6 : 18 1252% 65 185 18 32 122 3 Ml6 4 10 145

3 802m 20 2 138 3” Ml6 ii 18 16lJ c.4 im 220 z 158 Ml6 i18 180

5 125 250 44 18% Ml6I

8 18 210

6 EL0 2 8 5 2 2 44 212 : M20 824 44 268 3 Iv120 8 z z2

250 395 26 46 320 3300 445 26 46 370 4

NOMINAL PRESSURE 16 BAR

Nomin8l size Flaw 8om Raii Facm Bdting Driiiin@in mm D b h 6 f Na’dr k

“a 75 12Y : 80 12

18 a 2 Ml0 4 11 5il18

it2 Ml0 4 11

l �r 10 90 14iii f

Ml2 4 14 iFiH ii 95 14 45 Ml2 4 14 65% 105 16 24 6%. 2 Ml2 4 14 75

.25 115 16 24 68 2 Ml2 4 141% 32 140 16 Ml6 4 18 181% 40 150 16 Ml6 4 18 1102 50 165 1.8

z1CZ 3 Ml6 4 18 125

2% 65 185 18 122 3 Ml6 4 18 145

3 80200 202

138 3 Ml6 8 184 im 220 z

160158 3 Ml6 8 18 * 180

5 125 250 44 Ml6 18 2106 150 285 ‘22

200 340 242 E 3” M20 8”

268 3 M20 8

25ow5 2 6 ii B E 12300460 2% 378 12 ii 410

Page 44: Crane Engineering Data 1

Engineering Data

MC%ric

BS4504PART 1 : 1969

STEEL FLANGESTHREADED (UP TO 6 INCH)

AND SLIP ON WELDING

NOMINAL PRESSURE 26 BAR ~- Flanges bored, or threaded to BS 21 , to suitPipa

Nominal Size Fkme Boss mrsdF= Bdtim Drillinadz

h

in mm 0 b h 6 f No. da k

6 758 80_

to 90ii 105 95

25 11s32 14040 15050 16565 185

80 200loo 235125 270150 300200 360

250 4253m 465

14 20

14:“s

z22

18 26

181% z

s 32 3422 3%

24 40

2426 228 5232 52

40 604% 67

32

it455%

2 Ml0

sMl0Ml2

2 Ml22 Ml2

1111141414

14 8518 im18 1101% 12516 145

160160

z *310

zi

6%788%

1oQ122

2 Ml22 Ml63 Ml6

:Ml6Ml6

Ail dim (except inch mqhal sizecolumn) in mglim~1 bar - ld N/M’ = 14.5 w/in

139162188216278

3 Ml6

:M20M24

3 M243 M24

88

f12

c

335 3 M27 12305 4 M27 16

NOMINAL PRESSURE 40 BAR-~-

Nominal Size FhP Boa Raiwd Focc, Bolting Drillingin mm 0 b h 6 f No. da k

“II34=I.Hw

68

10

iFi

75 1480 14

iik! 16 16105 18

20 322’

Ml0Ml0

xMl2Ml2

2 Ml2

4 11 .4 114 144 144 14

50

z6575

20 3%22 4022 4526 5%

1 25 115 181% 32 140 1%1% 40 150 1%2 50 165 202% 65 185 22

2 Ml22 Ml63 Ml6

:Ml6M16

4 144 184 18

tt 18 18

65100110125145

24iii 24

40 13s44 16248 18%52 21852 265

3 Ml63 Mm3 M24

M24: M27

88 z

88 z12 30

160

Ei250

80100125150

56

385450

450 40 60 345 3 M30 1251-5 4% 67 410 4 M30 16

All dimensions (except inch nominal siza column) in [email protected] bar = 1 OS N/M’ = 14.5 W/in2

The foregoing tables have been extracted from British Standard 4504 Part 1 : 1969.Reference should be made to th@ standard and to BS.4504 Part 2 : 1974 for detailsof other metric flanges including @ps larger than 300mm.

COMPARISON8S.4504 WlTH

.). BS.10 AND ANSIA comparison of integral flange die&nions and bolting for es4504 with BSlO and ANSIfor flanges in cast iron, copper alloy and stad Is included in thir’book on pages 83 to 99.

67

Page 45: Crane Engineering Data 1

1 CRANE 1I I

Ehginewing Data

Met fit

BOLT LENGTHS FORMETRtC SERIES FLANGES>

BS 4504 Grey Iron Integral Flank B S 4504 Grey Iron Integral Flank Bs 4604 Gfey Iron

to Integral Flangeato

BoltBs 4504 Steel Slip-On Bass Flanges to

BS 4622 Grey Irono r

is 4504 Sted Threaded Boss FlangtsGrey Iron Flanges of same Pipes and Fitthtp

A B thickness as Integral Flm Flanges,

Size Length Nominal Pressure - Bar Gauge

diameter) 6r 1 10 1 1 6 1 25 1 6 1 10 1 16 1 25 1 10 1 16

mm mm Nominal Size of Flange - mm.

M l 0 4 0 1 5 15r

4 5 2 0 2 5 2 0 2 5

M l 2 4 5 3 2 4 0 ‘ 1 5 15 15 - 1 550 6 5

5 0 2 0 2 5 20 25 1 5 3 2 4 0 20 25 20 25 1 550 6 5

5 5 20 25 20 2 5

M l 6 5 5 8 0 SO0 3 2 4 0 32 40 8 0 100 32 40 32 406 0 125 150 50 6 5 50 65 32 40 125 150 5Q 65 sd 65 3 2 4 0

2 0 0 8 0 8 0 5 06 5 2 5 0 100 100 6 5 2 0 0 8 0 8 0 50 8 0 8 07 0 125 125 8 0 2 5 0 1 0 0 1 2 5 1 0 0 125 6 5 8 0 1 0 0 100

M 2 0 7 0 3 0 0 150 1507 5 2 0 0 2 5 0 2 0 0 1 0 0 3 5 0 150 200 150 1 5 0 2 0 0 150

80. 1 7 5 2 5 0 175 100 2 5 0 2 0 0

8 5 4 5 0 * 3 5 0 2 0 0 3ocl 3 5 0

M 2 4 8 5 2 5 0 3 0 0 1 2 5 1259 0 1 5 0 ’ 2 0 0 4 0 0 4 5 0 2 5 0 3 0 0 4 0 0 250 3Oc

100 3 5 0 1 5 0 1 7 5 4 5 0

M 2 7 l(K) 2 5 0110 2 5 0 4 0 0 4 5 0 3 0 0 .1 2 0

M 3 0 120 I 3 5 0 I 1

Bolt lengths based on flange thicknesses as tabled in BS 4504 and BS 4772 and include an allowance of 1.5mt-n for gasket.

Page 46: Crane Engineering Data 1

Engineermg Data

Metrii

I BOLT LENGTHS FORMETRIC SERIES FLANGES

continued

- I

BS 4504 Copper Alloy Integral Flanw

to

BS 4564 Steel Slip-on Boss Flanges

BS4604Steel Integral Flanvto

BS 4504 Steel Slip-OnBoss Flanges

BS 4564 Stdkeaded ’Boss Flanges

BS 4564 Grey Ironl-ml-p

to :

or

BS 4504 Steel Threaded 80s Flaiages1

h Nominal Pressure - Bar GugeI

BS 4772 Ductile-Iron Piper3 arpd Fittings Flanges

I6 1 IOI-161 251 461 161 251 401 10 1 16 1 25

Nominal Siie of Flm - mm

Bolt

A BSize Lengtl

(diameter)mm m m

1525

Ml0 35

Ml2 3540

15 1520 ‘25 20 2532 4c

5065

15

20 25 20 25

.

455055.

‘15 1520 25 20 25 15

20 25Ml6 45

5055

60

6570

32. 4 0 3240 3250 65 5 0 6 5 40 5a80 100 80 1 0 0 6 5

8 0

125 125

8 0 1OC

125 156!OO!50

32 4050 65

8 0

32 406 55 0 8 0

100125

32 40 32 4Cl

5 0 5 0

6 5 6 58 0 8 0

8 0

100

80

100r 8 0

M20 657 07 5

150 100

2 5 0 125 150

200

loo 100 150200

1 0 0

125150No

125150

M24 808 59 0

M27 90100

Bolt lengths based on flange thicknesses as tabled in BS 4504 and 63.4772 and include an allowance of 1.5mm for gasket.

Note: Users attention is drawn to BS 4504 Part Clause 8 regarding types of gaskets and mating flanges to be used withmetric copper alloy flanges or flanged valves. Where flat face copper alloy flanges are bolted to steel or cast ironflanges with raised face, the raised face on that flange shall be removed.

69

Page 47: Crane Engineering Data 1

1 I

(CRANE/ _Engineering Data

lmperiil

BSlO1962

PIPE FLANGE TABLES

NOTE The following tables 0, E, F, H, 3, K, and R are given as extracts from Britishlnviewofthectuangetothemetricsystemin the U.K. BSlO ahodd now be regdedas obrdesunt. It wiII be made obsdeta indue coursem

Standard MI:1962 (which supersedes B.S.10, part 1‘1947; B.S.10, part 2,1926; B.S.16, part 3,1929; B.S.10, part 4, 1931 and B.S.10, part 57932).For complete tables and other information, direct reference should be made toBritish Standard 10: 1962.

Thickness. The ‘thickness given in these tables include a raised jointing face ofnot more than ?&I inch high, where this type of flange facing is used,

Bolt holes. For ‘h-inch and %-inch bolts, the diameters of the holes shall bese-inch larger than the diameters of the bolts, except that for cast iron flanges

with %-inch bolts the holes may be %-inch larger than the diameters of thebolts For %-inch bolts and larger, the diameters of the holes shall not be more than?&inch larger than the diameters of the bolt in all cases.

All dimensions are in inches

1 Thicknesses’are for integral, plain, boss (not tables K and R)or welding neck flanges not for vaives.

l It is impracticable to use thickness less than ‘%-incn exceptfor boss flanges or integral flanges.

2 Thicknesses are for integral flanges for valves only.

Extracts from British Standard Tables featured in this Catalogue are given bypermission of the British Standards Institution, British Standards House, 2 ParkStreet, London W.l. from whom complete copies of the Standards can bepurchased.

*- TABLE ‘D’. I- , --lMclcne%s offlenge “r

‘.Fhgs

’ size Diau .(nominal Dia..

ForC)rdof No. Die. Gmy alloy wwgm orcast

boreof of bolt of of. cmt castor steel steelPW flanq# circle . bolts bOltS iron wrought 1 2

# 3% 2°C 4 H % 16 %a l% 4 2”r 4 K H 34 �lr l If

I

1 4% 3% 4 H K “1‘ ,‘I‘ + =41% 4s 37t1&. 4 34 ‘4 “1‘ %+ #1% 5% 374 4 3% s4 ‘4 #+ w2 ii55 4% 4 % 11 ‘n 142% 2 . 4 I4 11 ‘16 ‘4‘

yICC +

::”

416

z%7% ‘4 % 3% 3 l4. ‘560 @% I 4 % % “ii ?s l �4,

4 0% i% 4 f4 Y $4 3 + II ‘166” 10 11 9% 8 8 “8 =4 ’ “Cl Ia 96 11 11 ‘ii fn w” H 11 I1 h

‘I67 12 10% 8 =4 74 # # w0 13% 1lW .8 =4 :f % K 349 14% 12% 0 =4

1’3L Y #

10 10 14 0 36 % =4 3612 10 16 12 34 1 I4 % ‘414 20% 16% 12 74 1’4 1 ?4 116 22% 209s I2 74 * 1’4 ‘4 1 .18 25% 23 12 ‘4 1%

iw

:I41

*1%

20 27% 26% 16 l’8 1% 1’4 1%24 32% .q9% 16 .l I”4 I=# l 1% 134

.70 I

Page 48: Crane Engineering Data 1

Engineering Data

Imperial

PIPE FLANGE TABLES

TABLE ‘E’

Thickness of flange’Flangesize Dia. coppsr FwHtnominal Dia. No. Dia. Grey ab Wrou#lt ticasiborwof of tilt cast castor steelpipe) flange cirde zlts Erlt!s iron wralght 1 P-353411%1%2

L2h3%45678-910121416182024

3%44n4%5%6.6%7%08%10111213%14%161820%22%25%27%

2=~~2'1,3%3'b3'184%55%6%78%9%10%11%1234141618%

2325%29%

4 H4 H4 354 w4 w4 =44 $4.4 s48 ‘48 =48 “r8 34a %8 #12 w12 31;12 “a12 *'I

'a

12 "8

16 '4

16 %

16 1'4

3%Hw:;k34#%‘4‘4‘h1111 .1 ‘#a1%1%1%1%1 s’,

%16 .%‘5.'16

=4

=b

"16

H

"16

s'*"111 a6

'l6

#

#

"'l6

"r

111l”,1%1%

w*#*‘4:"16 l114a*

s l4 -

II /a*.

"16 llS#,☺k

H

"1611

'a6

*

%==t'6

"8

11”.1%I”41% *1”.

“4=4%Hw"1‘

"16

"16

"1‘11

'16

11 '16 -11

'16

%

%13

'16

" 8

1111”.1%1% .

TABLE ‘F’

ihicknem of flangeFlange

f4eize Dia. QwP@r CaMor Fotgadnominal Dia. of No. Dia. Gw alloy wrought or cast

bore of of bolt of of castor steel steelP-w) flan* circle bolts bolts iron wrouglbt 1 2

BSlO1962

H 3%36 41 4%1% 5%1% 5%2 6%2% 7%3 83?4 8%4 95 116 127 13%8 14%9 1610 1712 19%14 21%16 2418 26x20 2924 33%

ZS',Z'r,3”1,3'114'h55%6%77%9%10%11%12X141517%19X21%24

30%

4444448888.5 ,*8121212121216

ii202424

HH‘4“4“4I’*‘4'4%s’.38%Y’%x“‘a‘411I”*I”,1%

www::94’%3L:;l8111’41”.1”.1%1’41=41%IS41%

s’l‘%‘

=4

%

"16

'5‘

H

%r

$Ja11

'lr

3c

"8

"a

111l”*1%1%Pt.1%lSC

t l%

=I �0

a **�c

::

=4

s4$43L%“I‘4“r11”.l”,1%1’4? =41%

z%

%34!@a%“‘8

i

%

‘4

‘I

“8

1 .111”.1%1%la’.1%lS’*

Page 49: Crane Engineering Data 1

Engineering Data

Imperial

PIPE FLANGE TABLES

TABLE ‘H’ .,

Thkknem of flange ,Flawsize Dk Dia.lnomind Dia. of No. Dia. Grsvboreof d boltPW &ts

Least castorstd s t e e lfhl@ circle &ts face lmn ’ m#rghtl 2

M%11%1%

.22%3334456

3910121416.182024

4%4%4%5%5%8%*7%

in9111213%14%161719%2136

Z%2%

444444

t

t81212121212161620202424

‘4‘4“4‘b‘4‘4‘4‘4‘4‘4

::%%‘4‘4‘ 4111’41

::

2% ‘42 l b

%3 ?43% ‘444% :

ii%i’b1’4

6 81%7 1%8% i’b9% 1%10% iis11% l-b412% 1'414% 13616% 1 ’ 419 2

2’4.z% 2%27% 2 %

‘4 W H -=4 H W'46 3 "l6

"l4 'l4

% "'l‘;+

46

% %I 34

"I‘ % Y

:f

7'h ‘ 4

'r6 ‘6 ‘ 4,,--Y

% 1 1 I

‘4 1% 1‘41 ‘1’8, 1”1’4 1% 1%’1% 1% 1%1=4 1% 15,1=4 1=* IS41% 1% 1%1’4 l’i 1’41% 2’4 1%1’4 2=4 1’42 2’4 22% 3 2%

TABLE ‘J’

Thkkness of flange-wJsize Dia. Dia.(nom”hl Dia.

C o p p e r C&or. Far-d --Yof NO. Dia. of allav *\

bore of ofwrou#bt ofcast ‘L

bolt of of raid cmtor SW81 StO@lPips) fm circb bolts bolts face. wmightl. 2

w%11%1%22%33%45

.678910

1 21416182024

4%4%4%5%

z7%

L9111213%14%161719%21%24

3%3%3”“3’44”.55%63% -77%9%10%11%12%141517%19%21%2426%.30% -

44.44

4”8

‘8088121212 ’12‘12161620202424

$4

$4$4$4*‘.%%w%%‘4‘4‘4‘41111'41 ?!,1%1%I”.

2%2%2%

&44%5!a678%9%10%11%12%14%16%192123%27%

‘4“4SO’35“a111%

.’ 1%lSJ‘1%1%1 *Jr

IS4

‘4“836%“8111%1%l”a1%1%1'41 *‘a

. 1%1’422%2%2%3’ ‘83*‘,

St.$49596‘4111% .1%1’41%.1%1*41*41%1’422%2%2%:2x

l 214

72

Page 50: Crane Engineering Data 1

Engineering Oata ’

,lmperidl

BSlO1962

PIPE FLANGE TABLES

TABLE ‘K

FlanaesiZe um Dia. Dia.lnmirral Dia. of No. Dia. ofboreof o f . bdt of of raisedPipe) flm cirde bdts’ bolts face

H*11%1%22%33%4567891012141618.2022

4%4%55%66%7%8

i%111213%14n161719%

24%28%3134%

3%3%3%3'114%55%6%7%7%9 % .10%11%12%1415172022%25%28

444 .4488aa81212121 216161616 *20202020

Y./a'4$4$4)L*'a#96'4'4"8'41111l”*1%1%I”,1%2

2%2 %333%44%55%67.8%9%10%11%12% ’14%16%19

Thickness of ffange

%%'4'4111';1%1%1'4l’f,1%1%1’4222%2*',33%3'44'4

JL .34'4'4111".1% 17%1'4 '1'4 -IS4 * ,

lS 11'4222%2% .2’433%3%

TABLE ‘R’

. Thiikness of flangeFlange

fiSiZ@ Dia. Dia. castor Fiwgal -r

B

hominal Dia. of NO. Dia; of wfouglat orcastbore of of bolt of of Taimd stael Steelpipe) * flanga circle bolts bolts ‘face 1 2 . . \

H 4% 3%: 4 I4 2% % T'# 4% 3% 4 $4 2% % %1 5 3% 4 *4 3’ ‘4 '41% 5% 3"‘ 4 $4 3 '4 '41% 6 4% 4 w 3% 1 12 ‘ 6% 5 8 +a 4' 1 ' 12!4 7% 5% I3 36 4% V'S 1'43 8 6% 8 % 5 1% 1%3!! 9 7% 8 5% 1% 1%4 9% 7s . If

'4* "a 6 1'4 1'4.

5 1 1’ 9% 12 ‘4 7 15% . 1*‘@6 12 10% 12 ‘4 8% 1%. 1%7 13% 11H 12 1 9% 1'4 1748’ 14% 12% 12 1 10% 2 29 16 14 16 1 11% 2’r* 2’410 17 15% 16 1 12% 3 2%12 20 18 16 1". 14% 2 2 % l

14 23 2031 10 1% 16% S”, 2%16 25% 23 20 1% 19 3% 318 29 2.6% 20 V’, 22% 3’/r 3%20 31% 28% 20 1% 24% 4"# 3%22 35% 31% 20 2 .26!4 4% 3% '

73

Page 51: Crane Engineering Data 1

Engineering Data

. LENGTHS OF MtLO STEEL BOLTSFOR CAST IRON, STEEL AN0CbPPEi? ALLOY FLANGES TO BS10:1962TABLES D, E, F and H.

Size of boltLength of bdt

in i M $4 %

in 1 2 1% 1 2 1 2% 1 2% 12% f 3 2% 1 2* 1 3 13%

Gray cast iron integralflange totoGrey cast Iranloose boss type flanga

F

Grey cast ironintegral flange_.

NOMINAL SIZE OF FLANGE. inv .

H % 1% 1% 22x348 10 121 66

w Y 1% 1% 22%4 5 6 ‘8 101 3

34% . 1 1% 1% 2 2% 4 5 6 83

w # 1% 1% 22%5 6 10 12U 1 3 4 8 /

‘A H’ # 1% 1% 2 w4 5 6 a 10 \

- ..w.~- F.“...,

dd neck twxi

Stml in-l E W* 22H4 5 6 8 10flange 1 %lH 3

to F 35% . 1. 1% 1x2 2% 4 5 6 8Steel loose flange plain,

0. I 3

Ibossorweldnecktype I% Al% WI2 2xi3 14. 1nI 1 8

Copper alloy :E3

integral f langa y!y%22H4 5 . e ‘8 103

to - -Steel wlodse flange 3c 11%22X4plain, : F 5 6 8

bossorwe(dnecktype ’1% 3

H ,W 3L11%22%3 4 ’ 5 6 81%

Note: Bdt’ lengths are based on fla& dricknasses as tabulated in BS10:1962 and inch& an allowance of ‘f~‘” for gasket c,,

Page 52: Crane Engineering Data 1

Engineering Data

Imperial

LENGTHS OF MILD STEEL BOLTS (Continued)FOR CAST IRON, STEEL AND

COPPER ALLOY FLANGES TO BS10:1962,TABLES 0, E, F and H.

Size of bott inLmglfl8#f bolt in

Types of fi8m BSlOTabte

Grey cast ironintegral flangetoGrey cast iron looseboss wpe fhm

DGrey cast iron

b0 integral ftangeto E

Steet loose flange pIsin,bossorvmtdnecktype F

Steel integral E

ft8r@t?to FSteel loose flange plainboss or weld neck type

. H

CopPer 81 toyintegfal flangetoStat loos8 flange plain,bossorwetdnecktype

E

F

H

I NOMtNALSlZE OF FLANGE. in+. 2

14 16. 18t

12 14 16 18

10 12 14 16 18

14 16 18 ;.

12 14 16 18

10 12 14 16 18

12 14 16 18

.10 12 14 16 18

10 12 14 16 18.

12 14 36 18 1

10 12 14 16 18

10 12 14 16 18 .

75

Page 53: Crane Engineering Data 1

Engineering DataI CRANEI American

ANSIB16.51977 STEEL FLANGES

ANSl B16.5:1977 AND BS 1560:1956

150 AND 300 POUND STEEL FLANGES

DIMENSIONS IN INCHES

AFOr

sass Size v8hreor

fitting

C*. 2

N o . Dii.

B For For . D E Of Ofcamp- valve bolts bolts F G

anion or or or.fkngm fiiting stuck stud-. bolts bolts

L - - - F - - - 4 L - G - I

H ?4,% %

1 11% 1%.1% 1%

Length of -NMstud bolt of bolt

$6 -inch ~ismd face joint

2 2150 2?? 2%

Pound 3 3Steel 3% 3%

4 4

Standards. The 150 and 300 poundflange dimensions and drilling templatesshown in the table opposite conformrespectively to the American NationalStandard 616.5 Steel Pipe Flanges andFlanged Fittings to the British Standard1560 ‘Steel Pipe Flanges&@ FlangedFittings for the Petroleum Industry’ ’

5 56 6B 610 1012 12

lb 11 hr 7=%‘ 0?4 8 % 4 3%lL 1 8H9%BY 4 3%

1” lolb 1131 8 * 4% 3JG16 lC8

1;la 14% 12 “/r 4% 4

19 15 17 12 “, 4% * 4%

14 13%16 15%18 17%20 19%24 23%

21 1% 76% 18% 12 1 5% 4%1 '11‘ 18% 21% 16 5% 4%

25 VI‘8 21 22% 16 li, 6 527% 1 “‘1 23 25 20 l’r, . 6% 5%32 l’t, 27%29%20 1% 7 6

Facing. Unless otherwise ordered,150 and 300 pound steel flangedvalves, fittings, and companion .flanges are. regulqrly furnished with a?&nch high raised face. H H

# 36’1 11% 1%1% 1%*

3%4=*4'+5%6'/,

4 H4 %4 ='s4 SC4 %

291 2%2%2%2%3

The thicknessof flange dimension(dimension ‘C’) includes the %inchhigh raised face.

‘Bolt holes. Bolt holes are drilled ‘rcinch larger than the diameter of thebolt. Drilling templates are inmultiples of four, so that vaiws orfittings may be turned to face in anyquarter when installed. Bolt holes aredrilled to straddle the centre-line,unless otherwise ordered.

33%3%3%

. .2 22% 2%3 3

300 3% 3%Pound 4 ‘4Steel

5 56 68 810 1012 12

6%7%8%910

3$f* 54'$6

57,6'$

5% 7%'6'+, 7'+

3%4

33%3%3364

7+,, 9 %8% lost*los+ 131zSr 15%15 17%

1112%1517%20%

8 %12 3c12 ‘0,16.16

4% 4%5 .. 4%5% 4%6% 5%6% 6Bolt rnd stud-bolt length. The lengths

indicated as dimensions ‘F’ and ‘G’ inthe table apply to combinations of150 pound or of 300 pound valves,fittings, or companion flanges with%@inch high raised faces.

14 13% 23 ?“I 16% 20% 20 1% 7 6%16 15% 25% 2% lB% 2 2 % 20 1% 7% 6%18 17 28 2sfa 21 24% 24 1% 7% 61620 19 30% 2% 23 27 24 1% '8% 7%24 23 36 2% 27% 32 24 1% 9% 8

150 Pound Class. The bolt and stud-bolt lengths established by theAmerican and British Standgrds areadequate for all 150 pound joints,made up of any combination ofvalves, fittings, or fianges having theregular ‘/t6inch raised face.

Bolt lengths ‘F’ 8nd ‘G’ given in the above table are taken from the 1977 issu8 of ANSl816.5 and allow for worst c8s8 tolar8ncss on all rskvant dimensions of the flang8d joint.The use of shorter bolt lengths specified in 88&r editions of B16.5 and in BSl560:195B is8cceptable provided that full thr88d eng8g8ment is obtained at 8ss8mbIy.

Stud bolt lengths ‘F’ do not indud the height of the points. Mschin8 boIt lengths l G’in&cl8 the height of the points.

. .300 Pound Class. For male to femaleor tongue to groove flanged joins addthe height of the male or tongue(34 inch) to dimension ‘F’ or’G’.

Page 54: Crane Engineering Data 1

Engherin~ Data

A mericdn,

.STEEL FLANGES

ANSI B16.5:1977 AND BS 1560:1958

400,6M) AND SW POUND STEEL STANDARDS

DIMENSIONS IN INCHES

A MO. Dia.Class Size

forvalveor 6 C’ D E of - of

StUeC StUd F Gfitting bolts bolts

.4 4 td tj 6* 7i 8 i 6i 55 5 tt 1; 74 94 a $ 54 546 6 t2$ td 84 tog 12 g - 5t 538 8 15 tg 10; 13 12 1 64 6;to to 173 2; 12s 15; 16 18 7t 7

400Pound 12 12 203 24 15 17; 16 tt 7# 74 ’

sad 14 139 23 2f 1st 204 20 12 8 7t*16 15 254 2J 1%~ 224 .20 1s 8;: 8+18 . 17 28 29 21 242 24 12 ’8$ 8&20 188 303 23 ‘23 27 24 13 93’ 9424 225 36 3 27i 32 24 1 t 101 10:

12 4 33 ii ta 2q 4 4 3 2#3 3i; E 43 5 18 32 4 4 3t 3

:t 14 1 4g 5$ Q 2 29 2 39 3; 4 4 $ i 3t 34 3{ 33

l$ ti 63 { 2; 43 4 $ 4 3.;ii 23 -2 64 1 3$ 5 8 3 4 3#

7q Ii 4$ 5# 8 # 43 4$

if; 33 3 82 9 11 t$ 8 53 5 6s 74 8 8 g 4 41 5; 44 5600 4 4Pound tot 1 ; 64 84 8 z 54 5t

steel 5 5 13 134 7* 103 8

l8tit 6

6 6 14 tL8 . 7$ 164 2i

82, tt; 12 1 64 6t108 13# 12 14 .74 q

10 9: 20 2; 12; 17 ‘16 .lt 8t 812 11; 22 23 15 1st 20 t+ 89 8i

14 12e 23; 29 164 20; 20 t+ 9 8;16 14t 27 3 183 23; 20 tf 9; 93

18 I62 294 3t 21 25; 20 ta toi tot20 18t 32 34 23 284 24 l I+ 1t$ 1124 22 37 4 279 33 24 lZF -_ 8 12; 12+

3 29 93 t+ 5 7i 8 i 5* 5;. 4 3i 114 12 6& 9# 8 1+ 64 6;

54 4$ 133 zL) 73 11 l& 7+ 76 ‘52 15 24 86 121

::t$ 7; 7t

8 74 tag 23 tog 154 12 13 8s 8t

10 9# 214 2; 12.8 184 16 li 9 at900 12

Poundtt g 24 3; 15 21 20 13 9t 9;

Steel 14 12# 25t 3: 164 22 20 14 103 10;16 14 27$ 33 184 24; 20 tt 11 . to{18 152 31 *. 4 21 27 20 ti 12; 12;20 17; 33: 4t 23 294 20 2 13; 13i

-24 21 41 54 272 353 20 23 17 162.

ANSI B&51977

Mala to Male Male to Femaleflang8cl wnt ftang8d joint

Stud-bolt length ‘G’ also applier fortongue to groove flanged joint

Standards. The 400,600 and 900pound flange dimensions, drillingtemplates and stud-bolt lengthsshown in the table opposite conformrespectively to the American NationalStandard B16.5 Steel Pipe Flanges .and Flanged Fittings and to the -British Standard i560 ‘Steel PipeFlanges and Flanged Fittings forthe Petroleum Industry ‘.

Facing. Unless.otherwise ordered,400, &XI, and 900 pound steelflanged valves and fittings areregularly furnished with a 2 - inchhigh large male face. Companionflanges are regularly furnished with4 - inch high targe male or, ifspecified, 8 - inch deep large femalefacing,

The thickness of flange dimension(dimension”C’) does not includethe $ - inch high large male face.

Bolt holes. Bott holes are drilledi - inch larger than the diameter ofthe bolt. Drilling templates are in ’multiples of four, so that valves orfittings may be turned to face inany quarter when being installed.Bolt holes are driHed to straddlethe centre fine, unless otherwiseordered.

Stud-bolt letlgths. The stud-boltlengths shown in the table apply forflanged joints made up of combina-tions of valves, fittings, Of companionflanges with mate, female, tongue,or groove faces. Male or tonguefaces are 4 - inch high; female orgroove faces are 4 - inch deep. 77

Page 55: Crane Engineering Data 1

Engineering Data

American

ANSI BI6ml1975 * CAST IRON

FLANGES

125 POUND CAST IRON FLANGESSize Dia Thickness Dia. Number Dia.

ofLength Length of

of of bott O f of of bott-studsfJam ffange circle bolts bolts bolts with 2 nuts

Flanges are plain faced with smooth finish.The diirneter of the port on valves and

fittingts is the same as the pipe size (nominal).In siza 24 inch and below the drilling tam-

plates of thaaa ftangas are identical wifhAJW 150 pound stad ftgnges to B16 5:1977These flanges are spacif iad in esi 735 for umon Flanged Cast troci Gate Valves, Ctass 125,for the pettciteum industry and am included

as appendices in the metric British Standardsfor Cast Iron Vats for Ganerat PurposesBS ~150,5151,5152,51W, 5155, 5156,

5158 and 5159.

11%1%

“,aH“8‘

3”.3%3”.

1% -2 -2 -

22%3

3%4

4%5%67

7%

5 106 118 13??10 1612 19

8% 09% 811% a14% 1217 12

14 21 1”8 18% 12 1 4% -16 23% l”,c 21% 16 1 4% -18 25 19’14 22% 16 1 “r 4% -m 27% 1’1’ 16 25 20 1”. 5 -24 32 1”. 29% m 1% 5% -

30364248

2”.2=‘#ZS’,2%

3642%

28323644

4452

1% 6% -1% 71% 7% -1% 7% -

10%103611%

- _ 12%14

Note: 6s 1735 ums withdrawn in 1976.but is stilt usad for reference purposes

e

54 56%60 7372 86%84 99%96 113%

62%69%

1%1%

3% 82% 60 . 1%3”‘# 95% 64 24% 108% 68 2%

250 POUND CAST IRON FLANGES Dimensions in inchesFlanges hm 1/10 inch raised face and mayhave smooth, serrated-concentric or spiral

finish.The raid face is indudad in the flange

thicknass dimension.Except far the dtameter of the raised face

these ftanges are dimensionatty identical withANSI 300 pound steal ftangas to 816 5:1977

Dia. . Lanath-of Dii Thiiknem mm

port of of offor flange flange raised

Valve or facefitting

Dii.of

boltcircte

No. Dii. Length of s&d-of of of bolts -a,

bolts bolts boltsSize

11%1%

L1 4”. 11 ‘IS 21”a6

1% 5% 34 3”,‘1% 6’% 13 ‘16 3%

3%3”84%

4 ‘44 % g 14 96 2% -

.

The information given in these tableshas bean extractad from the Arner*ican

Standard for Cast tran Piis Ftm a&Flanged Fittings, ANSI B16 1:1975

Bait h~kr. For bolts analtar than 1% inchdtamatarthe bolt hobr a&% inch tamr

than the diameter of tha bolt. For bolts 1%diameter and larger the bott hotas ara tb inch

larger than the diametar of tha bolt Boltholes am in mutttptes of four so that the

valves or fittings may be tumad to face anyquarter when being assambted and are

arranged to straddle the centra t’me unlessordmad otharwi=.

6olt lengths. The bott tengths given in thatabter assume that actual thickne#es of

ftangss an, as tabutatad and that tha flangesbeing connacted are simitrr l m thickness.Bdt lengths to be adjustad when bolting

steel to cast iron ftangesMachine bolt lengths in&de the heightof the points. Stud bolt lengths do not

include the height of the points.

22%3

3%4

2 . 6% ‘4 43’,, 52% 7% 1 41s’16 5”.3 8% 1 “I 5”’

3% 9 1%‘ 6sr,:6+,7%

4 10 1% 6%14 77’a

8 =‘a 2% -8 # 3% -8 34 3% -8 . % 3% -8 3 % 3% - -

5 11 1”’ 9%6 1 ?I:,

8%12% 9’1’I6 lo54

8 15 1 =‘, 11’S’10 17% 1’4 14”,:

1’315%

12 20%. 2 16”,, 1731

5681012

8 %..4 -12 # 4 -12 “, 4% -16 1 5% -16 1”. 5% -

13% 23 2”r 18’=’15% 25% -2% 21’11;17 26 2’b 23%

30% 2% 2!5”,‘2% 30%

1416182024

m 1”‘20 3% & -24 1% 6% -24 :i 1 631 -24 7% 9%

28 .4 8% 10%32 9% 11%36 2 10% 12%40 2 10% 13

22%24%

z

30 29 43 336 34% 50 3$

37%,‘43”’

42 40% 57 3”’11 so”,:

48 4 6 65 4 =“*a

39%46

5236

78

Page 56: Crane Engineering Data 1

Engineering Data

Arheficdn

ANSI B16.24BRONZE 1971

FLANGES

150 POUND BRONZE FLANGES Dimanslons, in inchesThe fkmge diameter, bdt circle, and numberand diam8t8r of bolts are th8 same as for th8Cm IrOn Class 125and 156 Pound SteelAmar’kzm Standards, but the thicknass andfacing of the flangas ar8 different.

Size Diemeter Thickrwss Diameter Number Diameter w -*ofof flang8 of Rang8 of bdt ofbolts ofbolts of bob stud-bolts

circle with2nuts

334 2=+2%3lta3??3"8

#34Hnw

1%1%1%1%1%

l'q1’1,222'1,

H3611%1%

3'1‘4%4+,5

4%I%677%

‘4%=454I’*

2 62% 73 7H334 8th

.- 4 9

56

8% 0Qn 811% 814% 1217 12

%

::“a‘4

1011

13%1619

81012

.

The flange diameter, bolt circla, andnumber and dianwtar of bdts are th8saneasfortheCastlronClass256and300 Pound Sta8l Am8rii Standards, butth8 thicknert and facing of th8 flatIg#?S arediff8rent

300 POUND BRONZE FLANGES Dim8nsion8, in inches

size Diameter Thickrwss Diit8r Numberof flange of flange of bdt of bolts ofbolt smd-bob

circle with2mJm

H‘Ias4+*%

1%2222%

H341

1%1%

1 ’ 55’f*6%7%7'4

2%2342%33 )

2 6n2?? 7%3 8%3!! 94 10

5 11 1’4 9% 8 94 3% 46 12% 1%‘ 1 O’fa 12 96 3x 4%8 15 I34 13 12 ‘4 3% 4%.

The flange dimensions and drilIiiig.+amplates shown in the above tabks have been extractedfrom the American Standard for Bronze Flange0 and Flanged Fittings ANSI 816.24:1971.These flanges are also included as an appendix in BS 5154, the metric Britih Standard forCopper Allov,Valves for General Purposes.

Facing. All 150 and 300 pound fiange fac8s am plain-faced, with two V-shaped concentricgrooves be- the port and the bolt hoies.Bolt hokr. Bolt hdes ara drillad ‘k inch larger than the diam8t8r of the bolt.

The bolt hobs am in multiplas of four, 90 that vahms or fittings can be turned to faca inany quarter when b8ing installsd. They ate) drillad to straddl8 ths c8ntra lin8 unlassotherwirs ord8red.Gadwts. Full-face garkets shw Id b8 us8d.

DWhen bronze flang8d material is bolted to iron or steel flang8s that normally have a raised

face, the raised faC8 should be removed to provide a full face b8aring for the gasket.

Bolt lengths to be adjusted when bolting st88l to cast iron flanges.7e I,