Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf ·...

101
Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control Chapter 12 Current Programmed Control + Buck converter Current-programmed controller R v g (t) i s (t) + v(t) i L (t) Q 1 L C D 1 + Analog comparator Latch T s 0 S R Q Clock i s (t) R f Measure switch current i s (t)R f Control input i c (t)R f + v ref v(t) Compensator Conventional output voltage controller Switch current i s (t) Control signal i c (t) m 1 t 0 dT s T s on off Transistor status: Clock turns transistor on Comparator turns transistor off The peak transistor current replaces the duty cycle as the converter control input.

Transcript of Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf ·...

Page 1: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control

Chapter 12Current Programmed Control

+–

Buck converter

Current-programmed controller

Rvg(t)

is(t)

+

v(t)

iL(t)

Q1

L

CD1

+

Analogcomparator

Latch

Ts0

S

R

Q

Clock

is(t)

Rf

Measureswitch

current

is(t)Rf

Controlinput

ic(t)Rf

–+

vref

v(t)Compensator

Conventional output voltage controller

Switchcurrentis(t)

Control signalic(t)

m1

t0 dTs Ts

on offTransistor

status:

Clock turnstransistor on

Comparator turnstransistor off

The peak transistor currentreplaces the duty cycle as theconverter control input.

Page 2: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 2 Chapter 12: Current Programmed Control

Current programmed control vs. duty cycle control

Advantages of current programmed control:

• Simpler dynamics —inductor pole is moved to high frequency

• Simple robust output voltage control, with large phase margin,can be obtained without use of compensator lead networks

• It is always necessary to sense the transistor current, to protectagainst overcurrent failures. We may as well use theinformation during normal operation, to obtain better control

• Transistor failures due to excessive current can be preventedsimply by limiting ic(t)

• Transformer saturation problems in bridge or push-pullconverters can be mitigated

A disadvantage: susceptibility to noise

Page 3: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 3 Chapter 12: Current Programmed Control

Chapter 12: Outline

12.1 Oscillation for D > 0.5

12.2 A simple first-order model

Simple model via algebraic approach

Averaged switch modeling

12.3 A more accurate model

Current programmed controller model: block diagram

CPM buck converter example

12.4 Discontinuous conduction mode

12.5 Summary

Page 4: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 4 Chapter 12: Current Programmed Control

12.1 Oscillation for D > 0.5

• The current programmed controller is inherently unstable forD > 0.5, regardless of the converter topology

• Controller can be stabilized by addition of an artificial ramp

Objectives of this section:

• Stability analysis

• Describe artificial ramp scheme

Page 5: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 5 Chapter 12: Current Programmed Control

Inductor current waveform, CCM

iL(t)

ic

m1

t0 dTs Ts

iL(0) iL(Ts)– m2

buck converter

m1 =vg – v

L– m2 = – v

Lboost converter

m1 =vg

L– m2 =

vg – vL

buck–boost converter

m1 =vg

L – m2 = vL

Inductor current slopes m1and –m2

Page 6: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 6 Chapter 12: Current Programmed Control

Steady-state inductor current waveform, CPM

iL(t)

ic

m1

t0 dTs Ts

iL(0) iL(Ts)– m2

iL(dTs) = ic = iL(0) + m1dTs

d =ic – iL(0)

m1Ts

iL(Ts) = iL(dTs) – m2d'Ts

= iL(0) + m1dTs – m2d'Ts

First interval:

Solve for d:

Second interval:

0 = M 1DTs – M 2D'Ts

In steady state:

M 2

M 1

= DD'

Page 7: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 7 Chapter 12: Current Programmed Control

Perturbed inductor current waveform

iL(t)

ic

m1

t0 DTs Ts

IL0

– m2

– m2

m1 Steady-statewaveform

Perturbedwaveform

I L0 + iL(0)

dTs

D + d Ts

iL(0)iL(Ts)

Page 8: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 8 Chapter 12: Current Programmed Control

Change in inductor current perturbationover one switching period

iL(Ts)

ic

m1

– m2

– m2

m1Steady-statewaveform

Perturbedwaveform

dTs

iL(0)magnifiedview

iL(0) = – m1dTs

iL(Ts) = m2dTs

iL(Ts) = iL(0) –m2

m1

iL(Ts) = iL(0) – DD'

Page 9: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 9 Chapter 12: Current Programmed Control

Change in inductor current perturbationover many switching periods

iL(Ts) = iL(0) – DD'

iL(2Ts) = iL(Ts) – DD'

= iL(0) – DD'

2

iL(nTs) = iL((n – 1)Ts) – DD'

= iL(0) – DD'

n

iL(nTs) →0 when – D

D'< 1

∞ when – DD'

> 1

D < 0.5For stability:

Page 10: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 10 Chapter 12: Current Programmed Control

Example: unstable operation for D = 0.6

iL(t)

ic

t0 Ts

IL0

iL(0)

2Ts 3Ts 4Ts

– 1.5iL(0)

2.25iL(0)

– 3.375iL(0)

α = – DD'

= – 0.60.4

= – 1.5

Page 11: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 11 Chapter 12: Current Programmed Control

Example: stable operation for D = 1/3

α = – DD'

= – 1/32/3

= – 0.5

– 18

iL(0)

14

iL(0)– 1

2iL(0)

iL(t)

ic

t0 Ts

IL0

iL(0)

2Ts 3Ts 4Ts

116

iL(0)

Page 12: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 12 Chapter 12: Current Programmed Control

Stabilization via addition of an artificial rampto the measured switch current waveform

+–

Buck converter

Current-programmed controller

Rvg(t)

is(t)

+

v(t)

iL(t)

Q1

L

CD1

+

Analogcomparator

Latch

ia(t)RfTs0

S

R

Q

ma

Clock

is(t)

+ +

Rf

Measureswitch

current

is(t)Rf

Controlinput

ic(t)Rf

Artificial ramp

ia(t)

ma

t0 Ts 2Ts

Now, transistor switches offwhen

ia(dTs) + iL(dTs) = ic

or,

iL(dTs) = ic – ia(dTs)

Page 13: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 13 Chapter 12: Current Programmed Control

Steady state waveforms with artificial ramp

iL(dTs) = ic – ia(dTs)

iL(t)

ic

m1

t0 dTs Ts

IL0

– m2

– ma

(ic – ia(t))

Page 14: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 14 Chapter 12: Current Programmed Control

Stability analysis: perturbed waveform

– maiL(Ts)

i L(0)

ic

m1

t0 DTs Ts

IL0

– m2– m2

m1 Steady-statewaveform

Perturbedwaveform

I L0 + iL(0)

dTs

D + d Ts

(ic – ia(t))

Page 15: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 15 Chapter 12: Current Programmed Control

Stability analysis: change in perturbationover complete switching periods

iL(0) = – dTs m1 + ma

iL(Ts) = – dTs ma – m2

iL(Ts) = iL(0) –m2 – ma

m1 + ma

iL(nTs) = iL((n –1)Ts) –m2 – ma

m1 + ma= iL(0) –

m2 – ma

m1 + ma

n

= iL(0) αn

α = –m2 – ma

m1 + maiL(nTs) →

0 when α < 1

∞ when α > 1

First subinterval:

Second subinterval:

Net change over one switching period:

After n switching periods:

Characteristic value:

Page 16: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 16 Chapter 12: Current Programmed Control

The characteristic value α

• For stability, require | α | < 1

• Buck and buck-boost converters: m2 = – v/L

So if v is well-regulated, then m2 is also well-regulated

• A common choice: ma = 0.5 m2

This leads to α = –1 at D = 1, and | α | < 1 for 0 ≤ D < 1.

The minimum α that leads to stability for all D.

• Another common choice: ma = m2

This leads to α = 0 for 0 ≤ D < 1.

Deadbeat control, finite settling time

α = –1 –

mam2

D'D

+mam2

Page 17: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 17 Chapter 12: Current Programmed Control

Sensitivity to noise

iL(t)

ic

t0 DTs Ts

Steady-statewaveform

Perturbedwaveform

dTs

(D + d)Ts

ic

With small ripple: a small amount of noise in the control current icleads to a large perturbation in the duty cycle.

Page 18: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 18 Chapter 12: Current Programmed Control

Artificial rampreduces sensitivity to noise

iL(t)

ic

t0 DTs Ts

Steady-statewaveform

Perturbedwaveform

dTs

(D + d )Ts

ic

Artificialramp

The same amount of noise in the control current ic leads to a smallerperturbation in the duty cycle, because the gain has been reduced.

Page 19: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 19 Chapter 12: Current Programmed Control

12.2 A Simple First-Order Model

Compensator

+–

+–

R

+

v(t)

vg(t)

Currentprogrammed

controller

d(t) Convertervoltages andcurrents

Switching converter

vref

ic(t) v(t)

Page 20: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 20 Chapter 12: Current Programmed Control

The first-order approximation

iL(t) Ts= ic(t)

• Neglects switching ripple and artificial ramp

• Yields physical insight and simple first-order model

• Accurate when converter operates well into CCM (so that switchingripple is small) and when the magnitude of the artificial ramp is nottoo large

• Resulting small-signal relation:

iL(s) ≈ ic(s)

Page 21: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 21 Chapter 12: Current Programmed Control

12.2.1 Simple model via algebraic approach:CCM buck-boost example

+– L C R

+

v(t)

vg(t)

Q1 D1

iL(t)

iL(t)

ic

t0 dTs Ts

vg

L

vL

Page 22: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 22 Chapter 12: Current Programmed Control

Small-signal equations of CCM buckÐboost,duty cycle control

Ld iL(t)

dt= Dvg(t) + D'v(t) + Vg – V d(t)

Cdv(t)

dt= – D'iL –

v(t)R + ILd(t)

ig(t) = DiL + ILd(t)

Derived in Chapter 7

Page 23: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 23 Chapter 12: Current Programmed Control

Transformed equations

Take Laplace transform, letting initial conditions be zero:

sLiL(s) = Dvg(s) + D'v(s) + Vg – V d(s)

sCv(s) = – D'iL(s) –v(s)R + ILd(s)

ig(s) = DiL(s) + ILd(s)

Page 24: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 24 Chapter 12: Current Programmed Control

The simple approximation

Now let

iL(s) ≈ ic(s)

Eliminate the duty cycle (now an intermediate variable), to express theequations using the new control input iL. The inductor equationbecomes:

sLic(s) ≈ Dvg(s) + D'v(s) + Vg – V d(s)

Solve for the duty cycle variations:

d(s) =sLic(s) – Dvg(s) – D'v(s)

Vg – V

Page 25: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 25 Chapter 12: Current Programmed Control

The simple approximation, continued

Substitute this expression to eliminate the duty cycle from theremaining equations:

sCv(s) = – D'ic(s) –v(s)R + IL

sLic(s) – Dvg(s) – D'v(s)

Vg – V

ig(s) = Dic(s) + IL

sLic(s) – Dvg(s) – D'v(s)

Vg – V

Collect terms, simplify using steady-state relationships:

sCv(s) = sLDD'R

– D' ic(s) – DR + 1

R v(s) – D2

D'Rvg(s)

ig(s) = sLDD'R

+ D ic(s) – DR v(s) – D2

D'Rvg(s)

Page 26: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 26 Chapter 12: Current Programmed Control

Construct equivalent circuit: input port

D2

D'Rvg

+– – D'R

D2 D 1 + sLD'R

ic

DR

v

ig

vg

ig(s) = sLDD'R

+ D ic(s) – DR

v(s) – D2

D'Rvg(s)

Page 27: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 27 Chapter 12: Current Programmed Control

Construct equivalent circuit: output port

sCv(s) = sLDD'R

– D' ic(s) – DR

+ 1R

v(s) – D2

D'Rvg(s)

RD' 1 – sLDD'2R

ic

DR

v

D2

D'Rvg

RD

sCv vR

C

Node

Page 28: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 28 Chapter 12: Current Programmed Control

CPM Canonical Model, Simple Approximation

+–

ig

vg RCr1f1(s) i c g1 v g2 vg f2(s) i c r2 v

+

Page 29: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 29 Chapter 12: Current Programmed Control

Table of results for basic converters

Tabl e 12.1 Current programmed mode small-signal equivalent circuit parameters, simple model

Converter g1 f1 r1 g2 f2 r2

Buck DR

D 1 + sLR

– RD2 0 1 ∞

Boost 0 1 ∞ 1D'R

D' 1 – sLD'2R R

Buck-boost – DR

D 1 + sLD'R

– D'RD2 – D2

D'R – D' 1 – sDL

D'2R R

D

Page 30: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 30 Chapter 12: Current Programmed Control

Transfer functions predicted by simple model

+–

ig

vg RCr1f1(s) i c g1 v g2 vg f2(s) i c r2 v

+

Gvc(s) =v(s)ic(s)

vg = 0

= f2 r2 || R || 1sC

Gvc(s) = – R D'1 + D

1 – s DLD'2R

1 + s RC1 + D

Control-to-output transferfunction

Result for buck-boostexample

Page 31: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 31 Chapter 12: Current Programmed Control

Transfer functions predicted by simple model

+–

ig

vg RCr1f1(s) i c g1 v g2 vg f2(s) i c r2 v

+

Line-to-output transferfunction

Result for buck-boostexample

Gvg(s) =v(s)vg(s)

i c = 0

= g2 r2 || R || 1sC

Gvg(s) = – D2

1 – D21

1 + s RC1 + D

Page 32: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 32 Chapter 12: Current Programmed Control

Transfer functions predicted by simple model

+–

ig

vg RCr1f1(s) i c g1 v g2 vg f2(s) i c r2 v

+

Output impedance

Result for buck-boostexample

Zout(s) = r2 || R || 1sC

Zout(s) = R1 + D

1

1 + s RC1 + D

Page 33: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 33 Chapter 12: Current Programmed Control

12.2.2 Averaged switch modelingwith the simple approximation

+–

L

C R

+

v(t)

vg(t)

iL(t)

+

v2(t)

i1(t) i2(t)

Switch network

+

v1(t)

v2(t) Ts= d(t) v1(t) Ts

i1(t) Ts= d(t) i2(t) Ts

Averaged terminal waveforms,CCM:

The simple approximation:

i2(t) Ts≈ ic(t) Ts

Page 34: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 34 Chapter 12: Current Programmed Control

CPM averaged switch equations

v2(t) Ts= d(t) v1(t) Ts

i1(t) Ts= d(t) i2(t) Ts

i2(t) Ts≈ ic(t) Ts

Eliminate duty cycle:

i1(t) Ts= d(t) ic(t) Ts

=v2(t) Ts

v1(t) Ts

ic(t) Ts

i1(t) Tsv1(t) Ts

= ic(t) Tsv2(t) Ts

= p(t)Ts

So:

• Output port is a current source

• Input port is a dependent power sink

Page 35: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 35 Chapter 12: Current Programmed Control

CPM averaged switch model

+–

L

C R

+

⟨v(t)⟩Ts

⟨vg(t)⟩Ts

⟨iL(t)⟩Ts

+

⟨v2(t)⟩Ts

⟨i1(t)⟩Ts⟨i2(t)⟩Ts

Averaged switch network

+

⟨v1(t)⟩Ts

⟨ic(t)⟩Ts

⟨ p(t)⟩Ts

Page 36: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 36 Chapter 12: Current Programmed Control

Results for other converters

+–

L

C R

+

⟨v(t)⟩Ts

⟨vg(t)⟩Ts

⟨iL(t)⟩Ts

Averaged switch network

⟨ic(t)⟩Ts

⟨ p(t)⟩Ts

+–

L

C R

+

⟨v(t)⟩Ts

⟨vg(t)⟩Ts

⟨iL(t)⟩Ts

Averaged switch network

⟨ic(t)⟩Ts

⟨ p(t)⟩Ts

Boost

Buck-boost

Page 37: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 37 Chapter 12: Current Programmed Control

Perturbation and linearizationto construct small-signal model

v1(t) Ts= V1 + v1(t)

i1(t) Ts= I1 + i1(t)

v2(t) Ts= V2 + v2(t)

i2(t) Ts= I2 + i2(t)

ic(t) Ts= Ic + ic(t)

Let

V1 + v1(t) I1 + i1(t) = Ic + ic(t) V2 + v2(t)

Resulting input port equation:

Small-signal result:

i1(t) = ic(t)V2

V1

+ v2(t)Ic

V1

– v1(t)I1

V1

Output port equation:

î2 = îc

Page 38: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 38 Chapter 12: Current Programmed Control

Resulting small-signal modelBuck example

+–

L

C R

+

+

Switch network small-signal ac model

+

vg –V1

I1

i1 i2

i cV2

V1i c

v1 v2Ic

V1

v2 v

i1(t) = ic(t)V2

V1

+ v2(t)Ic

V1

– v1(t)I1

V1

Page 39: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 39 Chapter 12: Current Programmed Control

Origin of input port negative incremental resistance

Quiescentoperating

point

Power sourcecharacteristic

⟨i1(t)⟩Ts

⟨v1(t)⟩Ts

⟨v1(t)⟩Ts ⟨i1(t)⟩Ts

= ⟨ p(t)⟩Ts

1r1

= –I1

V1

V1

I1

Page 40: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 40 Chapter 12: Current Programmed Control

Expressing the equivalent circuit in terms of theconverter input and output voltages

+–

L

C R

+

vg ic v– D2

RDR

vic D 1 + sLR

ig iL

i1(s) = D 1 + s LR ic(s) + D

Rv(s) – D2

Rvg(s)

Page 41: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 41 Chapter 12: Current Programmed Control

Predicted transfer functions of the CPM buck converter

+–

L

C R

+

vg ic v– D2

RDR

vic D 1 + sLR

ig iL

Gvc(s) =v(s)ic(s)

vg = 0

= R || 1sC

Gvg(s) =v(s)vg(s)

i c = 0

= 0

Page 42: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 42 Chapter 12: Current Programmed Control

12.3 A More Accurate Model

l The simple models of the previous section yield insight into the low-frequency behavior of CPM converters

l Unfortunately, they do not always predict everything that we need toknow:

Line-to-output transfer function of the buck converterDynamics at frequencies approaching fs

l More accurate model accounts for nonideal operation of current modecontroller built-in feedback loop

l Converter duty-cycle-controlled model, plus block diagram thataccurately models equations of current mode controller

l Simulation of current mode control

l Comparison of performance: duty-cycle control vs. current-modecontrol

Page 43: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 43 Chapter 12: Current Programmed Control

12.3.1 Current programmed controller model

iL(t)

ic

m1

t0 dTs Ts

– m2

– ma

⟨iL(t)⟩Ts = d⟨iL(t)⟩dTs

+ d'⟨iL(t)⟩d'Ts

⟨iL(t)⟩d'Ts⟨iL(t)⟩dTs

(ic – ia(t))

madTs

m1dTs

2m2d'Ts

2

iL(t) Ts= ic(t) Ts

– madTs – dm1dTs

2– d'

m2d'Ts

2

= ic(t) Ts– madTs – m1

d 2Ts

2– m2

d'2Ts

2

Page 44: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 44 Chapter 12: Current Programmed Control

Perturb

iL(t) Ts= IL + iL(t)

ic(t) Ts= Ic + ic(t)

d(t) = D + d(t)m1(t) = M 1 + m1(t)m2(t) = M 2 + m2(t)

Let

buck converter

m1 =vg – v

Lm2 = v

Lboost converter

m1 =vg

Lm2 =

v – vg

Lbuck-boost converter

m1 =vg

L m2 = – vL

Note that it is necessary toperturb the slopes, since thesedepend on the applied inductorvoltage. For basic converters,

It is assumed that theartificial ramp slope doesnot vary.

Page 45: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 45 Chapter 12: Current Programmed Control

Linearize

IL + iL(t) = Ic + ic(t) – MaTs D + d(t) – M 1 + m1(t) D + d(t)2 Ts

2

– M 2 + m2(t) D' – d(t)2 Ts

2

The first-order ac terms are

iL(t) = ic(t) – MaTs + DM 1Ts – D'M 2Ts d(t) –D2Ts

2m1(t) –

D'2Ts

2m2(t)

Simplify using dc relationships:

iL(t) = ic(t) – MaTsd(t) –D2Ts

2m1(t) –

D'2Ts

2m2(t)

Solve for duty cycle variations:

d(t) = 1MaTs

ic(t) – iL(t) –D2Ts

2m1(t) –

D'2Ts

2m2(t)

Page 46: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 46 Chapter 12: Current Programmed Control

Equation of the current programmed controller

The expression for the duty cycle is of the general form

d(t) = Fm ic(t) – iL(t) – Fgvg(t) – Fvv(t)

Table 12.2. Current programmed control ler gains for basic converters

Converter Fg Fv

Buck D2Ts

2L 1 – 2D Ts

2L

Boost 2D – 1 Ts

2L D'2Ts

2L

Buck-boost D2Ts

2L –D'2Ts

2L

Fm = 1/MaTs

Page 47: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 47 Chapter 12: Current Programmed Control

Block diagram of the current programmed controller

d(t) = Fm ic(t) – iL(t) – Fgvg(t) – Fvv(t)

+–

+––

Fm

Fg Fv

v

ic

vg

d

iL

• Describes the duty cyclechosen by the CPMcontroller

• Append this blockdiagram to the duty cyclecontrolled convertermodel, to obtain acomplete CPM systemmodel

Page 48: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 48 Chapter 12: Current Programmed Control

CPM buck converter model

+–

+––

Fm

Fg Fv

v

ic

vg

d

iL

+– I d(t)vg(t)

+–

LVg d(t)

+

v(t)

RC

1 : D

i L(t)

Tv

Ti

Page 49: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 49 Chapter 12: Current Programmed Control

CPM boost converter model

+–

+––

Fm

Fg Fv

v

ic

vg

d

iL

Tv

Ti

+–

L

C Rvg(t)

i L(t) +

v(t)

+–

V d(t)

I d(t)

D' : 1

Page 50: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 50 Chapter 12: Current Programmed Control

CPM buck-boost converter model

+–

+––

Fm

Fg Fv

v

ic

vg

d

iL

Tv

Ti

+– I d(t)vg(t)

+–

LVg – V d(t)

+

v(t)

RCI d(t)

1 : D D' : 1

i L(t)

Page 51: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 51 Chapter 12: Current Programmed Control

12.3.2 Solution of the CPM transfer functions

v(s) = Gvd(s)d (s) + Gvg(s)vg(s)

In the models of the previous slides, the output voltage v can be

expressed via superposition as a function of d and vg, through theduty-cycle controlled transfer functions Gvd(s) and Gvg(s):

In a similar manner, the inductor current iL can be expressed via

superposition as a function of d and vg, by defining the transferfunctions Gid(s) and Gig(s):

i L(s) = Gid(s)d (s) + Gig(s)vg(s)

Gid(s) =i L(s)d (s)

vg(s) = 0

Gig(s) =i L(s)vg(s)

d(s) = 0

with

Page 52: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 52 Chapter 12: Current Programmed Control

System block diagram

+–+– –ic Fm

CPMcontrollermodel

d

Gvd(s)

Gid(s)

Gvg(s)

Gig(s)

++

++

v

iL

vg

Converter transfer functions

Fv

Fg

Page 53: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 53 Chapter 12: Current Programmed Control

Solution of block diagram

Solve block diagram for d:

d =Fm

1 + FmGid

i c – Gig + Fg v g – Fvv

Substitute into expression for v:

v =FmGvd

1 + FmGid

i c – Gig + Fg v g – Fvv + Gvgv g

Solve for v:

v =FmGvd

1 + Fm Gid + FvGvd

i c +Gvg – FmFgGvd + Fm GvgGid – GigGvd

1 + Fm Gid + FvGvd

v g

Page 54: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 54 Chapter 12: Current Programmed Control

ResultsTransfer functions with current-mode control

Gvc(s) =v(s)i c(s)

v g(s) = 0

=FmGvd

1 + Fm Gid + FvGvd

Gvg-cpm(s) =v(s)v g(s)

i c(s) = 0

=Gvg – FmFgGvd + Fm GvgGid – GigGvd

1 + Fm Gid + FvGvd

Control-to-output transfer function:

Line-to-output transfer function:

Page 55: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 55 Chapter 12: Current Programmed Control

12.3.3 Discussion

The “more accurate” controller model accounts for the differencesbetween iL and ic that arise by two mechanisms:

• Inductor current ripple

• Artificial ramp

+–

+––

Fm

Fg Fv

v

ic

vg

d

iL

Fg and Fv blocks model small-signal effects of inductor currentripple: how the differencebetween iL and ic varies withapplied voltages.

For operation deep in CCM, rippleis small— Fg and Fv blocks canthen be ignored.

Page 56: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 56 Chapter 12: Current Programmed Control

Effect of artificial ramp

+–

+––

Fm

Fg Fv

v

ic

vg

d

iL

• Artificial ramp also causes inductorcurrent to differ from ic

• Fm block models effect of artificialramp. Fm varies inversely with Ma,and becomes infinite with zero Ma

• With zero Ma, the input to the Fm

block tends to zero. The controllerblock diagram then predicts that

dFm

= 0 = i c – i L – Fgvg – Fvv

With negligible inductor current ripple, Fg and Fv

blocks go to zero. The model then predicts

0 = i c – i L

which coincides with the ideal model of Section 12.2

Page 57: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 57 Chapter 12: Current Programmed Control

Ideal limiting case

Gvc(s) =v(s)i c(s) v g(s) = 0

=FmGvd

1 + Fm Gid + FvGvd

General expression for control-to-output transfer function:

In the limit when Fm 0, Fg 0, Fv 0, then the control-to-outputtransfer function reduces to the following:

limFm → ∞Fg → 0

Fv → 0

Gvc(s) =Gvd

Gid

and the line-to-output transfer function reduces to:

limFm → ∞Fg → 0

Fv → 0

Gvg-cpm(s) =GvgGid – GigGvd

Gid

These expressions coincide with the transfer functions predicted bythe ideal model of Section 12.2.

Page 58: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 58 Chapter 12: Current Programmed Control

Large artificial rampDuty-cycle control

In the extreme case of a very large artificial ramp, the controllerdegenerates to duty-cycle control. For large Ma (small Fm) and for Fg

0 and Fv 0, the control-to-output transfer function reduces to

limsmall FmFv → 0Fg → 0

Gvc(s) = FmGvd(s) (current-mode controller becomes pulse-width modulator having gain Fm, and duty-cycle controller gain Gvd(s) is obtained)

For large Ma (small Fm) and for Fg 0 and Fv 0, the line-to-outputtransfer function reduces to

limFm → ∞Fg → 0

Fv → 0

Gvg-cpm(s) = Gvg (the duty-cycle controller gain Gvg(s) isobtained)

Page 59: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 59 Chapter 12: Current Programmed Control

12.3.4 Evaluation of transfer functionsBuck converter example

• Evaluate general result for the buck converter

• Need to evaluate Gvd, Gvg, Gid, Gig

Control-to-outputtransfer function

Gvc(s)

Line-to-outputtransfer function

Gvg-cpm(s)

Ideal currentmode control

Duty cyclecontrolGeneral result

vi c

= R1 + sRC

vvg

= 0

Gvd(s) = VD

11 + s L

R + s2LC

Gvg(s) = D 11 + s L

R + s2LC

FmGvd

1 + Fm Gid + FvGvd

Gvg – FmFgGvd + Fm GvgGid – GigGvd

1 + Fm Gid + FvGvd

Page 60: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 60 Chapter 12: Current Programmed Control

Buck converter modelTransfer functions Gvd, Gvg, Gid, Gig

+–

+–

L

RC

1 : D

Id (t)

+

v(t)

vg(t)

i(t)

Vgd (t)

Gvd(s) = VD

1den(s) Gvg(s) = D 1

den(s)

den(s) = 1 + s LR + s2LC

Gid(s) = VDR

1 + sRC

den(s)Gig(s) = D

R1 + sRC

den(s)

Analyze model to find:

All transfer functions of a given circuit have the same poles:

Page 61: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 61 Chapter 12: Current Programmed Control

Control-to-output transfer function Gvc(s)

Gvc(s) =FmGvd

1 + Fm Gid + FvGvd

=Fm

VD

1den(s)

1 + FmV

DR1 + sRCden(s)

+ FvVD

1den(s)

Substitute into expression for Gvc(s):

Algebra:

Gvc(s) =Fm

VD

den(s) +FmVDR 1 + sRC + FmFv

VD

Gvc(s) =Gc0

1 + sQcωc

+ sωc

2

Page 62: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 62 Chapter 12: Current Programmed Control

Summary of results for buck converter

Simple model Duty cycle controlled gainsvi c

= R1 + sRC

Gvd(s) = VD

1den(s)

Gid(s) = VDR

1 + sRCden(s)

vv g

= 0 Gvg(s) = D 1den(s)

Gig(s) = DR

1 + sRCden(s)

den(s) = 1 + s LR + s2LC

More accurate model

vi c

= Gvc(s) = Gc01

1 + sQcωc

+ sωc

2 Gc0 = VD

Fm

1 +FmVDR +

FmFvVD

ωc = 1LC

1 +FmVDR +

FmFvVD Qc = R C

L

1 +FmVDR +

FmFvVD

1 +RCFmV

DL

vv g

= Gvg-cpm(s) = Gg01

1 + sQcωc

+ sωc

2 Gg0 = D

1 –FmFgV

D2

1 +FmVDR +

FmFvVD

Page 63: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 63 Chapter 12: Current Programmed Control

Effect of current programmingon Q-factor of poles

Qc = R CL

1 +FmVDR +

FmFvVD

1 +RCFmV

DL

• Expressed above as duty-cycle control result, multiplied by a factorthat accounts for current programming

• Current programming tends to reduce the Q-factor

• For large Fm (small Ma), Qc varies as Fm–1/2

• If the artificial ramp is not too large, then poles become real and wellseparated

Page 64: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 64 Chapter 12: Current Programmed Control

The low-Q approximation:Low-frequency pole

Apply the low-Q approximation (Section 8.1.7) to factor the poles, forthe case of large F m:

Low-frequency pole becomes

Qcωc = RL

1 +FmVDR +

FmFvVD

1 +RCFmV

DL

For large F m and small F v, this can be further approximated as:

Qcωc ≈ 1RC

which coincides with the prediction of the ideal CPM model.

Page 65: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 65 Chapter 12: Current Programmed Control

The low-Q approximation:High-frequency pole

ωc

Qc

= 1RC 1 +

RCFmVDL

The low-Q approximation predicts that the high-frequency pole is

For large F m, this can be further approximated as:

ωc

Qc

≈ FmVDL = fs

M 2DM a

The high-frequency pole is typically predicted to lie near to, or greaterthan, the switching frequency fs.

It should be pointed out that the converter switching and modulatorsampling processes lead to discrete-time phenomena that affect thehigh-frequency behavior of the converter, and are not predicted bycontinuous-time averaged analyses such as this one. So this model isvalid only at frequencies sufficiently less than fs /2

Page 66: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 66 Chapter 12: Current Programmed Control

Line-to-output transfer function Gvg-cpm(s)

General expression:

Gvg-cpm(s) =v(s)v g(s)

i c(s) = 0

=Gvg – FmFgGvd + Fm GvgGid – GigGvd

1 + Fm Gid + FvGvd

Note that, for an ideal CPM buck converter, this transfer function isequal to zero, and is given by

limFm → ∞Fg → 0

Fv → 0

Gvg-cpm(s) =GvgGid – GigGvd

Gid

Therefore, (GvgGid – GvdGig) = 0 and the general expression reduces to

Gvg-cpm(s) =Gvg – FmFgGvd + Fm 0

1 + Fm Gid + FvGvd

Page 67: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 67 Chapter 12: Current Programmed Control

Line-to-output transfer function Gvg-cpm(s)(continued)

Substitute expressions:

Gvg-cpm(s) =

Dden(s)

– FmFgVD

1den(s)

1 + FmV

DR1 + sRCden(s)

+ FvVD

1den(s)

Simplify, then write in normalized form:

Gvg-cpm(s) =D – FmFg

VD

den(s) +FmVDR 1 + sRC + FmFv

VD

Gvg-cpm(s) =Gg0

1 + sQcωc

+ sωc

2

Gg0 = D

1 –FmFgV

D2

1 +FmVDR +

FmFvVD

= D

1 –M 2

2M a

1 +FmVDR +

FmFvVD

which has the samepoles as Gvc, and thefollowing dc gain:

Page 68: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 68 Chapter 12: Current Programmed Control

DC gain of Gvg-cpm(s)

Gg0 = D

1 –FmFgV

D2

1 +FmVDR +

FmFvVD

= D

1 –M 2

2M a

1 +FmVDR +

FmFvVD

• For duty-cycle control (Fm 0), Gg0 is equal to D

• For ideal current programmed control (Fm ∞, Fg 0 and Fv 0),Gg0 is equal to 0

• For nonideal current programmed control, Gg0 and hence Gvg-cpm(s)are in general nonzero

• For the special case Ma = 0.5 M2, Gg0 is equal to 0 (for the currentprogrammed buck converter). The effective feedforward path fromvg through Fg then cancels the vg -induced variations that propagatethrough Gvg.

Page 69: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 69 Chapter 12: Current Programmed Control

12.3.5 Results for basic convertersBuck converter

Simple model Duty cycle controlled gainsvi c

= R1 + sRC

Gvd(s) = VD

1den(s)

Gid(s) = VDR

1 + sRCden(s)

vv g

= 0 Gvg(s) = D 1den(s)

Gig(s) = DR

1 + sRCden(s)

den(s) = 1 + s LR + s2LC

More accurate model

vi c

= Gvc(s) = Gc01

1 + sQcωc

+ sωc

2 Gc0 = VD

Fm

1 +FmVDR +

FmFvVD

ωc = 1LC

1 +FmVDR +

FmFvVD Qc = R C

L

1 +FmVDR +

FmFvVD

1 +RCFmV

DL

vv g

= Gvg-cpm(s) = Gg01

1 + sQcωc

+ sωc

2 Gg0 = D

1 –FmFgV

D2

1 +FmVDR +

FmFvVD

Results of this section are expressed as duty-cycle-controlled value, multiplied by factorthat accounts for effects of current programming

Page 70: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 70 Chapter 12: Current Programmed Control

Boost converter

Simple model Duty cycle controlled gains

vi c

= D'R2

1 – s LD'2R

1 + s RC2

Gvd(s) = VD'

1 – s LD'2R

den(s)Gid(s) = 2V

D'2R

1 + s RC2

den(s)

vv g

= 12D'

1

1 + s RC2

Gvg(s) = 1D'

1den(s)

Gig(s) = 1D'2R

1 + sRC

den(s)

den(s) = 1 + s LD'2R

+ s2 LCD'2

More accurate model

vi c

= Gvc(s) = Gc0

1 – s LD'2R

1 + sQcωc

+ sωc

2 Gc0 = VD'

Fm

1 +2FmVD'2R

+FmFvV

D'

ωc = D'LC

1 +2FmVD'2R

+FmFvV

D' Qc = D'R CL

1 +2FmVD'2R

+FmFvV

D'

1 + RCFmV

L –FmFvV

D'

vv g

= Gvg-cpm(s) = Gg0

1 + sωgz

1 + sQcωc

+ sωc

2 Gg0 = 1D'

1 – FmFgV +FmVD'2R

1 +2FmVD'2R

+FmFvV

D'

ωgz = D'3RL

1 – FmFgV +FmVD'2R

FmFgV

Page 71: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 71 Chapter 12: Current Programmed Control

Buck-boost converter

Simple model Duty cycle controlled gains

vi c

= – D'R1 + D

1 – s DLD'2R

1 + s RC1 + D

Gvd(s) = –V

DD'

1 – s DLD'2R

den(s)Gid(s) = –

V 1 + D

DD'2R

1 + s RC1 + D

den(s)

vv g

= – D2

1 – D21

1 + s RC1 + D

Gvg(s) = – DD'

1den(s)

Gig(s) = DD'2R

1 + sRC

den(s)

den(s) = 1 + s LD'2R

+ s2 LCD'2

More accurate model

vi c

= Gvc(s) = Gc0

1 – s DLD'2R

1 + sQcωc

+ sωc

2 Gc0 = –V

DD'Fm

1 +Fm V 1 + D

DD'2R–

FmFv VDD'

ωc = D'LC

1 +Fm V 1 + D

DD'2R–

FmFv VDD' Qc = D'R C

L

1 +Fm V 1 + D

DD'2R–

FmFv VDD'

1 +Fm V RC

DL +FmFv V

D'

vv g

= Gvg-cpm(s) = Gg0

1 + sωgz

1 + sQcωc

+ sωc

2 Gg0 = – DD' 1 +

Fm V

D'2R–

FmFg V

D2

ωgz = DD'2RV LFmFg

1 +Fm V

D'2R–

FmFg V

D2

Page 72: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 72 Chapter 12: Current Programmed Control

B.3 Simulation of Current Mode Controllers

21

345

CC

M-D

CM

1

+–

+–

35 µH

100 µF

Vg

12 V

L

C R

vc

+

v

iLOAD

CPM

control current 1 2

d

+–

+–

+–

iL RL1 2 3 4

d

Rf iL v(1)–v(3) v(3)

0.05 Ω

10 Ω

Rf = 1 Ωfs = 200 kHzL = 35 µΗVa = 0.6 V

Xcpm

Xswitch

fs = 200 kHzL = 35 µΗ

EiE1 E2

• Develop a modelof the current-programmedcontroller, whichcan be combinedwith existing CCM-DCM averagedswitch models

• Controller modeloutputs a dutycycle, in responseto control input ic(or vc ) and thesensed convertervoltages andcurrents

Page 73: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 73 Chapter 12: Current Programmed Control

Averaged controller waveforms

t

iL(t)

ipk

vL(t)

0

v1(t) Ts

ic– ma

– m2

m1

t

d2Ts=(1 – d)Ts

v2(t) Ts–

Ts

dTst

iL(t)

0

ipk

vL(t)

0

v1(t) Ts

v2(t) Ts

ic– ma

– m2m1

t–

Ts

dTs d2Ts

CCM DCM

Page 74: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 74 Chapter 12: Current Programmed Control

Equations

i pk = ic – madTsm1 =v1(t) Ts

L m2 =v2(t) Ts

L

iL(t)Ts

= d i pk –m1dTs

2+ d2 i pk –

m2d2Ts

2

d =2ic(d + d2) – 2 iL(t)

Ts– m2d 2

2Ts

2ma(d + d2)Ts + m1dTs

d2 = 1 – d

d2 =i pk

m2Ts

Need to write large-signal equations of controller, in a form that leadsto convergence of simulator and that works for both CCM and DCM

Basic equations: (CCM)

(DCM)

Average inductor current: d2 = MIN 1 – d,i pk

m2Ts

(CCM and DCM)

Artificial ramp amplitude:Va = maTsR f

Substitute and solve (partially) for d:

Page 75: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 75 Chapter 12: Current Programmed Control

CPM controller subcircuit model

.subckt CPM control current 1 2 d

+params: L=100e-6 fs=1e5 Va=0.5 Rf=1

* generate d2 for CCM or DCM

Ed2 d2 0 table

+ MIN(L*fs*(v(control)-va*v(d))/Rf/(v(2)),1-v(d)) (0,0)(1,1)

* generate inductor current slopes, see Eqs.(B.24) and (B.26)

Em1 m1 0 value=Rf*v(1)/L/fs

Em2 m2 0 value=Rf*v(2)/L/fs

* compute duty cycle d, see Eq.(B.32)

Eduty d 0 table

+ 2*(v(control)*(v(d)+v(d2))-v(current)-v(m2)*v(d2)*v(d2)/2)

+ /(v(m1)*v(d)+2*va*(v(d)+v(d2))) (0.01,0.01) (0.99,0.99)

.ends

CPM

control current 1 2

d

Rf iL(t)Ts

v1(t) Tsv2(t) Ts

vc(t) TsInputs:

Output: duty cycle d

Page 76: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 76 Chapter 12: Current Programmed Control

CPM buck example

21

345

CC

M-D

CM

1

+–

+–

35 µH

100 µF

Vg

12 V

L

C R

vc

+

v

iLOAD

CPM

control current 1 2

d

+–

+–

+–

iL RL1 2 3 4

d

Rf iL v(1)–v(3) v(3)

0.05 Ω

10 Ω

Rf = 1 Ωfs = 200 kHzL = 35 µΗVa = 0.6 V

Xcpm

Xswitch

fs = 200 kHzL = 35 µΗ

EiE1 E2

CPM buck converter.param Va=0.6.param fs=200KHz.param L=35uH.ac DEC 101 10 100KHziout 0 4 ac 0.lib switch.libVg 1 0 12V ac 0Xswitch 1 2 2 0 5 CCM-DCM1+PARAMS: L=L fs=fsL1 2 3 LRL1 3 4 0.05C1 4 0 100uFRload 4 0 10Xcpm ctr ni nm1 nm2 5 CPM+PARAMS: L=L fs=fs va=Va Rf=1Ei ni 0 value=i(L1)Em1 nm1 0 value=V(1)-V(3)Em2 nm2 0 value=V(3)Vic ctr 0 dc 1.4V ac 1.probe.end

Page 77: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 77 Chapter 12: Current Programmed Control

Control-to-output frequency responseDuty cycle control vs current programmed control

|| Gvd ||

∠ Gvd

f

–90˚

–180˚

∠ G

–20 dB

–40 dB

0 dB

20 dB

40 dB

10 Hz 100 Hz 10 kHz 100 kHz1 kHz

|| G ||

–60 dB

|| Gvc ||

∠ Gvc

In both cases:

V = 8.1 V

D = 0.676

For CPM:

Vc = 1.4 V

Va = 0.6 V

Page 78: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 78 Chapter 12: Current Programmed Control

Line-to-output frequency responseDuty cycle control vs current programmed control

|| Gvg ||

f

–20 dB

–40 dB

0 dB

20 dB

10 Hz 100 Hz 10 kHz 100 kHz1 kHz

–60 dB

–80 dB

–100 dB

Duty cycle controld(t) = constant

Current programmed modevc(t) = constant

In both cases:

V = 8.1 V

D = 0.676

For CPM:

Vc = 1.4 V

Va = 0.6 V

Page 79: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 79 Chapter 12: Current Programmed Control

Output impedanceDuty cycle control vs current programmed control

|| Zout ||

f

–20 dBΩ

–40 dBΩ

0 dBΩ

20 dBΩ

10 Hz 100 Hz 10 kHz 100 kHz1 kHz

Duty cycle controld(t) = constant

Current programmed modevc(t) = constant

In both cases:

V = 8.1 V

D = 0.676

For CPM:

Vc = 1.4 V

Va = 0.6 V

Page 80: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 80 Chapter 12: Current Programmed Control

12.4 Discontinuous conduction mode

• Again, use averaged switch modeling approach

• Result: simply replace

Transistor by power sink

Diode by power source

• Inductor dynamics appear at high frequency, near to or greaterthan the switching frequency

• Small-signal transfer functions contain a single low frequencypole

• DCM CPM boost and buck-boost are stable without artificial ramp

• DCM CPM buck without artificial ramp is stable for D < 2/3. Asmall artificial ramp ma ≥ 0.086m2 leads to stability for all D.

Page 81: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 81 Chapter 12: Current Programmed Control

DCM CPM buck-boost example

+–

L

C R

+

v(t)

vg(t)

iL(t)

Switch network

+

v1(t)

v2(t)

+

i1(t) i2(t)

m1

=v1 Ts

L

m2 =v2 Ts

L

t

iL(t)

0

ipk

vL(t)

0

v1(t) Ts

v2(t) Ts

ic – ma

Page 82: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 82 Chapter 12: Current Programmed Control

Analysis

m1

=v1 Ts

L

m2 =v2 Ts

L

t

iL(t)

0

ipk

vL(t)

0

v1(t) Ts

v2(t) Ts

ic – ma

ipk = m1d1Ts

m1 =v1(t) Ts

L

ic = ipk + mad1Ts

= m1 + ma d1Ts

d1(t) =ic(t)

m1 + ma Ts

Page 83: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 83 Chapter 12: Current Programmed Control

Averaged switch input port equation

d1Ts

Ts

t

i1(t)ipkArea q1

i1(t) Ts

d2Ts d3Ts

i2(t)ipk Area q2

i2(t) Ts

i1(t) Ts=

1

Ts

i1(τ)dτt

t + Ts

=q1

Ts

i1(t) Ts=

12

ipk(t)d1(t)

i1(t) Ts=

12

m1d 12(t)Ts

i1(t) Ts=

12

Lic2 fs

v1(t) Ts1 +

ma

m1

2

i1(t) Tsv1(t) Ts

=

12

Lic2 fs

1 +ma

m1

2 = p(t)Ts

Page 84: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 84 Chapter 12: Current Programmed Control

Discussion: switch network input port

• Averaged transistor waveforms obey a power sink characteristic

• During first subinterval, energy is transferred from input voltagesource, through transistor, to inductor, equal to

W =12

Li pk2

This energy transfer process accounts for power flow equal to

p(t)Ts

= W fs =12

Li pk2 fs

which is equal to the power sink expression of the previous slide.

Page 85: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 85 Chapter 12: Current Programmed Control

Averaged switch output port equation

d1Ts

Ts

t

i1(t)ipkArea q1

i1(t) Ts

d2Ts d3Ts

i2(t)ipk Area q2

i2(t) Ts

i2(t) Ts=

1

Ts

i2(τ)dτt

t + Ts

=q2

Ts

q2 = 12 ipkd2Ts

d2(t) = d1(t)v1(t) Ts

v2(t) Ts

i2(t) Ts=

p(t)Ts

v2(t) Ts

i2(t) Tsv2(t) Ts

=

12

Lic2(t) fs

1 +mam1

2 = p(t)Ts

Page 86: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 86 Chapter 12: Current Programmed Control

Discussion: switch network output port

• Averaged diode waveforms obey a power sink characteristic

• During second subinterval, all stored energy in inductor istransferred, through diode, to load

• Hence, in averaged model, diode becomes a power source,having value equal to the power consumed by the transistorpower sink element

Page 87: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 87 Chapter 12: Current Programmed Control

Averaged equivalent circuit

i2(t) Ts

v2(t) Tsv1(t) Ts

i1(t) Ts

+–

L

C R

+

+

+ v(t)Ts

vg(t) Ts

p(t)Ts

Page 88: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 88 Chapter 12: Current Programmed Control

Steady state model: DCM CPM buck-boost

+– R

+

V

Vg

P

V 2

R = P

Solution

P =

12

LI c2(t) fs

1 +Ma

M 1

2

V= PR = Ic

RL fs

2 1 +Ma

M 1

2

for a resistive load

Page 89: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 89 Chapter 12: Current Programmed Control

Models of buck and boost

+–

L

C R

+

v(t)Ts

vg(t) Ts

p(t)Ts

+–

L

C R

+

v(t)Ts

vg(t) Ts p(t)Ts

Buck

Boost

Page 90: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 90 Chapter 12: Current Programmed Control

Summary of steady-stateDCM CPM characteristics

Table 12.6. Steady-state DCM CPM characteristics of basic converters

Converter M IcritStabil ity rangewhen ma = 0

Buck Pload – P

Pload

12

Ic – M ma Ts 0 ≤ M < 2

3

Boost Pload

Pload – P Ic – M – 1

Mma Ts

2 M

0 ≤ D ≤ 1

Buck-boost Depends on load characteristic:

Pload = P

Ic – MM – 1

ma Ts

2 M – 1

0 ≤ D ≤ 1

I > Icrit for CCM

I < Icrit for DCM

Page 91: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 91 Chapter 12: Current Programmed Control

Buck converter: output characteristic with ma = 0

I = PVg – V

+ PV

= P

V 1 –Vg

V

I

V

Ic

Vg

12 Ic

12 Vg

23 Vg

4PVg

CCM unstable

for M > 12

DCM unstable

for M > 23

CCM

DCM

A

B

CPM buckcharacteristicwith ma = 0resistiveload lineI = V/R

• with a resistive load, therecan be two operating points

• the operating point havingV > 0.67Vg can be shown tobe unstable

Page 92: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 92 Chapter 12: Current Programmed Control

Linearized small-signal models: Buck

+

+– v1 r1 f1i c g1v2

i1

g2v1 f2i c r2

i2

v2

+

L

C R

+

vg v

iL

Page 93: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 93 Chapter 12: Current Programmed Control

Linearized small-signal models: Boost

+

+– v1 r1 f1i c g1v2

i1

g2v1 f2i c r2

i2

v2

+

L

C R

+

vg v

iL

Page 94: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 94 Chapter 12: Current Programmed Control

Linearized small-signal models: Buck-boost

+

+–

v1 r1 f1i c g1v2

i1

g2v1 f2i c r2

i2

v2

+

L

C R

+

–vg v

iL

Page 95: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 95 Chapter 12: Current Programmed Control

DCM CPM small-signal parameters: input port

Table 12.7. Current programmed DCM small -signal equivalent circuit parameters: input port

Converter g1 f1 r1

Buck 1R

M 2

1 – M

1 –mam1

1 +mam1

2I1

Ic

– R 1 – MM 2

1 +mam1

1 –mam1

Boost – 1R

MM – 1

2 IIc

R

M 2 2 – MM – 1

+2

mam1

1 +mam1

Buck-boost 0 2I1

Ic

– RM 2

1 +mam1

1 –mam1

Page 96: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 96 Chapter 12: Current Programmed Control

DCM CPM small-signal parameters: output port

Table 12.8. Current programmed DCM small-signal equivalent circuit parameters: output port

Converter g2 f2 r2

Buck

1R

M1 – M

mam1

2 – M – M

1 +mam1

2 IIc

R1 – M 1 +

mam1

1 – 2M +mam1

Boost 1R

MM – 1

2I2

Ic

R M – 1M

Buck-boost 2MR

mam1

1 +mam1

2I2

IcR

Page 97: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 97 Chapter 12: Current Programmed Control

Simplified DCM CPM model, with L = 0

+

+– r1 f1i c g1v g2vg f2i c r2 C Rvg v

Buck, boost, buck-boost all become

Gvc(s) =v

ic vg = 0

=Gc0

1 + sωp

Gc0 = f2 R || r2

ωp = 1R || r2 C

Gvg(s) =v

vg ic = 0

=Gg0

1 + sωp

Gg0 = g2 R || r2

Page 98: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 98 Chapter 12: Current Programmed Control

Buck ωp

ωp = 1RC

2 – 3M 1 – M +mam2

M 2 – M

1 – M 1 – M + Mmam2

Plug in parameters:

• For ma = 0, numerator is negative when M > 2/3.

• ωp then constitutes a RHP pole. Converter is unstable.

• Addition of small artificial ramp stabilizes system.

• ma > 0.086 leads to stability for all M ≤ 1.

• Output voltage feedback can also stabilize system, without anartificial ramp

Page 99: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 99 Chapter 12: Current Programmed Control

12.5 Summary of key points

1. In current-programmed control, the peak switch current is(t) follows thecontrol input ic(t). This widely used control scheme has the advantage of asimpler control-to-output transfer function. The line-to-output transferfunctions of current-programmed buck converters are also reduced.

2. The basic current-programmed controller is unstable when D > 0.5,regardless of the converter topology. The controller can be stabilized byaddition of an artificial ramp having slope ma. When ma ≥ 0.5 m2, then thecontroller is stable for all duty cycle.

3. The behavior of current-programmed converters can be modeled in asimple and intuitive manner by the first-order approximation ⟨ iL(t) ⟩Ts ≈ ic(t).The averaged terminal waveforms of the switch network can then bemodeled simply by a current source of value ic , in conjunction with apower sink or power source element. Perturbation and linearization ofthese elements leads to the small-signal model. Alternatively, the small-signal converter equations derived in Chapter 7 can be adapted to coverthe current programmed mode, using the simple approximation iL(t) ≈ ic(t).

Page 100: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 100 Chapter 12: Current Programmed Control

Summary of key points

4. The simple model predicts that one pole is eliminated from the converterline-to-output and control-to-output transfer functions. Currentprogramming does not alter the transfer function zeroes. The dc gainsbecome load-dependent.

5. The more accurate model of Section 12.3 correctly accounts for thedifference between the average inductor current ⟨ iL(t) ⟩Ts and the controlinput ic(t). This model predicts the nonzero line-to-output transfer functionGvg(s) of the buck converter. The current-programmed controller behavioris modeled by a block diagram, which is appended to the small-signalconverter models derived in Chapter 7. Analysis of the resulting multiloopfeedback system then leads to the relevant transfer functions.

6. The more accurate model predicts that the inductor pole occurs at thecrossover frequency fc of the effective current feedback loop gain Ti(s).The frequency fc typically occurs in the vicinity of the converter switchingfrequency fs . The more accurate model also predicts that the line-to-outputtransfer function Gvg(s) of the buck converter is nulled when ma = 0.5 m2.

Page 101: Chapter 12 Current Programmed Controlecee.colorado.edu/~ecen5807/course_material/Ch12slides.pdf · Fundamentals of Power Electronics 1 Chapter 12: Current Programmed Control ... comparator

Fundamentals of Power Electronics 101 Chapter 12: Current Programmed Control

Summary of key points

7. Current programmed converters operating in the discontinuous conductionmode are modeled in Section 12.4. The averaged transistor waveformscan be modeled by a power sink, while the averaged diode waveforms aremodeled by a power source. The power is controlled by ic(t). Perturbationand linearization of these averaged models, as usual, leads to small-signalequivalent circuits.