Computer Aided Engineering- FE Lecture 4 Slides

download Computer Aided Engineering- FE Lecture 4 Slides

of 23

Transcript of Computer Aided Engineering- FE Lecture 4 Slides

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    1/23

    Remember from last lecture, single element (2 nodes)matrix can be written as follows

    Element e

    1e 2e

    u1e

    u2e

    F1e F2

    e

    ke

    2

    e

    2

    k ue

    1

    u-k

    e2

    k u

    e

    e1uk

    e

    eF=+

    e1

    F=

    1 2

    1

    2

    2

    e

    2

    ke ue

    1

    u-k

    e2

    ke u

    e

    e1uk

    e

    eF=+

    e1

    F=

    1 2

    1

    2

    ke - ke

    ke- ke

    The stiffness matrix from:

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    2/23

    Lets write the individual matrix for each element

    1

    2

    3

    4

    P applied load

    u

    1

    u

    2

    u

    3

    u

    4

    R1 unknown

    reaction force

    k2

    k3

    ele. 1

    ele. 2

    ele. 3

    k1

    5

    R1

    K1(u2 u1)

    k4 ele. 4

    K1(u2 u1)

    K2(u3 u2)K2(u3 u2)

    K3(u4 u3)

    K3(u4 u3)

    K4(u5 u4)

    K4(u5 u4)

    P

    Node 1

    Node 2

    Node 3

    Node 4

    Node 5

    ee

    ee

    kk

    kk

    11

    11Element 1

    Element (e) Nodes

    1 1, 2

    2 2, 3

    3 3, 4

    4 4, 5

    00000

    00000

    00000

    00000

    00000

    1 2 3 4 5

    1

    23

    4

    5

    This is a plainmatrix

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    3/23

    ee

    ee

    kk

    kk

    11

    11Element 1

    00000

    00000

    00000

    000

    000

    1 2 3 4 5

    1

    2

    3

    4

    5

    1

    2

    3

    4

    P applied load

    u

    1

    u

    2

    u3

    u4

    R1 unknown

    reaction force

    k2

    k3

    ele. 1

    ele. 2

    ele. 3

    k1

    5

    R1

    K1(u2 u1)

    k4 ele. 4

    K1(u2 u1)

    K2(u3 u2)K2(u3 u2)

    K3(u4 u3)

    K3(u4 u3)

    K4(u5 u4)

    K4(u5 u4)

    P

    Node 1

    Node 2

    Node 3

    Node 4

    Node 5

    Element 1 is elated to nodes 1 & 2So we can place this matrix in the

    plain global matrix at theintersection of nodes 1 & 2

    00000

    00000

    00000

    00000

    00000

    1 2 3 4 5

    1

    2

    3

    4

    5

    ee

    ee

    kk

    kk

    11

    11

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    4/23

    ee

    ee

    kk

    kk

    22

    22Element 2

    00000

    00000

    000

    00

    000

    1 2 3 4 5

    1

    2

    3

    4

    5

    1

    2

    3

    4

    P applied load

    u

    1

    u

    2

    u3

    u4

    R1 unknown

    reaction force

    k2

    k3

    ele. 1

    ele. 2

    ele. 3

    k1

    5

    R1

    K1(u2 u1)

    k4 ele. 4

    K1(u2 u1)

    K2(u3 u2)K2(u3 u2)

    K3(u4 u3)

    K3(u4 u3)

    K4(u5 u4)

    K4(u5 u4)

    P

    Node 1

    Node 2

    Node 3

    Node 4

    Node 5

    Element 2 is elated to nodes 2 & 3So we can place this matrix in the

    plain global matrix at theintersection of nodes 2 & 3

    00000

    00000

    00000

    00000

    00000

    1 2 3 4 5

    1

    2

    3

    4

    5

    ee

    ee

    kk

    kk

    22

    22

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    5/23

    ee

    ee

    kk

    kk

    33

    33Element 3

    00000

    000

    00

    00

    000

    1 2 3 4 5

    1

    2

    3

    4

    5

    1

    2

    3

    4

    P applied load

    u

    1

    u

    2

    u3

    u4

    R1 unknown

    reaction force

    k2

    k3

    ele. 1

    ele. 2

    ele. 3

    k1

    5

    R1

    K1(u2 u1)

    k4 ele. 4

    K1(u2 u1)

    K2(u3 u2)K2(u3 u2)

    K3(u4 u3)

    K3(u4 u3)

    K4(u5 u4)

    K4(u5 u4)

    P

    Node 1

    Node 2

    Node 3

    Node 4

    Node 5

    Element 3 is elated to nodes 3 & 4So we can place this matrix in the

    plain global matrix at theintersection of nodes 3 & 4

    00000

    00000

    00000

    00000

    00000

    1 2 3 4 5

    1

    2

    3

    4

    5

    ee

    ee

    kk

    kk

    33

    33

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    6/23

    ee

    ee

    kk

    kk

    44

    44Element 4

    000

    00

    00

    00

    000

    1 2 3 4 5

    1

    2

    3

    4

    5

    1

    2

    3

    4

    P applied load

    u

    1

    u

    2

    u3

    u4

    R1 unknown

    reaction force

    k2

    k3

    ele. 1

    ele. 2

    ele. 3

    k1

    5

    R1

    K1(u2 u1)

    k4 ele. 4

    K1(u2 u1)

    K2(u3 u2)K2(u3 u2)

    K3(u4 u3)

    K3(u4 u3)

    K4(u5 u4)

    K4(u5 u4)

    P

    Node 1

    Node 2

    Node 3

    Node 4

    Node 5

    Element 4 is elated to nodes 4 & 5So we can place this matrix in the

    plain global matrix at theintersection of nodes 4 & 5

    00000

    00000

    00000

    00000

    00000

    1 2 3 4 5

    1

    2

    3

    4

    5

    ee

    ee

    kk

    kk

    44

    44

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    7/23

    The final global matrix of the system is obtained simply byassembling or adding the individual element matrices

    000

    00

    00

    00

    000

    1 2 3 4 5

    1

    2

    3

    4

    5ee

    ee

    kk

    kk

    44

    44

    ee

    ee

    kk

    kk

    33

    33

    ee

    ee

    kkkk

    22

    22

    ee

    ee

    kk

    kk

    11

    11

    The overlappingK will be addedin the system

    global matrix

    The assembly of the above matrix gives the global matrix of the system

    +

    +

    +

    44

    4433

    3322

    2211

    11

    000

    00

    00

    00

    000

    kk

    kkkk

    kkkk

    kkkk

    kkThis method givesthe same matrixwhich we havedeveloped fromindividual equilibrium

    equation for eachnode

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    8/23

    To calculate the stiffness of any element

    k = stiffness

    E = Modules of elasticity

    A = cross sectional area ( width x thickness )

    l= length of the element

    1

    2

    3

    4

    A

    B

    D

    C

    F

    a

    a

    a

    b c bwall

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    9/23

    For the suspended plate which is fixed to the roof as shown in Fig. belowa. Model the plate in suitable FE form.b. Calculate the stiffness of each element, ke

    c. Write the element nodes table.d. Set the global stiffness matrix of the model.e. Solve for the elongation in each element

    E = Modulus of Elasticity = 100 GPa

    All dimensions in mmt = thickness of the plate = 1mm

    a = 20 mm

    a a a a a

    200

    100

    10 kN

    Example 1

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    10/23

    Model the plate in suitable FE form.

    Example 1

    1

    2

    3

    Element 1 Element 2 Element 3

    10kN

    Element(e) Nodes

    1 1, 2

    2 1, 2

    3

    2, 34

    1, 2

    To calculate the stiffness

    Element 4

    k = stiffness

    E = Modules of elasticity

    A = cross sectional area ( width x thickness )

    l= length of the element

    Since elements 1, 2, & 3 have the same area. Module ofelasticity & length, hence their stiffness are equalK1 = K2 = K3

    E = 100 GPa

    t = thickness of the plate = 1mm

    a = 20 mm

    a a a a a

    200

    100

    10 kN

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    11/23

    Individual matrix of each element

    ee

    ee

    kk

    kk

    11

    11

    ee

    ee

    kk

    kk

    22

    22

    ee

    ee

    kk

    kk

    33

    33

    Element 1 Element 2 Element 3 Element(e) Nodes

    1 1, 2

    2 1, 2

    3

    2, 34

    1, 2

    000

    000

    000

    1 2 3

    1

    2

    3

    0

    0

    ee

    ee

    kk

    kk

    11

    11

    ee

    ee

    kk

    kk

    22

    22

    ee

    ee

    kk

    kk

    33

    33

    ee

    ee

    kk

    kk

    44

    44

    Element 4

    ee

    ee

    kk

    kk

    44

    44

    +++

    ++

    44

    44321321

    321321

    0

    0

    kk

    kkkkkkkk

    kkkkkk

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    12/23

    =

    550

    5116

    066

    107G

    K

    +++

    ++

    44

    44321321

    321321

    0

    0

    kkkkkkkkkk

    kkkkkk

    Substitute the above k values into the developed global matrix gives

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    13/23

    Remember from last lecture

    So we can write the matrix as

    }F{}u{]K[ GG =

    =

    10000

    0

    0

    550

    5116

    066

    10

    3

    2

    1

    7

    u

    u

    u

    Zero because its a fixed point

    =

    10000

    0

    0

    550

    5116

    066

    10

    3

    2

    1

    7

    u

    u

    u

    In any matrix if there zero then the columnand row of the zero will be cancelled

    =

    10000

    0

    55

    51110

    3

    27

    u

    u

    U1=0 because its a fixed poin

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    14/23

    =

    10000

    0

    55

    511

    103

    27

    u

    u We get from this matrix

    two equations

    Two equations with two unknowns can be easily solved and get

    U2=0.167mm

    U3=0.367mm

    U1=0

    Multiplying the matrices (refer to matrix lecture slides) gives

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    15/23

    Example 2:

    The beam shown in the figure below is

    cantilevered at one end and is pulled by a force of

    100 N at the other end. Calculate the totalelongation of the beam.

    38

    E1 E2 100 N

    m0275.0

    m0425.0

    2

    1

    =

    =

    h

    h

    h1h2

    0.1m 0.1m

    E= 200000 Pa

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    16/23

    Ex 2: Solution

    Use 2 uniform cross section elements.

    39

    E1 E2 100 N

    m0275.0

    m0425.0

    2

    1

    =

    =

    h

    h

    h1h2

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    17/23

    E1 E2 100 N

    100 N

    k1 k2Node 1 Node 2 Node 3

    R1

    Two Elements Stiffness Matrix

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    18/23

    K=

    By using the method to assemble the global matrix fromindividual elements matrix. The resulted global stiffness

    matrix for the system is:

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    19/23

    Ex 2: Solution

    Since this is a uniaxial 1-D problem, the elementscan be simplified as 2 springs in series.

    42

    100 N

    k1 k2Node 1 Node 2 Node 3

    R1

    with element stiffness,ki = E * Ai / L

    Where Ai=2h (cross section area is square)

    k1 = [(200000*0.04252)/0.1] = 3612.5 N/mk2 = [(200000*0.0275

    2)/0.1] = 1512.5 N/m

    E1 E2 100 N

    m0275.0

    m0425.0

    =

    =

    h

    h

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    20/23

    Ex 1: Solution

    43

    K= =

    Global Stiffness Matrix**:

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    21/23

    44

    Ex 2: Solution

    Arranging the problem in matrix form (K*x = F) yield;

    A known solution, u1 = 0. Thus the problem can be

    reduced to (by eliminating first column & first row):

    =

    =

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    22/23

    45

    Option 1 solution: Using the inverse matrix method, x = K * F ;-1

    Ex 1: Solution

    = =

    =

    -1

    Refer to previous matrix

    lecture slides

  • 7/27/2019 Computer Aided Engineering- FE Lecture 4 Slides

    23/23

    Option 2 solution: Use two equations solution

    =

    Two equations with two unknowns can be easily solved and get

    U2=0.027

    U3=0.093

    U1=0