Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of...

31
Copyright Agrawal, 2007 Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Low-Power Design of Electronic Circuits Circuits Introduction Introduction Vishwani D. Agrawal Vishwani D. Agrawal James J. Danaher Professor James J. Danaher Professor Dept. of Electrical and Computer Engineering Dept. of Electrical and Computer Engineering Auburn University, Auburn, AL 36849 Auburn University, Auburn, AL 36849 [email protected] http://www.eng.auburn.edu/~vagrawal/COURSE/E6270_Fall07/ course.html
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    216
  • download

    0

Transcript of Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of...

Page 1: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 11

ELEC 5270/6270 Fall 2007ELEC 5270/6270 Fall 2007Low-Power Design of Electronic CircuitsLow-Power Design of Electronic Circuits

IntroductionIntroduction

Vishwani D. AgrawalVishwani D. AgrawalJames J. Danaher ProfessorJames J. Danaher Professor

Dept. of Electrical and Computer EngineeringDept. of Electrical and Computer EngineeringAuburn University, Auburn, AL 36849Auburn University, Auburn, AL 36849

[email protected]://www.eng.auburn.edu/~vagrawal/COURSE/E6270_Fall07/course.html

Page 2: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 22

Course ObjectivesCourse Objectives

Low-power is a current need in VLSI Low-power is a current need in VLSI design.design.

Learn basic ideas, concepts, theory and Learn basic ideas, concepts, theory and methods.methods.

Gain experience with techniques and Gain experience with techniques and tools.tools.

Page 3: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 33

Student EvaluationStudent Evaluation

Homeworks (30%) ~ FourHomeworks (30%) ~ FourClass Project (30%)Class Project (30%)Student presentation (10%)Student presentation (10%)Final Exam (30%): Tuesday, Final Exam (30%): Tuesday,

December 11, 2007, 2:00 – 4:30PM, December 11, 2007, 2:00 – 4:30PM, Broun 306.Broun 306.

Page 4: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 44

Power Consumption of VLSI ChipsPower Consumption of VLSI Chips

Why is it a concern?

Page 5: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 55

ISSCC, Feb. 2001, KeynoteISSCC, Feb. 2001, Keynote“Ten years from now, microprocessors will run at 10GHz to 30GHz and be capable of processing 1 trillion operations per second – about the same number of calculations that the world's fastest supercomputer can perform now.

“Unfortunately, if nothing changes these chips will produce as much heat, for their proportional size, as a nuclear reactor. . . .”

Patrick P. Gelsinger Senior Vice PresidentGeneral ManagerDigital Enterprise Group INTEL CORP.

Page 6: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 66

VLSI Chip Power DensityVLSI Chip Power Density

40048008

80808085

8086

286386

486Pentium®

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010

Year

Po

wer

Den

sity

(W

/cm

2 )

Hot Plate

NuclearReactor

RocketNozzle

Sun’sSurface

Source: Intel

Page 7: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 77

SIA Roadmap for Processors (1999)SIA Roadmap for Processors (1999)YearYear 19991999 20022002 20052005 20082008 20112011 20142014

Feature size (nm)Feature size (nm) 180180 130130 100100 7070 5050 3535

Logic transistors/cmLogic transistors/cm22 6.2M6.2M 18M18M 39M39M 84M84M 180M180M 390M390M

Clock (GHz)Clock (GHz) 1.251.25 2.12.1 3.53.5 6.06.0 10.010.0 16.916.9

Chip size (mmChip size (mm22)) 340340 430430 520520 620620 750750 900900

Power supply (V)Power supply (V) 1.81.8 1.51.5 1.21.2 0.90.9 0.60.6 0.50.5

High-perf. Power (W)High-perf. Power (W) 9090 130130 160160 170170 175175 183183

Source: http://www.semichips.org

Page 8: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 88

Recent DataRecent Data

Source: http://www.eetimes.com/story/OEG20040123S0041

Page 9: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 99

Low-Power DesignLow-Power DesignDesign practices that reduce power Design practices that reduce power

consumption at least by one order of consumption at least by one order of magnitude; in practice 50% reduction magnitude; in practice 50% reduction is often acceptable.is often acceptable.

Low-power design methods:Low-power design methods:Algorithms and architecturesAlgorithms and architecturesHigh-level and software techniquesHigh-level and software techniquesGate and circuit-level methodsGate and circuit-level methodsTest powerTest power

Page 10: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 1010

VLSI Building BlocksVLSI Building BlocksFinite-state machine (FSM)Finite-state machine (FSM)BusBusFlip-flops and shift registersFlip-flops and shift registersMemoriesMemoriesDatapathDatapathProcessorsProcessorsAnalog circuitsAnalog circuitsRF componentsRF components

Page 11: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 1111

Specific Topics in Low-PowerSpecific Topics in Low-Power Power dissipation in CMOS circuitsPower dissipation in CMOS circuits Device technologyDevice technology

Low-power CMOS technologiesLow-power CMOS technologies Energy recovery methodsEnergy recovery methods

Circuit and gate level methodsCircuit and gate level methods Logic synthesisLogic synthesis Dynamic power reduction techniquesDynamic power reduction techniques Leakage power reductionLeakage power reduction

System level methodsSystem level methods MicroprocessorsMicroprocessors Arithmetic circuitsArithmetic circuits Low power memory technologyLow power memory technology

Test PowerTest Power Power estimationPower estimation

Page 12: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 1212

Some ExamplesSome Examples

Page 13: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 1313

State Encoding for a CounterState Encoding for a CounterTwo-bit binary counter:Two-bit binary counter:

State sequence, 00 → 01 → 10 → 11 → 00State sequence, 00 → 01 → 10 → 11 → 00Six bit transitions in four clock cyclesSix bit transitions in four clock cycles6/4 = 1.5 transitions per clock6/4 = 1.5 transitions per clock

Two-bit Gray-code counterTwo-bit Gray-code counterState sequence, 00 → 01 → 11 → 10 → 00State sequence, 00 → 01 → 11 → 10 → 00Four bit transitions in four clock cyclesFour bit transitions in four clock cycles4/4 = 1.0 transition per clock4/4 = 1.0 transition per clock

Gray-code counter is more power efficient.Gray-code counter is more power efficient.

G. K. Yeap, Practical Low Power Digital VLSI Design, Boston:Kluwer Academic Publishers (now Springer), 1998.

Page 14: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 1414

Binary Counter: Original Binary Counter: Original EncodingEncoding

Present Present statestate Next stateNext state

aa bb AA BB

00 00 00 11

00 11 11 00

11 00 11 11

11 11 00 00

A = a’b + ab’B = a’b’ + ab’

A

B

a

b

CKCLR

Page 15: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 1515

Binary Counter: Gray EncodingBinary Counter: Gray Encoding

Present Present statestate Next stateNext state

aa bb AA BB

00 00 00 11

00 11 11 11

11 00 00 00

11 11 11 00

A = a’b + abB = a’b’ + a’b

A

B

a

b

CKCLR

Page 16: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 1616

Three-Bit CountersThree-Bit CountersBinaryBinary Gray-codeGray-code

StateState No. of togglesNo. of toggles StateState No. of togglesNo. of toggles

000000 -- 000000 --

001001 11 001001 11

010010 22 011011 11

011011 11 010010 11

100100 33 110110 11

101101 11 111111 11

110110 22 101101 11

111111 11 100100 11

000000 33 000000 11

Av. Transitions/clock = 1.75Av. Transitions/clock = 1.75 Av. Transitions/clock = 1Av. Transitions/clock = 1

Page 17: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 1717

N-Bit Counter: Toggles in Counting CycleN-Bit Counter: Toggles in Counting Cycle Binary counter: T(binary) = 2(2Binary counter: T(binary) = 2(2NN – 1) – 1) Gray-code counter: T(gray) = 2Gray-code counter: T(gray) = 2NN

T(gray)/T(binary) = 2T(gray)/T(binary) = 2N-1N-1/(2/(2NN – 1) → 0.5 – 1) → 0.5

BitsBits T(binary)T(binary) T(gray)T(gray) T(gray)/T(binary)T(gray)/T(binary)

11 22 22 1.01.0

22 66 44 0.66670.6667

33 1414 88 0.57140.5714

44 3030 1616 0.53330.5333

55 6262 3232 0.51610.5161

66 126126 6464 0.50790.5079

∞∞ -- -- 0.50000.5000

Page 18: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 1818

FSM State EncodingFSM State Encoding

11

01000.1

0.10.4

0.3

0.6 0.9

0.6

01

11000.1

0.10.4

0.3

0.6 0.9

0.6

Expected number of state-bit transitions:

1(0.3+0.4+0.1) + 2(0.1) = 1.0

Transition probability based on

PI statistics

State encoding can be selected using a power-based cost function.

2(0.3+0.4) + 1(0.1+0.1) = 1.6

Page 19: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 1919

FSM: Clock-GatingFSM: Clock-GatingMoore machine: Outputs depend only on Moore machine: Outputs depend only on

the state variables.the state variables. If a state has a self-loop in the state transition If a state has a self-loop in the state transition

graph (STG), then clock can be stopped graph (STG), then clock can be stopped whenever a self-loop is to be executed.whenever a self-loop is to be executed.

Sj

SiSk

Xi/Zk

Xk/Zk

Xj/Zk

Clock can be stopped when (Xk, Sk) combination occurs.

Page 20: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 2020

Clock-Gating in Moore FSMClock-Gating in Moore FSM

Combinational logic

LatchClock

activation logic

Flip

-flo

ps

PI

CK

PO

L. Benini and G. De Micheli,Dynamic Power Management,Boston: Springer, 1998.

Page 21: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 2121

Bus Encoding for Reduced PowerBus Encoding for Reduced Power Example: Four bit busExample: Four bit bus

0000 → 1110 has three transitions.0000 → 1110 has three transitions. If bits of second pattern are inverted, then 0000 → If bits of second pattern are inverted, then 0000 →

0001 will have only one transition.0001 will have only one transition. Bit-inversion encoding for N-bit bus:Bit-inversion encoding for N-bit bus:

Number of bit transitions0 N/2 N

N

N/2

0Nu

mb

er

of b

it tr

an

sitio

ns

afte

r in

vers

ion

en

cod

ing

Page 22: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 2222

Bus-Inversion Encoding LogicBus-Inversion Encoding Logic

Polarity decision

logic

Se

nt d

ata

Re

ceiv

ed

da

ta

Bus register

Polarity bit

M. Stan and W. Burleson, “Bus-Invert Coding for Low Power I/O,” IEEE Trans. VLSI Systems, vol. 3, no. 1, pp. 49-58, March 1995.

Page 23: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 2323

Clock-Gating in Low-Power Flip-FlopClock-Gating in Low-Power Flip-Flop

D QD

CK

Page 24: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 2424

Reduced-Power Shift RegisterReduced-Power Shift Register

D Q D Q D Q

D QD QD Q

D Q

D Q

D

CK(f/2)

mu

ltip

lexe

r

Output

Flip-flops are operated at full voltage and half the clock frequency.

Page 25: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 2525

Power Consumption of Shift RegisterPower Consumption of Shift Register

P = C’VDD2f/n

Degree of parallelism, n1 2 4

No

rma

lize

d p

ow

er

1.0

0.5

0.25

0.0

Deg. Of Deg. Of parallelismparallelism

Freq Freq (MHz)(MHz)

Power Power ((μμW)W)

11 33.033.0 15351535

22 16.516.5 887887

44 8.258.25 738738

16-bit shift register, 2μ CMOS

C. Piguet, “Circuit and Logic LevelDesign,” pages 103-133 in W. Nebeland J. Mermet (ed.), Low PowerDesign in Deep SubmicronElectronics, Springer, 1997.

Page 26: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 2626

Books on Low-Power Design (1) Books on Low-Power Design (1) L. Benini and G. De Micheli, L. Benini and G. De Micheli, Dynamic Power Management Design Techniques and Dynamic Power Management Design Techniques and

CAD ToolsCAD Tools, Boston: Springer, 1998., Boston: Springer, 1998. T. D. Burd and R. A. Brodersen, T. D. Burd and R. A. Brodersen, Energy Efficient Microprocessor DesignEnergy Efficient Microprocessor Design, Boston: , Boston:

Springer, 2002.Springer, 2002. A. Chandrakasan and R. Brodersen, A. Chandrakasan and R. Brodersen, Low-Power Digital CMOS DesignLow-Power Digital CMOS Design, Boston: , Boston:

Springer, 1995.Springer, 1995. A. Chandrakasan and R. Brodersen, A. Chandrakasan and R. Brodersen, Low-Power CMOS DesignLow-Power CMOS Design, New York: IEEE , New York: IEEE

Press, 1998.Press, 1998. J.-M. Chang and M. Pedram, J.-M. Chang and M. Pedram, Power Optimization and Synthesis at Behavioral and Power Optimization and Synthesis at Behavioral and

System Levels using Formal MethodsSystem Levels using Formal Methods, Boston: Springer, 1999., Boston: Springer, 1999. M. S. Elrabaa, I. S. Abu-Khater and M. I. Elmasry, M. S. Elrabaa, I. S. Abu-Khater and M. I. Elmasry, Advanced Low-Power Digital Advanced Low-Power Digital

Circuit TechniquesCircuit Techniques, Boston: Springer, 1997., Boston: Springer, 1997. R. Graybill and R. Melhem, R. Graybill and R. Melhem, Power Aware ComputingPower Aware Computing, New York: Plenum , New York: Plenum

Publishers, 2002.Publishers, 2002. S. Iman and M. Pedram, S. Iman and M. Pedram, Logic Synthesis for Low Power VLSI DesignsLogic Synthesis for Low Power VLSI Designs, Boston: , Boston:

Springer, 1998.Springer, 1998. J. B. Kuo and J.-H. Lou, J. B. Kuo and J.-H. Lou, Low-Voltage CMOS VLSI CircuitsLow-Voltage CMOS VLSI Circuits, New York: Wiley-, New York: Wiley-

Interscience, 1999.Interscience, 1999. J. Monteiro and S. Devadas, J. Monteiro and S. Devadas, Computer-Aided Design Techniques for Low Power Computer-Aided Design Techniques for Low Power

Sequential Logic CircuitsSequential Logic Circuits, Boston: Springer, 1997., Boston: Springer, 1997. S. G. Narendra and A. Chandrakasan, S. G. Narendra and A. Chandrakasan, Leakage in Nanometer CMOS Leakage in Nanometer CMOS

TechnologiesTechnologies, Boston: Springer, 2005., Boston: Springer, 2005. W. Nebel and J. Mermet, W. Nebel and J. Mermet, Low Power Design in Deep Submicron ElectronicsLow Power Design in Deep Submicron Electronics, ,

Boston: Springer, 1997.Boston: Springer, 1997.

Page 27: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 2727

Books on Low-Power Design (2)Books on Low-Power Design (2) N. Nicolici and B. M. Al-Hashimi, N. Nicolici and B. M. Al-Hashimi, Power-Constrained Testing of VLSI CircuitsPower-Constrained Testing of VLSI Circuits, ,

Boston: Springer, 2003.Boston: Springer, 2003. V. G. Oklobdzija, V. M. Stojanovic, D. M. Markovic and N. Nedovic, V. G. Oklobdzija, V. M. Stojanovic, D. M. Markovic and N. Nedovic, Digital System Digital System

Clocking: High Performance and Low-Power AspectsClocking: High Performance and Low-Power Aspects, Wiley-IEEE, 2005., Wiley-IEEE, 2005. M. Pedram and J. M. Rabaey, M. Pedram and J. M. Rabaey, Power Aware Design MethodologiesPower Aware Design Methodologies, Boston: , Boston:

Springer, 2002.Springer, 2002. C. Piguet, C. Piguet, Low-Power Electronics DesignLow-Power Electronics Design, Boca Raton: Florida: CRC Press, 2005., Boca Raton: Florida: CRC Press, 2005. J. M. Rabaey and M. Pedram, J. M. Rabaey and M. Pedram, Low Power Design MethodologiesLow Power Design Methodologies, Boston: , Boston:

Springer, 1996.Springer, 1996. S. Roudy, P. K. Wright and J. M. Rabaey, S. Roudy, P. K. Wright and J. M. Rabaey, Energy Scavenging for Wireless Sensor Energy Scavenging for Wireless Sensor

NetworksNetworks, Boston: Springer, 2003., Boston: Springer, 2003. K. Roy and S. C. Prasad, K. Roy and S. C. Prasad, Low-Power CMOS VLSI Circuit DesignLow-Power CMOS VLSI Circuit Design, New York: Wiley-, New York: Wiley-

Interscience, 2000.Interscience, 2000. E. Sánchez-Sinencio and A. G. Andreaou, E. Sánchez-Sinencio and A. G. Andreaou, Low-Voltage/Low-Power Integrated Low-Voltage/Low-Power Integrated

Circuits and Systems – Low-Voltage Mixed-Signal CircuitsCircuits and Systems – Low-Voltage Mixed-Signal Circuits, New York: IEEE , New York: IEEE Press, 1999.Press, 1999.

W. A. Serdijn, W. A. Serdijn, Low-Voltage Low-Power Analog Integrated CircuitsLow-Voltage Low-Power Analog Integrated Circuits, , Boston:Springer, 1995.Boston:Springer, 1995.

S. Sheng and R. W. Brodersen, S. Sheng and R. W. Brodersen, Low-Power Wireless Communications: A Low-Power Wireless Communications: A Wideband CDMA System DesignWideband CDMA System Design, Boston: Springer, 1998., Boston: Springer, 1998.

G. Verghese and J. M. Rabaey, G. Verghese and J. M. Rabaey, Low-Energy FPGAsLow-Energy FPGAs, Boston: springer, 2001., Boston: springer, 2001. G. K. Yeap, G. K. Yeap, Practical Low Power Digital VLSI DesignPractical Low Power Digital VLSI Design, Boston:Springer, 1998., Boston:Springer, 1998. K.-S. Yeo and K. Roy, K.-S. Yeo and K. Roy, Low-Voltage Low-Power SubsystemsLow-Voltage Low-Power Subsystems, McGraw Hill, 2004., McGraw Hill, 2004.

Page 28: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 2828

Books Useful in Low-Power Design Books Useful in Low-Power Design A. Chandrakasan, W. J. Bowhill and F. Fox, A. Chandrakasan, W. J. Bowhill and F. Fox, Design of High-Design of High-

Performance Microprocessor Circuits, Performance Microprocessor Circuits, New York: IEEE Press, New York: IEEE Press, 2001.2001.

R. C. Jaeger and T. N. Blalock, R. C. Jaeger and T. N. Blalock, Microelectronic Circuit Design, Microelectronic Circuit Design, Third EditionThird Edition, McGraw-Hill, 2006., McGraw-Hill, 2006.

S. M. Kang and Y. Leblebici, S. M. Kang and Y. Leblebici, CMOS Digital Integrated CircuitsCMOS Digital Integrated Circuits, , New York: McGraw-Hill, 1996.New York: McGraw-Hill, 1996.

E. Larsson, E. Larsson, Introduction to Advanced System-on-Chip Test Introduction to Advanced System-on-Chip Test Design and OptimizationDesign and Optimization, Springer, 2005., Springer, 2005.

J. M. Rabaey, A. Chandrakasan and B. Nikolić, J. M. Rabaey, A. Chandrakasan and B. Nikolić, Digital Integrated Digital Integrated Circuits, Second EditionCircuits, Second Edition, Upper Saddle River, New Jersey: , Upper Saddle River, New Jersey: Prentice-Hall, 2003.Prentice-Hall, 2003.

J. Segura and C. F. Hawkins, J. Segura and C. F. Hawkins, CMOS Electronics, How It Works, CMOS Electronics, How It Works, How It FailsHow It Fails, New York: IEEE Press, 2004., New York: IEEE Press, 2004.

N. H. E. Weste and D. Harris, N. H. E. Weste and D. Harris, CMOS VLSI Design, Third EditionCMOS VLSI Design, Third Edition, , Reading, Massachusetts: Addison-Wesley, 2005.Reading, Massachusetts: Addison-Wesley, 2005.

Page 29: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 2929

Problem: Bus EncodingProblem: Bus Encoding

A 1-hot encoding is to be used for reducing the capacitive power consumption of an n-bit data bus. All n bits are assumed to be independent and random. Derive a formula for the ratio of power consumptions on the encoded and the un-coded buses. Show that n ≥ 4 is essential for the 1-hot encoding to be beneficial.

Reference: A. P. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS Design, Boston: Kluwer Academic Publishers, 1995, pp. 224-225. [Hint: You should be able to solve this problem without the help of the reference.]

Page 30: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 3030

Solution: Bus EncodingSolution: Bus EncodingUn-coded bus: Two consecutive bits can be 00, 01, 10 and 11, each with a probability 0.25. Considering only the 01 transition, which draws energy from the supply, the probability of a data pattern consuming CV 2 energy on a wire is ¼. Therefore, the average per pattern energy for all n wires of the bus is CV 2n/4.

Encoded bus: Encoded bus contains 2n wires. The 1-hot encoding ensures that whenever there is a change in the data pattern, exactly one wire will have a 01 transition, charging its capacitance and consuming CV 2 energy. There can be 2n possible data patterns and exactly one of these will match the previous pattern and consume no energy. Thus, the per pattern energy consumption of the bus is 0 with probability 2–n, and CV 2 with probability 1 – 2–n. The average per pattern energy for the 1-hot encoded bus isCV 2(1 – 2–n).

Page 31: Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Introduction Vishwani D. Agrawal.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 1ELEC6270 Fall 07, Lecture 1 3131

Solution: Bus Encoding (Cont.)Solution: Bus Encoding (Cont.)Power ratio = Encoded bus power / un-coded bus power

= 4(1 – 2–n)/n → 4/n for large nFor the encoding to be beneficial, the above power ratio should be less than 1. That is, 4(1 – 2–n)/n ≤ 1, or 1 – 2–n ≤ n/4, or n/4 ≥ 1 (approximately) → n ≥ 4.The following table shows 1-hot encoded bus power ratio as a function of bus width:

n 4(1 – 2–n)/n n 4(1 – 2–n)/n

1 2.0000 8 0.4981

2 1.5000 16 0.2500 = 1/4

3 1.1670 32 1/8

4 0.9375 64 1/16