CPE 633 Lecture W2.pdf

57
8/9/2019 CPE 633 Lecture W2.pdf http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 1/57 SETTING PINCH DESIGN TARGETS By Siti Shawalliah Idris, AMIChemE SETTING PINCH DESIGN TARGETS

Transcript of CPE 633 Lecture W2.pdf

Page 1: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 1/57

SETTING PINCH DESIGNTARGETS

By Siti Shawalliah Idris, AMIChemE

SETTING PINCH DESIGN TARGETS

Page 2: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 2/57

Setting the Energy Targets

Setting the Pinch Design Targets

COMPOSITECURVE

PROBLEMTABLE

Page 3: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 3/57

Setting the Targets

Title of your presentation

StreamData - !Tmin

PinchAnalysis

EnergyTargets

Page 4: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 4/57

Try This

Setting The Energy Targets for Pinch Design

!  Do you think the amount heat required is reallynecessary?

STEAM COOLING

WATER

UNITS

1200 360 4

Page 5: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 5/57

Enthalpy Balance

Setting The Energy Targets for Pinch Design

180o

100o

130o 40o

80o

120o 30o

60o

!H = 2000

 

!H = 3600 

!H = -3240 

!H = -3200 

"#$ 

QH 

1200 

Qc  360 

QH – QC =% (!H)= Q

recovery

Page 6: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 6/57

Setting The Energy Targets for Pinch Design

!  Heat recovery is constant

!  It’s necessary/possible to reduce the amount of QH 

or QC

QH 

%!H 

QH 

Qc 

%!H 

Qc 

QH – QC =% (!H) = constant

Page 7: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 7/57

Enthalpy Balance

Setting The Energy Targets for Pinch Design

!  Consider the lowest utilities requirement..

!  Is this the best design?

No. Violation of !Tmin 

QH

  840 

Page 8: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 8/57

T-H Diagram

Setting The Energy Targets for Pinch Design

!  Represent a stream data

!  !" is constant

T

H

Ts

Tt

130o

40o

!H = 3600 

Page 9: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 9/57

Heat Recovery Problem

Setting The Energy Targets for Pinch Design

Mass Specific Heat Initial Final Heat  

flowrate heat capacity (supply) (target) load

W (kg/s) capacity flowrate temperature temperature  H (kW) CP (kJ/kgK)  CP (kW/K)  TS  (°C)  TT  (°C) 

Cold 0.25 4 1.0 20 200   180

stream

Hot 0.4 4.5 1.8 150 50   180

stream

 

Cooler

Heater200°

Product

Feed

Reactor

150°50°

20°H

C

 

!  Consider a Two – Stream Heat Recovery Problem

Can we reduce energy consumption? Yes

Page 10: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 10/57

Heat Recovery Problem

Setting The Energy Targets for Pinch Design

Recover some heat from the hot stream"  use it toheat the cold stream in a heat exchanger

Thus, less steam and water to satisfy the remaining

duties.

!  Ideally – Recover all of 180 kW in the hot stream toheat the cold stream.

However, this is not possible because of temperaturelimitations.

Page 11: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 11/57

Setting The Energy Targets for Pinch Design

Heat

Exchanger

E

Heater

Feed

Product

Cooler

Reactor

H

C

200°

150°50°

20°

 

Heat Recovery Problem

!  Ideally.. This is how it should look like on a PFD

Page 12: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 12/57

Heat Recovery Problem

Setting The Energy Targets for Pinch Design

!  By the Second Law of Thermodynamics, we can’t use a hotstream at 150°C to heat a cold stream at 200°C!

As in the informal statement of the Second Law:

“you can’t boil a kettle on ice”

!  So the question is, how much heat can we actually recover, howbig should the exchanger be, and what will be thetemperatures around it?

Page 13: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 13/57

Heat Recovery Problem

Setting The Energy Targets for Pinch Design

0

50

100

150

200

250

0 50 100 150 200 250

Heat load (kW)

   T  e  m  p  e  r  a   t  u  r  e   (             °   C   )

Heating duty50 kW

Heat recovery130 kW

Cooling duty50 kW

Cold streamHot stream

 

!Tmin =0

!  Plot T/H diagram

Is it possible to an approach temperature (!Tmin) = 0 for a heat exchanger design?

!  !&min = 0" Infinitely large area of heat transfer

Page 14: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 14/57

Heat Recovery Problem

Setting The Energy Targets for Pinch Design

0

50

100

150

200

250

0 50 100 150 200 250 300

Heat load (kW)

Temperature difference∆T  min  20°C

   T   e   m   p   e   r   a   t   u   r   e    (               °   C    )

Cold stream

Hot stream

Heating duty70 kW

Heat recovery110 kW

Cooling duty70kW

 

!  Streams can be shift horizontally" allow temp. difference

!  !" is constant = 180kW

Page 15: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 15/57

Heat Recovery Problem

Setting The Energy Targets for Pinch Design

Stream  Type  Supply

Temp.

(oC) 

Target

Temp.

(oC) 

!H

(MW) 

Cold 

40 

110 

14 

2  Hot  160  40  -12 

Another example….

160oC

40oC 

50oC40oC 

95oC 

110oC 

T

H (MW)

QHmin = 3 MWQCmin = 1 MW

40o

QRec = 11MW 

110o

Steam 

CW 

!Tmin = 10o

160o

20o

180o

Page 16: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 16/57

Heat Recovery Problem

Setting The Energy Targets for Pinch Design

!  Shift cold stream horizontally – Increase !Tmin

T

H (MW)

QHmin = 4 MWQCmin = 2 MW

40o

QRec = 10MW 

110o

Steam 

CW 

!Tmin = 20o

160o

20o

180o

160oC50oC 40oC 

95oC 

110oC 

40oC 

Page 17: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 17/57

Heat Recovery Problem

Setting The Energy Targets for Pinch Design

Two Basic Facts 

!  Correlation between !Tmin and QHmin and QCmin 

!  This means that if we choose a value of !T min, we have an energy

target for how much heating and cooling we should be using if wedesign our heat exchanger correctly.

!  More in, More out

!  the hot utility load is increased by any value ! , the cold utility isincreased by !  as well.

!  As the stream heat loads are constant, this also means that the heat

exchanged falls by ! .

QHmin + ' " QCmin +' 

Page 18: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 18/57

Heat Recovery Problem

Title of your presentation

!  So far…

!  We have seen how to apply single stream of hot

and cold.

!  What if…multiple hot streams and cold streams?

Page 19: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 19/57

COMPOSITE CURVE

Setting The Energy Targets for Pinch Design

Page 20: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 20/57

Setting The Energy Target

StreamData - !Tmin

Compositecurves

EnergyTargets

Setting The Energy Targets for Pinch Design

Page 21: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 21/57

Composite Curve

Setting The Energy Targets for Pinch Design

!  The resulting T /H plot of multiple hot and coldstreams on a single curve known as a composite

curve.

!  A hot composite curve a single plot of all the hot

streams and a cold composite curve of all the cold

streams in a particular problem.

Page 22: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 22/57

Composite Curve

Setting The Energy Targets for Pinch Design

!  Example

Page 23: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 23/57

Composite Curve

Setting The Pinch Design Targets

!  Stream data for the flowsheet

Stream 

Type 

Supply

Temp. Ts 

(oC) 

Target

Temp. TT 

(oC) 

!H (kW) 

Heat Capacity

Flowrate CP

(kW oC-1) 

Reactor 1 Feed 

Cold 

20 

180 

3200 

20 

Reactor 1

Product 

Hot 

250 

40 

-3150 

15 

Reactor 2 Feed  Cold  140  230  2700  30 

Reactor 2Product 

Hot 

200 

80 

-3000 

25 

Page 24: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 24/57

Composite Curve

Setting The Pinch Design Targets

1•

 

Plot T/H diagram for Hot Streams and Cold Streams Separately

2•

 

Combine all the hot streams to get composite hot stream

3•

 

Combine all cold streams to get composite cold stream

4

• 

Combine composite hot and cold streams together to give target for

utilities and recovery

Page 25: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 25/57

Composite Curve

!  T/H diagram for hot streams !  Composite Hot Stream

Setting The Pinch Design Targets

T (oC)

H (MW)

80o

3150 

200o

250o

40o

3000 

6150 

T (oC)

H (MW)

80o

Q=CP!T=4800 

200o

250o

40o

6150 

750 

600 

Add heat available in each temperature interval to formcomposite curve

H intervals

(250-200)*15

(200-80)*(15+25)

(80-40)*(15)

Page 26: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 26/57

Composite Curve

!  T/H diagram for cold streams !  Composite Cold Stream

Setting The Pinch Design Targets

T (oC)

H (MW)

140o

3200 

180o

230o

20o

2700 

5900  5900 

2000 

Similar approach for cold streams to obtain cold compositecurve

T (oC)

H (MW)

140o

2400 

180o

230o

20o

1500 

Page 27: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 27/57

Composite Curve

Setting The Pinch Design Targets

!  Plot of hot and cold composite curves together gives the targetfor hot at cold utility

Shift the two curves so that will get !Tmin = 10oCT (oC)

H (MW)

50 

QREC=5150 

250 

100 

150 

200 

Pinch 

!Tmin =10

Qhmin = 750 

Qcmin = 1000 

Page 28: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 28/57

Composite Curve

Setting The Energy Targets for Pinch Design

!  Shifting of the curves leads to behavior similar tothat shown by the two-stream problem.

!  Though, the “kinked” nature of the composites

means that !T min can occur anywhere in the inter-change region and not just at one end.

For a given value of !T min, the utility quantitiespredicted are the minima required to solve the heat

recovery problem.

Page 29: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 29/57

Composite Curve

Setting The Pinch Design Targets

!  Although there are many streams in the problem..

In general !T min occurs at only one point of closest approach, which iscalled the pinch (Linnhoff et al. 1979).

!  This means that it is possible to design a network which uses theminimum utility requirements, where only the heat exchangers at thepinch need to operate at !T values down to !T min.

It will be seen later that the pinch temperature is of great practicalimportance, not just in network design but in all energy-relatedaspects of process optimisation.

Page 30: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 30/57

Composite Curve

Setting The Energy Targets for Pinch Design

!  Let’s try increase !Tmin =20oCT (oC)

H50

 

QREC=4750 

250 

100 

150 

200 

Pinch 

!Tmin =20

Qhmin = 1150 

Qcmin = 1400 

T (oC)

H (MW)

50 

QREC=5150 

250 

100 

150 

200 

Pinch 

!Tmin =10

Qhmin = 750 

Qcmin = 1000 

QC and QH increasecorrespondingly

Page 31: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 31/57

Economic Trade-off

Setting The Energy Targets for Pinch Design

!  The correct setting of !Tmin fixed by economictrade-offs 

Page 32: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 32/57

Summary

Setting The Pinch Design Targets

!  Temperature-enthalpy diagrams can be used todetermine heat recovery potential

!  Composite curves can be used to target for many hotstreams and many cold streams

!  Energy targets set from material and energy balanceandΔTmin

Can be varied to different targets

Page 33: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 33/57

Setting Energy Target – Composite Curve

WORKING EXAMPLE

Setting The Energy Targets for Pinch Design

Page 34: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 34/57

Example 1

Title of your presentation

!  Consider a process

Page 35: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 35/57

Example 1

Streams No &

Type

Suppy

Temperature , Ts

(oC)

Target

Temperature, Tt

(oC)

Heat Capacity

Flowrate (kW/oC)

1 Hot 180 80 20

2 Hot 130 40 40

3 Cold 60 100 80

4 Cold 30 120 36

!Tmin =10 oC

Construct the composite curves

Read off energy targets for !Tmin =10 oC

35

Setting The Pinch Design Targets

Page 36: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 36/57

PROBLEM TABLE ALGORITHM

© your company name. All rights

reserved.Setting The Pinch Design Targets

Page 37: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 37/57

Recap

StreamData - !Tmin

Compositecurves

• 

Complicated nature

EnergyTargets

“graph paper and scissors”approach (for sliding thegraphs relative to one

another) which would be

messy and imprecise. 

Setting The Pinch Design Targets

Page 38: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 38/57

Alternative Solution

Setting The Pinch Design Targets

The Problem Table Method

Page 39: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 39/57

Setting The Pinch Design Targets

Divide into temperature intervals:Within a particular interval the two composite curves are not !Tmin apart from

each other

T (oC)

H (MW)

50 

250 

100 

150 

200 

Pinch  !tmin  $( !Tmin

Within interval

Temperature Intervals

Page 40: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 40/57

Title of your presentation

To allow for the maximum possible amount of heat exchange within each

temperature interval.

The only modification needed is to ensure that within any interval, hot streams

and cold streams are at least !T min apart.T (oC)

H (MW)

50 

250 

100 

150 

200 

Shifted curves 

!Tmin 

Setting up the intervals in this way guarantees that full heat inter-change within anyinterval is possible. 

Page 41: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 41/57

Setting The Pinch Design Targets

!  This is done by using shifted temperatures.

Shifting Rule:

Cold stream : + "!T min

Hot stream : -"!

T min

Page 42: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 42/57

Setting The Energy Targets for Pinch Design

!  For example:

!T min = 10oC

Thus, "!T min = 5oC

Actual temperatures Shifted temperatures 

Stream number and type  CP (kW/K)  TS 

(°C)  TT 

(°C)  SS 

(°C)  ST 

(°C) 

1. Cold 2 20° 135° 25° 140°

2. Hot 3 170° 60° 165° 55°

3. Cold 4 80° 140° 85° 145°

4. Hot 1.5 150° 30° 145° 25°

Page 43: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 43/57

 

2

4

1

3

165°C

145°C

140°C

85°C

55°C

25°C

170°C

150°C

145°C135°C135°C

90°C

60°C60

°C50

°C

80°C80°C 90°C

145°C

150°C140°C

30°C20°C

1

2

3

4

5

 

Setting The Energy Targets for Pinch Design

!  Shifted temperatureintervals

!  Arranged Ts* and Tt*

from highest to lowest

!  Boundary is where the

stream starts or end!  Min 2 boundaries

Real temperature

Page 44: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 44/57

Setting The Energy Targets for Pinch Design

In each shifted temperature interval, calculate energybalance from

!Hi = (% CPH-% CPC )i !Ti

Page 45: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 45/57

Setting The Energy Targets for Pinch Design

!  Stream Data

Surplus

Interval Si Si1   ∑ CPHOT  ∑ CPCOLD  or

number i (°C) (kW/°C)     ∆Hi (kW) deficit  

S 1 165°C1 20   3.0   60 Surplus

S 2 145°C

2 5   0.5   2.5 Surplus

S 3 140°C

3 55   1.5   82.5 Deficit

S 4

85°C 4 30   2.5   75 Surplus

S 5 55°C

5 30   0.5   15 Deficit

S 6 25°C

Page 46: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 46/57

Setting The Energy Targets for Pinch Design

!  It would therefore be possible to produce a feasiblenetwork design based on the assumption:

All “surplus” intervals rejected heat to cold utility,

All “deficit” intervals took heat from hot utility.

However, this would not be very sensible, because it wouldinvolve rejecting and accepting heat at inappropriatetemperatures.

Page 47: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 47/57

 

T    145°C  ∆T  min /2For all hot streams

T    145°C  ∆T  min /2For all cold streams

60kW

60kW145°C

2

1

 

Instead of cool down surplus energy

by using cooling water (cold utility),

the surplus heat is cascaded to the

next temp. interval.

Assuming no hot utility is supplied

(!H =0) to the hottest interval 1;

can set up cascade.

Setting The Energy Targets for Pinch Design

Key feature of the temperatureintervals:

‘Any heat available in interval i is hotenough to supply any duty in

interval i+1 

Page 48: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 48/57

 

From hot utility

0 kW

60kW

62.5 kW

20kW

55kW

40kW

To cold utility

1

2

3

4

5

165°C

145°C

140°C

85°C

55°C

25°C

∆H   

60 kW

∆H   

2.5 kW

∆H   

82.5 kW

∆H   75 kW

∆H   15 kW

(a) Infeasible

Setting The Energy Targets for Pinch Design

Cascade any surplus heat from high temperature to low temperatureFrom hot utility

0 kW

60kW

62.5 kW

20kW

55kW

40kW

To cold utility

1

2

3

4

5

165°C

145°C

140°C

85°C

55°C

25°C

∆H   60 kW

∆H   

2.5 kW

∆H   82.5 kW

∆H   75 kW

∆H   15 kW

(a) Infeasible

Page 49: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 49/57

Heat flows cannot be negative! Add heat to make them at least 0!

Title of your presentation

From hot utility

82.5 kW

0 kW

75kW

60kW

20kW

80kW

  To cold utility

1

2

3

4

5

  ∆H   

60kW

  ∆H   2.5 kW

    ∆H   82.5 kW

  ∆H   75kW

    ∆H   15kW

  (b) Feasible

 

Page 50: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 50/57

Setting The Energy Targets for Pinch Design

!  Minimum Hot Utility Requirement = 20 kW

!  Minimum Cold Utility Requirement = 60 kW

!  Pinch temperature

Hot Stream Pinch Temp = 85o

C + 5o

C = 90o

CCold Stream Pinch Temp = 85oC – 5oC = 80oC

!  Maximum Heat Recovery = 450kW!  Hot streams loads = -510 kW( -ve indicates heat rejects)

!  Max Heat Recovery = 510-60 = 450 KW! 

Cold streams loads = 470kW

!  Max. Heat Recovery = 470 – 20 =450 kW

Page 51: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 51/57

Summary

Setting The Energy Targets for Pinch Design

!  The problem table algorithm:

Step 1: Adjust for !Tmin

Step 2: Set up temperature intervals

Step 3: Calculate interval heat balance

Step 4: Cascade for positive heat flows

Then, QHmin, QCmin and pinch locationwithout drawing graphs

Page 52: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 52/57

Setting The Energy Targets – Problem Table

Algorithm

WORKING EXAMPLE

Setting The Energy Targets for Pinch Design

Page 53: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 53/57

Setting The Energy Targets for Pinch Design

!  For example:

!T min = 10oC

Thus, "!T min = 5oC

Stream  Type  Supply Temp.Ts (

oC) Target

Temp. TT (oC) 

Shifted SupplyTemp. Ts* 

Shifter TargetTemp.

Tt* 

Cold 

20 

180  T*s = 20+ 5 =

25185

2 Hot  250  40  = 250 – 5 = 245 35

3 Cold  140  230  145 235

4 Hot 

200 

80 

195 75

Page 54: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 54/57

© your company name. All rights

reserved.Setting The Energy Targets for Pinch Design

Page 55: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 55/57

Temperature Interval Heat Balance

Title of your presentation

!  ! 

Page 56: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 56/57

Setting The Energy Targets for Pinch Design

Page 57: CPE 633 Lecture W2.pdf

8/9/2019 CPE 633 Lecture W2.pdf

http://slidepdf.com/reader/full/cpe-633-lecture-w2pdf 57/57

Thank You …