Chapter 6. Bipolar Junction Transistors (BJTs)

71
Chapter 6. Bipolar Junction Transistors (BJTs)

description

Chapter 6. Bipolar Junction Transistors (BJTs). Bipolar Junction Transistor. Three terminal device Voltage between two terminals to control current flow in third terminal Invented in 1948 at Bell Telephone Laboratories Dominant until late 1980’s Reliable under harsh operating conditions - PowerPoint PPT Presentation

Transcript of Chapter 6. Bipolar Junction Transistors (BJTs)

Page 1: Chapter 6.  Bipolar Junction Transistors (BJTs)

Chapter 6. Bipolar Junction Transistors (BJTs)

Page 2: Chapter 6.  Bipolar Junction Transistors (BJTs)

Bipolar Junction Transistor • Three terminal device

• Voltage between two terminals to control current flow in third terminal

• Invented in 1948 at Bell Telephone Laboratories

• Dominant until late 1980’s

• Reliable under harsh operating conditions– High frequency applications

– High speed designs

– High power applications

Page 3: Chapter 6.  Bipolar Junction Transistors (BJTs)

npn transistor•n-type emitter (E) region, p-type base (B) region, n-type collector (C) region •Two pn junctions (naming basis for bipolar junction transistor)•Modes

- Active: used for amplifier design- Cutoff - Saturation: used for logic design- Reverse active: limited operation

Page 4: Chapter 6.  Bipolar Junction Transistors (BJTs)

pnp transistor – dual of npn transistor

Page 5: Chapter 6.  Bipolar Junction Transistors (BJTs)

Active Mode of npn Transistor

Page 6: Chapter 6.  Bipolar Junction Transistors (BJTs)

2

Collector current: (independent of )

: Saturation current

: Cross sectional area of base-emitter junction

: Magnitude of electron charge

: Electron diffusivity i

BE

T

v

VC S CB

E n iS S

A

E

n

i I e v

A qD nI I

N W

A

q

D

15 18

n base

: Effective width of base

: Intrinsic carrier density

: Doping concentration in base

10 A < < 10 A

i

A

S

W

n

N

I

Thermal Voltage:

25 mV (room temperature)T

T

V

V

Page 7: Chapter 6.  Bipolar Junction Transistors (BJTs)

Emitter current:

1 1

1

: Common-base current gain

BE

T

BE

T

E

E B C

v

VE C S

C E

v

VSE

i

i i i

i i I e

i i

Ii e

2

Base current:

: Common-emitter current gain

1

12

50 < <200

: Hole diffusivity in emitter

: Hole diffusion length

: Doping concentration in em

BE

T

v

VC SB

p A

n D p n b

p

p

D

i Ii e

D N W WD N L D

D

L

N

itter

: Minority carrier lifetimeb

Page 8: Chapter 6.  Bipolar Junction Transistors (BJTs)

Circuit Models for Active Mode npn Transistor

Page 9: Chapter 6.  Bipolar Junction Transistors (BJTs)

Practical Implementation

E and C are not symmetrical.

pnp transistors works dual to npn transistors much inthe same way PMOSFET works dual to NMOSFET.(In this class, we will concentrate on npn transistors.)

Page 10: Chapter 6.  Bipolar Junction Transistors (BJTs)

Circuit Symbols for npn Transistors

Biasing in active modeDirections of current flow

Page 11: Chapter 6.  Bipolar Junction Transistors (BJTs)

Example: Given 100. When 1 mA, 0.7 .

Design to achieve 2 mA when 5 V.

Since 5 V 5 V (reverse biased)

Transistor is in active mode.

15 55 k

2

ln

A

BE

T

C BE

C C

C B C

C

v

V CC S BE T

S

i v V

i V

V V V

R

ii I e v V

I

1t 1 mA, 0.7 ln .... (1)

2At 2 mA, ln .... (2)

Subtract (1) from (2)

20.7 ln 0.717 25 mV

1

100Given 100 0.99

100 12

2.02 mA0.99

0.717 ( 15)

2.0

C TS

C BE TS

BE T T

CE

C

i VI

i v VI

v V V

ii

R

7.07 k

2

Page 12: Chapter 6.  Bipolar Junction Transistors (BJTs)

iC – vBE Characteristics

Temperature Dependence

is typically 0.6 V to 0.8 V

BE

T

v

VC S

BE

i I e

v

Page 13: Chapter 6.  Bipolar Junction Transistors (BJTs)

Common Base Characteristics

Base voltage is fixed at zero.In active region, vCB ≥ - 0.4 V

Large signal Small signal C C

E E

i i

i i

Page 14: Chapter 6.  Bipolar Junction Transistors (BJTs)

Dependence of iC on Collector Voltage

50 V to 100 V (Early Voltage)

1BE

T

A

v

V CEC S

A

V

vi I e

V

Page 15: Chapter 6.  Bipolar Junction Transistors (BJTs)

0A CE

C

V Vr

I

Circuit Models with Output Resistance ro

Page 16: Chapter 6.  Bipolar Junction Transistors (BJTs)

Common Emitter Configuration

constant

Large signal Small signal CE

CQ Cdc

BQ B v

I i

I i

Page 17: Chapter 6.  Bipolar Junction Transistors (BJTs)

sat

satforced

forced

forced

In saturation, <

: current ratio in saturation

: overdrive factor

C B

C

B

I I

I

I

Page 18: Chapter 6.  Bipolar Junction Transistors (BJTs)

off 0.1 VCEV

Common Emitter Saturation Model

sat off sat sat

sat

sat

is typically 0.1 V to 0.3 V.

is much larger than typical triode voltages of .

BJT is less attractive than CMOS for logic circuits.

CE CE C CE

CE

CE DS

V V I R

V

V V

Page 19: Chapter 6.  Bipolar Junction Transistors (BJTs)

Designing Linear Amplifiers (Active Region)

and

cutoff if 0.5 VBJT is

active if > 0.5 V

Initially after BJT turns on, large.

Further increase of , gets small.

BE I I

T T T

O CE CC C C I BE

I

I

CE

I CE

v v v

V V VC S S O CC C S

v v V R i v v

v

v

v

v v

i I e I e v V R I e

satsat

sat

In saturation,

0.1 V to 0.2 V

CC CEC

C

CE

V VI

R

V

Page 20: Chapter 6.  Bipolar Junction Transistors (BJTs)

Amplifier Gain

max

1

BE

T

BE

T

I BE

V

VC S

CE CC C C

V

VOv S C

I TV V

C Cv

T

CCv

T

I I e

V V R I

vA I e R

v V

R IA

V

VA

V

Page 21: Chapter 6.  Bipolar Junction Transistors (BJTs)

15

3 15 0.025

3

Example: Common Emitter Circuit

Given 10 A, 6.8 k and 10 V

Find and for 3.2 V.

10 3.21 mA

6.8

1 10 1 10

690.8 10 V

10 3.2

0

BE BE

T

S C CC

BE C CE

CC CEC

C

V VV

C S

BE

CC CEv

T

I R V

V I V

V VI

R

I I e e

V

V VA

V

3

272 V/V.025

Assume at the edge of saturation 0.3 V.

10 0.31.617 mA

6.8

new 1.617ln 0.025ln 12 10 V

old 1

CE

CC CEC

C

CBE T

C

v

V Vi

R

iv V

i

Page 22: Chapter 6.  Bipolar Junction Transistors (BJTs)

Graphical Analysis

Get from the graph

BE

T

CE CC C C CC C B

v

VC SB

B

v V R i V R i

i Ii e

i

Page 23: Chapter 6.  Bipolar Junction Transistors (BJTs)

Use (we found from the previous slide).

Then, read and from the graph.B

C CE

i

i v

Page 24: Chapter 6.  Bipolar Junction Transistors (BJTs)

To determine iB, iC and vCE, you need to use both graphs.

Page 25: Chapter 6.  Bipolar Junction Transistors (BJTs)

Quiescent point must be selected to give a symmetric output swing.

Page 26: Chapter 6.  Bipolar Junction Transistors (BJTs)

(EOS

Switching Operation

0.5 V (cutoff) 0, 0 and

0.5 V and 0.4 (active)

, and

0.5 V and = 0.4

(edge of saturation - EOS)

I B C C CC

I C B

I BEB C B C CC C C

B

I C B

C

v i i v V

v v v

v vi i i v V R i

R

v v v

i

(EOS)) (EOS) (EOS) (EOS)

satsat

satforced

0.3, and

0.5 V and < 0.4 (saturation)

In deep saturation:

CCCB I B B BE

C

I C B

CC CEC

C

C

B

ivi V I R V

R

v v v

V VI

R

I

I

Page 27: Chapter 6.  Bipolar Junction Transistors (BJTs)

sat

forced

When the transistor is on:

0.7 V

0.2 V

In active mode: 0.4

In saturation mode: 0.4

Check: for active mode,

DC Analysis Model

BE

CE

CB

CB

C C

B B

V

V

V

V

I I

I I

for saturation mode

Page 28: Chapter 6.  Bipolar Junction Transistors (BJTs)

Example:

Given =100.

Assume 0.7 V.

4 0.7 3.3 V

3.31 mA

3.3

Assume active mode.

1001 0.99 mA

100 110 10 0.99 4.7 5.3 V

5.3 4 1.3 0.4

The transistor is in ac

BE

E B BE

EE

E

C E

C C C

CB C B

V

V V V

VI

R

I I

V I R

V V V V

tive mode (check).

Page 29: Chapter 6.  Bipolar Junction Transistors (BJTs)

What if 6 V?

5.36 0.7 5.3 V 1.6 mA

3.3

Assume active mode.

1001.6 1.58 mA

100 110 10 1.58 4.7 2.56 V

2.56 6 3.44 V 0.4 (Not OK)

Assume saturation mode.

B

EE B BE E

E

C E

C C C

CB C B

V

VV V V I

R

I I

V I R

V V V

V

sat

forced

5.3 0.2 5.5 V

10 5.50.96 mA 1.6 0.96 0.64 mA

4.70.96

1.5 100 (check)0.64

C E CE

C B E C

C

B

V V

I I I I

I

I

Page 30: Chapter 6.  Bipolar Junction Transistors (BJTs)

What if 0 V?

Transistor is cutoff.

0 V

0 V

10 V

0 A

B

E

B

C

B C E

V

V

V

V

I I I

Page 31: Chapter 6.  Bipolar Junction Transistors (BJTs)

Example:

Given =100.

Assume active mode.

0.7 V.

5 5 0.70.043 mA

100

100 0.043 4.3 mA

10 10 4.3 2 1.4 V

1 101 0.043 4.3 mA

1.4 0.7 0.7 V 0.4

The transistor is in a

B

BB

B

C B

C C C

E B

CB C B

V

VI

R

I I

V I R

I I

V V V

ctive mode (check).

Page 32: Chapter 6.  Bipolar Junction Transistors (BJTs)

2

1 2

1 2

Example: Given =100.

Note that 0.

Thus we need to find an equivalent

circuit for the input part.

15 5 V

|| 33.3 k

B

BBB

B B

BB B B

I

RV

R R

R R R

Input part

+_ VBB_

+

10 V

RB1

RB2

10 V RB2VBB

RB1

+_VBB

RBB

Page 33: Chapter 6.  Bipolar Junction Transistors (BJTs)

Assume active mode.

1

5 0.71.29 mA

33.33

1011

1.290.0128 mA

1 101

0.7 1.29 3 4.57 V

0.99 1.29 1.28 mA

15 15

BB B BB BE E E

EBB BE E E

BB BEE

BBE

EB

B BE E E

C E

C C C

V I R V I R

IR V I R

V VI

RR

II

V V I R

I I

V I R

1.28 5 8.6 V

> 8.6 4.57 4.04 0.4

The transistor is in active mode (check).CB C BV V V

Page 34: Chapter 6.  Bipolar Junction Transistors (BJTs)

Biasing BJT• Determining a quiescent point for linearization

• Active mode operation

• Considerations– Stable with respect to manufacturing parameters

(e.g., ro, β)

– Desired gains– Acceptable output swing

Page 35: Chapter 6.  Bipolar Junction Transistors (BJTs)

Biasing with Single Power Supply

• Fix VBE or IB.

• Output directly depends on β• Unstable with respect to temperature variation

Page 36: Chapter 6.  Bipolar Junction Transistors (BJTs)

Addition of Degeneration Resistor

2 1 21 2

1 2 1 2

|| =

1

To stablize the design: and 1

1Good rule of thumb:

3

BB BEBB CC B E

BE

BBB BE E

BB CB C C CC

R R R V VV V R R R I

RR R R R R

RV V R

V V I R V

Page 37: Chapter 6.  Bipolar Junction Transistors (BJTs)

1 2

1 2

Example: Given =100 and 12 V.

Find a design for 1 mA.

4 V3

4 3.3 V

3.33.3 k

1

1 1 mA 0.01 mA (very small)

Arbritrarily set 120 k .

80 k and 40 k

Note

CC

E

CCBB

E BE

EE

E

E B B

V

I

VV

V V

VR

I

I I I

R R

R R

that the above design yields 0.93 mA 1 mA.

One might need to go back and fine tune the design to

achieve 1 mA.

E

E

I

I

Page 38: Chapter 6.  Bipolar Junction Transistors (BJTs)

Biasing with Two Power Supplies

0

1 1

To stablize the design: 1

BE EE EE BEE

B BE E

BE

V V V VI

R RR R

RR

Page 39: Chapter 6.  Bipolar Junction Transistors (BJTs)

Biasing with Feedback Resistor

1

1

If , is stable.1

ECC E C B B BE E C B BE

CC BEE

BC

BC E

IV I R I R V I R R V

V VI

RR

RR I

Page 40: Chapter 6.  Bipolar Junction Transistors (BJTs)

Biasing with Current Source

1 2

1

1

1 2

and are matched.

has base and collector shorted.

is a diode.

Since 's are the same for and

CC EE BEREF

BE

CC EE BEREF

Q Q

Q

Q

V V VI

RV Q Q

V V VI I

R

Page 41: Chapter 6.  Bipolar Junction Transistors (BJTs)

Small Signal Analysis

• A quiescent point has been determined by biasing.

• Active mode operation– Forward biasing for base-emitter junction by VBE

– Reverse biasing for collector-base junction by RC and VCC

Page 42: Chapter 6.  Bipolar Junction Transistors (BJTs)

Consider dc first.

0.4 (active mode)

BE

T

V

VC S

CE

CB

C CE CC C C

C B

I I e

II

II

V V V R I

V V

Page 43: Chapter 6.  Bipolar Junction Transistors (BJTs)

1 for

Above approximation is valid if 10 mV.

where (Transconductance)

BE be beBE BE

T T T T

be

T

BE BE be

V v vv V

V V V VC S S S

v

V beC C C be T

T

be

CC C be

T

C Cc be m be m

T T

v V v

i I e I e I e e

vi I e I v V

V

v

Ii I v

V

I Ii v g v g

V V

Page 44: Chapter 6.  Bipolar Junction Transistors (BJTs)

The transistor performs as a voltage controlled current source with gain gm when input varies by 10 mV or less.

Page 45: Chapter 6.  Bipolar Junction Transistors (BJTs)

1

Input resistance between base and emitter

C C CB be

T

mb be

be T

b m B

i I Ii v

V

gi v

v Vr

i g I

Page 46: Chapter 6.  Bipolar Junction Transistors (BJTs)

1

1

Input resistance between base and emitter

1

1

C C CE be

T

C Ee be be

T T

be Te

e E m m

ebe b e e e e

b

i I Ii v

V

I Ii v v

V V

v Vr

i I g g

iv i r i r r r r

i

Page 47: Chapter 6.  Bipolar Junction Transistors (BJTs)

C CC C C

C CC C c C

C CC C C c C

C C c C

c c C m be C

c m C be v be

c C Cv m C

be T

v V i R

v V I i R

v V I R i R

v V i R

v i R g v R

v g R v A v

v I RA g R

v V

Page 48: Chapter 6.  Bipolar Junction Transistors (BJTs)

Hybrid π Model

• Short circuit voltage sources• Open circuit current sources• Short circuit capacitors

Page 49: Chapter 6.  Bipolar Junction Transistors (BJTs)

1

1

1

be bee m be m

be be bee

e

m be m b

m b b

v vi g v g r

r r

v v vi

rr r

g v g i r

g r i i

Page 50: Chapter 6.  Bipolar Junction Transistors (BJTs)

T Model

Page 51: Chapter 6.  Bipolar Junction Transistors (BJTs)

1. Determine the quiescent point.

2. Determine , , and .

3. Eliminate dc and ac sources.

4. Replace transistors with small signal mode

Analysis of Small Signals

C Tm e

T m E m

I Vg r r

V g I g

ls.

5. Analyze the circuit.

Page 52: Chapter 6.  Bipolar Junction Transistors (BJTs)

Example: Given =100 and 10 V.

Assume 0 V.

0.991

3 0.70.023 mA

100

100 0.023 2.3 mA

10 2.3 3 3.1 V

3.1 V > 0.3 V Transistor in active mode

25 mV2.

CC

i

BB BEB

BB

C B

C CC C C

CE

Te

E

V

v

V VI

R

I I

V V I R

V

Vr

I

10.8 3 mA0.992.3 mA

92 mA/V25 mV

1001.09 k

92

Cm

T

m

Ig

V

rg

Page 53: Chapter 6.  Bipolar Junction Transistors (BJTs)

Now ac analysis

1.090.011

101.09

92 0.011 3 3.04

3.04

be i i iBB

o m be C i i

ov

i

rv v v v

r R

v g v R v v

vA

v

Page 54: Chapter 6.  Bipolar Junction Transistors (BJTs)

Hybrid π Model with Early Effect

||

A CE Ao

C C

o m be C o

V V Vr

I I

v g v R r

Page 55: Chapter 6.  Bipolar Junction Transistors (BJTs)

Structure of Single Stage Amplifier

Page 56: Chapter 6.  Bipolar Junction Transistors (BJTs)

Common Emitter Amplifier

Page 57: Chapter 6.  Bipolar Junction Transistors (BJTs)

sig sig sig

sig sig sig

|| where .

if .

|| if .

||

iin B ib ib

i

in B

Bini B

in B

i

vR R R R r

i

R r R r

R rR rv v v v R r

R R R r R r R

v v

Page 58: Chapter 6.  Bipolar Junction Transistors (BJTs)

sig sig

|| ||

|| ||

|| if .

|| if .

for unilateral amplifier.

|| ||

||

o m o C L

ov m o C L

i

vo m o C m C o C

out o C C o C

o out

Lv vo

o L

Bov m o

B

v g v r R R

vA g r R R

v

A g r R g R r R

R r R R r R

R R

RA A

R R

r RvG g r

v r R R

sig

sig

||

|| || if

|| || if .

C L

o C LB

m o C L

R R

r R RR r

r R

g r R R R r

Page 59: Chapter 6.  Bipolar Junction Transistors (BJTs)

Common Emitter Amplifier with RE

Page 60: Chapter 6.  Bipolar Junction Transistors (BJTs)

||

1

1

1

iin B ib

i

i i iib e E

eb i

e E

vR R R

i

v v vR r R

ii v

r R

Page 61: Chapter 6.  Bipolar Junction Transistors (BJTs)

sig sig

sig

|| ||

|| ||

||

1

||

|| if

1

o c C L e C L

e C L C Lov

i e e E e E

C Lv

e E

C m Cvo

e E m E

out C

C Lo inv

in e E

C Lv E ib

e E

v i R R i R R

i R R R RvA

v i r R r R

R RA

r R

R g RA

r R g R

R R

R Rv RG

v R R r R

R RG R R

R r R

Page 62: Chapter 6.  Bipolar Junction Transistors (BJTs)

Common Base Amplifier

Page 63: Chapter 6.  Bipolar Junction Transistors (BJTs)

iin e

i

vR r

i

Page 64: Chapter 6.  Bipolar Junction Transistors (BJTs)

sig sig sig sig

||

|| ||

|| || ||

o e C L

ie

e

ov C L m C L

i e

vo m C

out C

C L C Lo ev m C L

e e e

v i R R

vi

r

vA R R g R R

v r

A g R

R R

R R R Rv rG g R R

v R r R r R r

Page 65: Chapter 6.  Bipolar Junction Transistors (BJTs)

Common Collector Amplifier

Page 66: Chapter 6.  Bipolar Junction Transistors (BJTs)

||

1 ||

iin B ib

i

iib e o L

b

vR R R

i

vR r r R

i

Page 67: Chapter 6.  Bipolar Junction Transistors (BJTs)
Page 68: Chapter 6.  Bipolar Junction Transistors (BJTs)

sig sig sig

sig sig

sigsig

sig

1 ||

|| 1 ||

||

|| ||

1

if and .

1

1 if and .1

o Lo Bv

B B e o L

o LB

B B

e o L

LB o L

e L

L e L

r Rv RG

v R R R R r r R

r RR

R R R Rr r R

RR R r R

Rr R

RR r R

sig sig sig

|| || || || if >> .

1 1 1B B B

out o e e o e

R R R R R RR r r r r r

Page 69: Chapter 6.  Bipolar Junction Transistors (BJTs)

Digital Logic Inverter

Transistor is in saturation mode.

Logic 1: vI ≈ VCC → vO =VCEsat ≈ 0.2 V Logic 0: vI ≈ 0 → vO =VCC

Page 70: Chapter 6.  Bipolar Junction Transistors (BJTs)

vI – vO Transfer Function

VCC = 5 VRB = 10 kΩRC = 1 kΩβ = 50

Page 71: Chapter 6.  Bipolar Junction Transistors (BJTs)

sat

sat

1. If 0.2 V 5 V

2. 0.7 V

3. Transistor in active region

1 50 V/V

10

4. Edge of saturation

I OL CE O OH CC

IL

IL I IH

o C Cv

i B B

I IH

CC CE

CB

v V V v V V

V

V v V

v R RA

v r R R

v V

V V

RI

sat

sat

forced

0.096 mA

1.66 V

5. 5 V

4.8 11 50

0.43

6. 5 1.66 3.44 V

0.7 0.2 0.5 V

CC CE

C

IH B B BE

I OH

CC CE

C

OH BE

B

H OH IH

L IL OL

V V

R

V I R V

v V

V V

RV V

R

NM V V

NM V V