Bipolar Junction Transistors (BJTs) - nanoHUBBJTs.pdf · Bipolar Junction Transistors (BJTs)...

21
Notes for ECE-606: Spring 2013 Bipolar Junction Transistors (BJTs) Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA [email protected] 1 3/21/13 2 Reversve biased PN junction Fig. 6.9, Semiconductor Device Fundamentals, R.F. Pierret Current is small

Transcript of Bipolar Junction Transistors (BJTs) - nanoHUBBJTs.pdf · Bipolar Junction Transistors (BJTs)...

  • Lundstrom ECE-606 S13

    Notes for ECE-606: Spring 2013

    Bipolar Junction

    Transistors (BJTs)

    Professor Mark Lundstrom Electrical and Computer Engineering

    Purdue University, West Lafayette, IN USA [email protected]

    1 3/21/13

    2

    Reversve biased PN junction

    Fig. 6.9, Semiconductor Device Fundamentals, R.F. Pierret

    Current is small

  • 3

    PN junction in reverse bias

    Lundstrom ECE-606 S13

    Fp

    EC

    Fn

    EV

    hf > EG

    Large currents can flow when there are excess minority carriers on the P-side (or N-side).

    4

    excess carriers another way

    Lundstrom ECE-606 S13

    FpEC

    FnEV

    Fn VBE > 0

    p0P ≈ NA

    Fp

    E

    C B

    VCB > 0

  • 25

    generic transistor

    Lundstrom ECE-606 S13

    I1

    3

    V32

    ΔI1 = gmΔV32

    gm =∂I1∂V32 V12

    1

    I2

    6

    BJT

    Lundstrom ECE-606 S13

    IC

    VBE

    ΔIC = gmΔVBE

    gm =∂IC∂VBE VCE

    IE

    E

    C

    B VCE

    VCB =VCE −VBE

  • 7

    invention of the transistor

    1926

    C.T. Sah, “Evolution of the Field-Effect Transistor – From Conception to VLSI,” Proc. IEEE, 76, 1280, 1988

    8

    “discovery” of the bipolar transistor

    0http://www.porticus.org/bell/images/transistor1.jpg

  • 9

    inventors of the bipolar transistor

    http://en.wikipedia.org/wiki/File:Bardeen_Shockley_Brattain_1948.JPG

    NPN bipolar transistor

    10

    IC

    IB VCE

    VBE

    VCB

    IE

    IB + IC = IE

    VBE +VCB = VCE

    KCL:

    KVL:

  • NPN bipolar transistor

    11

    IC

    IB VCE

    VBE

    VCB

    IE n+ emitter

    p base

    n collector

    n+

    C

    B

    E

    transistor structures

    12

    n+ emitter

    p base

    n collector

    n+

    p base n-collector

    n+

    n+

    double

    diffused

    BJT

  • common base (active region)

    13

    IC

    IB VCE

    VBE

    VCB

    IE

    IC

    VCBVEB IB

    IE

    BE: FB BC: RB

    VEB < 0VCB > 0

    common emitter (active region)

    14

    IC

    IB VCE

    VBE

    VCB

    IE

    BE: FB BC: RB

    VBE > 0VCB = VCE −VBE > 0

    IC

    IB VCE

    IEVBE

  • BJT operation: active region

    15 15

    n+ emitter

    p base

    n collector

    n+

    FB RB

    1) energy band diagram

    BJT operation: active region currents

    16 16

    n+ emitter

    p base

    n collector

    n+

    FB RB IE IC

    IB

    IEn

    IEpIE = IEn + IEp

    ICn

    ICp

    ICn ≈ IEn >> ICp

    IC ≈ IEn

    IB ≈ IEp

    (neglect base recombination)

    2) currents

  • BJT operation: active region

    17 17

    n+ emitter

    p base

    n collector

    n+

    FB RB IE ICIEn

    IEpIE = IEn + IEp

    IEn

    IC ≈ IEn

    IB = IEp

    3) Boundary conditions at the beginning and end of the base.

    BJT operation: active region

    18

    18 xp

    x

    Δn x( )

    WB+xp

    n+ emitter

    p base

    n collector

    n+

    FB RB IE ICIEn

    IEpIE = IEn + IEp

    IEn

    IC ≈ IEn

    IB = IEp

    Δn(0) = ni2

    NAB

    ⎛⎝⎜

    ⎞⎠⎟eqVBE kBT −1( )

    Δn(WB + xp ) =ni2

    NAB

    ⎛⎝⎜

    ⎞⎠⎟eqVBC kBT −1( )

  • base diffusion current

    19

    0 x

    Δn x( ) Δn 0( )

    WB

    Δn WB( ) ≈ 0Δn(0) = ni

    2

    NAB

    ⎛⎝⎜

    ⎞⎠⎟eqVBE kBT −1( )

    IEn = qAEni2

    NAB

    ⎛⎝⎜

    ⎞⎠⎟DnWB

    eqVBE /kBT −1( )

    IEn

    IEn = −qAEDndn(x)dx

    = qAEDnΔn(0)WB

    BJT operation: beta

    20 20

    n+ emitter

    p base

    n collector

    n+

    FB RB IE ICIEn

    IEpIE = IEn + IEp

    ICn

    IC ≈ IEn

    IB = IEp

    IEn = qAEni2

    NAB

    ⎛⎝⎜

    ⎞⎠⎟DnWB

    eqVBE /kBT −1( ) ≈ IC

    IEp = qAEni2

    NDE

    ⎛⎝⎜

    ⎞⎠⎟DpWE

    eqVBE /kBT −1( ) ≈ IBβ = IC

    IB=NDENAE

    DnDp

    WEWB

  • BJT operation: transconductance

    21

    21

    n+ emitter

    p base

    n collector

    n+

    FB RB IE ICIEn

    IEpIE = IEn + IEp

    IEn

    IC ≈ IEn

    IB = IEp

    IC = qAEni2

    NAB

    ⎛⎝⎜

    ⎞⎠⎟DnWB

    eqVBE /kBT −1( )= IC0 e

    qVBE /kBT −1( )

    gm =∂IC∂VBE

    =IC

    kBT q( )

    gm =ID

    VGS −VT( )

    BJT operation: gamma

    22 22

    n+ emitter

    p base

    n collector

    n+

    FB RB IE ICIEn

    IEpIE = IEn + IEp

    IEn

    IC ≈ IEn

    IB = IEp

    IEn = qAEni2

    NAB

    ⎛⎝⎜

    ⎞⎠⎟DnWB

    eqVBE /kBT −1( ) ≈ IC

    IEp = qAEni2

    NDE

    ⎛⎝⎜

    ⎞⎠⎟DpWE

    eqVBE /kBT −1( ) ≈ IBγ = IEn

    IEn + IEp< 1

  • BJT operation: base transport factor

    23 23

    n+ emitter

    p base

    n collector

    n+

    FB RB IE ICIEn

    IEpIE = IEn + IEp

    ICn

    IC ≈ IEn

    IB = IEp

    IEn = qAEni2

    NAB

    ⎛⎝⎜

    ⎞⎠⎟DnWB

    eqVBE /kBT −1( )

    IEp = qAEni2

    NDE

    ⎛⎝⎜

    ⎞⎠⎟DpWE

    eqVBE /kBT −1( ) ≈ IB

    ICn = αT IEn ≈ IC

    BJT operation: IE and IC

    24 24

    n+ emitter

    p base

    n collector

    n+

    FB RB IE ICIEn

    IEpIE = IEn + IEp

    ICn

    IC ≈ IEn

    IB = IEp

    ICn = αT IEn = IC

    γ = IEnIEn + IEp

    =IEnIE

    IC = αT IEn = αTγ IE = αdcIE

    IB = IE − IC = IC β

    IC = αdcIE

    αdc = αTγ

    β = αdc1−αdc

  • common emitter (active region)

    25

    IC

    IB VCE

    VBE

    VCB

    IE

    IC = βIB

    IB VCE >VBE

    IE = β +1( ) IB

    VBE > 0

    IV characteristics

    Gummel plot

    26

    log J( )

    VBE

    JC = JC0 eqVBE /kBT −1( )

    JB = JB0 eqVBE /nkBT −1( )

  • NPN bipolar transistor

    27

    BE: FB BC: RB

    VBE > 0VCB = VCE −VBE > 0

    IC

    IB VCE

    IEVBE

    Pierret, Fig. 10.4

    active saturation

    cut-off inverted active

    BJT operation: active region

    28

    28

    xp x

    Δn x( )

    WB+xp

    Δn(0) = ni2

    NAB

    ⎛⎝⎜

    ⎞⎠⎟eqVBE kBT −1( )

    Δn(WB + xp ) =ni2

    NAB

    ⎛⎝⎜

    ⎞⎠⎟eqVBC kBT −1( )

    Δn(WB + xp ) ≈ 0Pierret, Fig. 10.4

    active saturation

    cut-off inverted active

    VBE > 0

    VCB > 0

  • BJT operation: saturation region

    29

    29

    xp x

    Δn x( )

    WB+xp

    Δn(0) = ni2

    NAB

    ⎛⎝⎜

    ⎞⎠⎟eqVBE kBT −1( )

    Δn(WB + xp ) =ni2

    NAB

    ⎛⎝⎜

    ⎞⎠⎟eqVBC kBT −1( )

    Δn(WB + xp ) >> 0Pierret, Fig. 10.4

    active saturation

    cut-off inverted active

    VBE > 0VCB < 0

    BJT operation: cut-off region

    30

    30

    xp x

    Δn x( )

    WB+xp

    Δn(0) = ni2

    NAB

    ⎛⎝⎜

    ⎞⎠⎟eqVBE kBT −1( )

    Δn(WB + xp ) =ni2

    NAB

    ⎛⎝⎜

    ⎞⎠⎟eqVBC kBT −1( )

    Pierret, Fig. 10.4

    active saturation

    cut-off inverted active

    VBE ≤ 0

    VCB ≥ 0

  • BJT operation: inverted active region

    31

    31

    xp x

    Δn x( )

    WB+xp

    Δn(0) = ni2

    NAB

    ⎛⎝⎜

    ⎞⎠⎟eqVBE kBT −1( ) ≈ 0

    Δn(WB + xp ) =ni2

    NAB

    ⎛⎝⎜

    ⎞⎠⎟eqVBC kBT −1( )

    Δn(WB + xp ) >> 0 Pierret, Fig. 10.4

    active saturation

    cut-off inverted active

    VBE ≤ 0VCB < 0

    NPN bipolar transistor (active region)

    32

    1)  Base recombination (base transport factor)

    2)  Speed (frequency response)

    3)  Base width modulation (Early effect)

    4)  Typical doping profiles

    5)  Kirk effect

  • base recombination

    33

    0 x

    Δn x( )

    Δn 0( )

    WB

    Δn WB( ) ≈ 0

    IEn

    quasi-neutral base

    ICn ≈ IEn

    IEn − ICn ≈ AEqΔn 0( )WB

    2τ n

    IEn −αT IEn ≈ AEqΔn 0( )WB

    2τ n

    1−αT ≈AE

    qΔn 0( )WB2τ nIEn

    ⎜⎜⎜⎜

    ⎟⎟⎟⎟

    IEn = qAEDnΔn 0( )WB

    αT ≈ 1−12

    WBLn

    ⎛⎝⎜

    ⎞⎠⎟

    2

    speed (base transit time)

    34

    0 x

    Δn x( )

    Δn 0( )

    WB

    Δn WB( ) ≈ 0

    IEn

    quasi-neutral base

    ICn ≈ IEn

    IC = qAEDnΔn 0( )WB

    IC =QBtt

    QB =qΔn 0( )WB

    2

    tt =WB

    2

    2Dn

    fT =12πtt

  • effects of saturation on speed

    35 Pierret, Fig. 12.7

    Early effect (base width modulation)

    36

    BE: FB BC: RB

    VBE > 0VCB = VCE −VBE > 0

    IC

    IB VCE

    IEVBE

    Pierret, Fig. 10.4

    active saturation

    cut-off inverted active

    Why is there an output conductance (resistance)?

  • Early effect (base width modulation)

    37

    n+ emitter

    p base

    n collector

    n+

    FB RB IE ICIEn ICn

    IC ≈ IEn

    Width of the quasi-neutral base is what matters. Width of the CB depletion region depends on base doping, collector doping, and revers bias across the C-B junction.

    IC ∝ DnΔn 0( )WB

    typical doping profiles

    38 38

    n+ emitter

    p base

    n collector

    n+

    FB RB IEn

    IEp

    IEn ∝ni2

    NAB

    IEp ∝ni2

    NDE

    γ = IEnIEp + IEn

    ≈1

    1+ NABNDE

    ⎛⎝⎜

    ⎞⎠⎟

    Emitter must be doped more heavily than the base.

  • HBT

    39 39

    n+ emitter

    p base

    n collector

    n+

    FB RB

    EGE EGB EGC

    IEn

    IEp

    IEn ∝niB2

    NAB

    IEp ∝niE2

    NDE

    γ = IEnIEp + IEn

    ≈1

    1+ niE2

    niB2NABNDE

    ⎛⎝⎜

    ⎞⎠⎟

    Freedom to dope the base heavily

    collector doping

    40 40

    n+ emitter

    p base

    n coll

    n+

    FB RB IEn

    IEp

    ρ = qNDJC = qDnWB

    Δn 0( )

    JC = qnυsatn ≈ ND

    “base push out” Kirk effect

  • common base (active region)

    41

    IC

    IB VCE

    VBE

    VCB

    IE

    IC = αdcIE

    VCB > 0VEB < 0

    IE

    IB = IC β

    IV characteristics

    common base (active region)

    42

    IC

    VCBVEB IB

    IE

    BE: FB BC: RB

    VEB < 0VCB > 0

    Pierret, Fig. 10.4

    active

    cut-off

    saturation