Centre for Renewable and Sustainable Energy Studies | Home ......AEE - Institute for Sustainable...

49
Werner Weiss SYSTEM CONCEPTS AND APPLICATIONS AEE - Institute for Sustainable Technologies (AEE INTEC) A-8200 Gleisdorf, Feldgasse 19 AUSTRIA

Transcript of Centre for Renewable and Sustainable Energy Studies | Home ......AEE - Institute for Sustainable...

  • Werner Weiss

    SYSTEM CONCEPTSAND APPLICATIONS

    AEE - Institute for Sustainable Technologies (AEE IN TEC)A-8200 Gleisdorf, Feldgasse 19AUSTRIA

  • PLASTIC ABSORBERS

  • SWIMMING POOL SYSTEM

  • SWIMMING POOL SYSTEM

  • SWIMMING POOL SYSTEM

    The energy demand of an outdoor pool is mostlyinfluenced by the water temperature.

    The largest losses are the surface of the pools.

    That is the reason why the size of the absorber areaThat is the reason why the size of the absorber areais given as a proportion of the total water surfacearea.

    As a rule of thumb, this should be between 80 and100% of the pool area for weather conditions incentral Europe.

  • Thermosyphon Systems for Hot Water Preparation

  • storagetank

    Thermosyphon Systems for Hot Water Preparation

    absorber

  • Direct system, horizontal storage tank

    Thermosyphon Systems for Hot Water Preparation

  • hot water

    Insulation hot water storage tank

    Thermosyphon Systems for Hot Water Preparation

    hot collector pipe

    cold collector pipe

    cold collector pipe

    cold water inlet

  • THERMOSYPHON SYSTEM - China

  • THERMOSYPHON SYSTEMS

  • Non pressurized storage tanks

  • THERMOSYPHON SYSTEMS

  • Water conditions suitable or open circle systems

    Description Maximum Recommended LevelPh 6.5 - 8.5TDS 600 mg/lTotal Hardness 200 mg/lTotal Hardness 200 mg/lChlorides 300 mg/lMagnesium 10 mg/lCalcium 12 mg/lSodium 150 mg/lIron 1 mg/l

    Source: Solar Edwards, Australia

  • INDIRECT SYSTEM

  • Domestic Hot Water System with Forced Circulation

  • Domestic Hot Water System with Forced Circulation

  • HYDRAULIC SCHEME OF A SOLAR HOT WATER SYSTEM

    hot water3bar

    °C/bar

    collector area

    °C

    5

    6

    escape valve

    1

    thermometer

    pressure relief valve

    thermometer and pressure gaugelock valve

    gravity brake

    circulation pump

    7

    6

    5

    4

    3

    2

    °C

    tank

    storage

    cold water

    1

    2

    3

    5

    7

    10

    8

    4

    fill and empty valve

    expansion tank

    thermometer

    9

    8

    7

  • Solar Combisystems

    PreconditionsPreconditions

    andandandand

    RequirementsRequirements

  • Solar Combisystems

    5,4

    6,3

    7,2

    8,1

    9,0

    [kWh/m²] Solar-Radiation

    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

    Total: 1126.91kWh/m²

    0,0

    0,9

    1,8

    2,7

    3,6

    4,5

  • 2000

    2500

    3000

    [kWh/month] Excess irradiation Excess consumption

    Usable solar energy Irradiation

    Reference consumption

    3000

    2500

    2000

    Solar Combisystems

    0

    500

    1000

    1500

    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

    1500

    1000

    500

    0

    1

    2

    3

    1

  • Space HeatingSpace Heating

    Flow temperature: 30 - 50 °CReturn temperature: 20 - 40 °C

    Solar Combisystems

    Demand:• is not always corresponding to the solar

    irradiation

    • varies in dependence of ambient temperature, passive solar gains and the internal gains of the

    building

  • System using the thermal mass of the building to st ore the heat

    M

    Solar Combisystems

    E N E R G Y S U P P L Y T R A N S F E R , S T O R A G E , C O N T R O L A N D D IS T R IB U T IO N L O A D

    M

    M

    S A H 1 (H 2)

  • Using the space heating store to store the heat

    Solar Combisystems

    E N E R G Y S U P P L Y T R A N S F E R , S T O R A G E , C O N T R O L A N D D IS T R IB U T IO N L O A D

    M

    S A H 1 D H W

  • From

    Complex

    Solar Combisystems

    Complex

    Designs…

  • …to

    Compact

    Solar Combisystems

    Products

  • Solar Combisystems

  • Multi Family Houses Market Penetration

    1,9 MioHauptwohnsitze

    80

    90

    100

    110

    Pot

    enzi

    al u

    nd M

    arkt

    durc

    hdrin

    gung

    [%]

    .

    ~ 1 ProzentDurchdringung

    0

    10

    20

    30

    40

    50

    60

    70

    Geschoßwohnbauten

    Pot

    enzi

    al u

    nd M

    arkt

    durc

    hdrin

    gung

    [%]

    Geschoß-

    wohnbauten

  • Solutions for Existing Buildings

  • Development of System Concepts1st Generation - Solar Plant Concepts for MFH(Concept for a small number of flats)

    Kolle

    ktorfe

    ld

    KW

    Rau

    mhe

    izung

    TrinkwasserspeicherDomestic hot water tanks

    cold water

    circ

    ulat

    ion

    Spa

    ce h

    eatin

    gHot

    wat

    er

    Kessel

    KWcold water

    Spa

    ce h

    eatin

    g

    Boiler

  • 2nd Generation - Solar Plant Concepts for MFH

    Kolle

    ktorfe

    ld

    T2

    T3

    Energiespeicher

    Raumheizung

    War

    mw

    ass

    er

    Bereitschafts- speicher

    Zir

    kula

    tion

    Development of System Concepts

    Energy store (buffer)

    DHW tank

    Space heating

    circ

    ulat

    ion

    Hot

    wat

    er

    T2

    Kessel

    KW

    W

    Boiler

  • Solar Plant Concepts for MFH

    Kolle

    ktorfe

    ld

    T2

    T3

    Energiespeicher

    Kaltwasser

    Kaltwasser

    Warmwasser

    Boiler

    Boiler

    Energy store (buffer)

    DHW tank

    cold waterhot water

    cold water

    Heat distribution via 2-pipe network Domestic hot water preparation via decentralised storage tanksPreferred concept for row houses (low energy density)

    Kessel

    Kaltwasser

    Warmwasser

    Warmwasser

    BoilerBoiler

    cold waterhot water

    cold waterhot water

  • Kolle

    ktorfe

    ld

    T2

    T3

    Energiespeicher

    Kaltwasser

    Warmwasser

    Warmwasser

    Solar Plant Concepts for MFH

    Energy store (buffer)

    cold water

    hot water

    cold water

    Kessel

    Kaltwasser

    Kaltwasser

    Warmwasser

    Warmwasser

    � Heat distribution via a 2-pipe network� Decentralised instant hot water preparation� Concept for „high energy density) MFH

    Boiler

    cold water

    hot water

    cold water

    hot water

  • Compact Heat Distribution Units

    Netz VL

    Netz RL

    Warmwasser

    Kaltwasser

    1 Absperrventil2 Rückschlagklappe3 Sicherheitsventil

    6 Differenzdruckregler7 Zählerpassstück8 Zonenventil

    1

    1

    1

    1 1

    1

    1

    2 3

    4

    5

    67 8

    910°C

    45°C

    65°C

    20 - 40°C

    10

    Heizung VL

    Heizung RL

    65°C

    25 - 40°C

    3 Sicherheitsventil4 Durchflussgesteuerter

    Temperaturregler5 Rücklauftemperaturbegrenzer

    8 Zonenventil9 Passstück Kaltwasser10 Zirkulationsbrücke

  • 70

    80

    90

    100

    T-Netz-VL T-Netz-RL T-Solarsek.-VL T-Solarsek.-RL T-Puffer-VL

    Advantages of 2-pipe networks

    Return flow nearly constant at 30°C Ideal conditions for solar thermal systems

    0

    10

    20

    30

    40

    50

    60

    70

    27.10.03 00:00 28.10.03 00:00 29.10.03 00:00 30.10.03 00:00 31.10.03 00:00 01.11.03 00:00 02.11.03 00:00 03.1 1.03 00:00

    Tem

    pera

    tur

    [°C]

  • � Distribution losses minimized

    � Provides in all cases integration into the space

    heating system

    Advantages of 2 pipe concepts

    � No problems concerning legionnaires disease

    � Easy counting of delivered energy for each flat

    due to integrated heat meters

    � Prefabricated heat transfer stations reduce the

    labour cost, easy and faultless installation

  • Solar Fraction

    Total Heat Demand

    [%]

    Solar Fraction

    Hot Water Demand

    [%]

    Collectorarea

    [m² per Person]

    Storagevolume

    [Litre / m² collector area]

    Dimensioning: Cost/Performance 15 - 20 50 - 60 0,9 - 1,4 50 - 70

    Dimensioning of Collector area and Storage Volume

    Cost/Performance Optimum

    15 - 20 50 - 60 0,9 - 1,4 50 - 70

    Dimensioning with approx. 100% Solar fraction in Summer

    25 - 30 70 - 75 1,8 - 2,2 60 - 80

  • System Monitoring

    Energie-

    Wärmeverteilung für56 Wohneinheiten

    36 kW Brauchwasserbereitung

    WMZ n

    Kolle

    ktorfl

    äche

    120

    Neigu

    ng 3

    TKoll

    TSol RL

    TSol VL

    Daten-logger

    TSek VL TPo

    TAussen

    Energie-speicher7.500 l

    36 kW Brauchwasserbereitung

    Kaltwasser

    Warmwasser

    WMZ n

    Brauchwasserbereitung

    Kaltwasser

    WarmwasserTSek RL

    WMZSolar

    TPm

    TPu

    AutomatischerSystemwart

    TNH RL

    TNH VL

    WMZ NH

    Gas-brennwert-kessel225 kW

    WMZ Netz

    TNetz VL

    TNetz RL

  • Wärmeverteilnetztemperaturen (Vorlauf und Rücklauf) von 7 Objekten.

    45

    50

    55

    60

    65

    70

    Sys

    tem

    tem

    pera

    tur

    [°C]

    Flow and return temperatures

    ca. 55-65°C

    Flow and return temperatures of 7 multi family hous es

    Tem

    pera

    ture

    [°C

    ]

    20

    25

    30

    35

    40

    45

    15.2.2005 00:00 16.2.2005 00:00 17.2.2005 00:00 18.2.2 005 00:00 19.2.2005 00:00 20.2.2005 00:00 21.2.2005 00 :00

    Sys

    tem

    tem

    pera

    tur

    [°C]

    ca. 25-37°C

    Low return temperatures of 30°C are necessary for a n optimised operation of solar thermal systems

    Tem

    pera

    ture

    [

  • System Efficiency –Annual system utilization

    Ecellent system utilization between 80 and 90% are possible with 2-pipe networks!

    [%]

    Pipe losses

    Hot water

    Sys

    tem

    Util

    izat

    ion

    [%]

    Store in Store out Energy in distr. net Useful energy

    Storage losses

    Space Heating

    Solar heat

    Auxiliary heat

  • More Information:More Information:

    The book:

    Solar Combisystems

    Solar Heating Systems for Houses

    A Design Handbook for Solar Combisystems

  • Mluti-familiy Houses

    This Design handbook is available for This Design handbook is available for €€ 29,80 at 29,80 at www.aee.at www.aee.at

  • Local District Heating - Steinfurt-Borghorst, Germany

    Source: ITW, University Stuttgart

  • Kaltwasser

    Hydraulische Weicheoder Pufferspeicher

    Heiz-

    kessel

    TW ZK

    Heizzentrale

    Kollektorfeld

    Kollektorfeld

    Wärme-übergabe-station

    Wärme-übergabe-station

    Local District Heating with Seasonal Storage

    Wärmeübergabestation mitdirekter Heizungsanbindung

    und Trinkwasserbereitungim Durchflußprinzip

    Wärmeübergabestation mitindirekter Heizungseinbindung

    und Trinkwasserbereitungmit Speicherladesystem

    KaltwasserKaltwasser

    Langzeit-

    Wärmespeicher

    Solarnetz

    Wärmeverteilnetz

    Source: ITW, University Stuttgart

  • Kies-Wasser-WärmespeicherHeißwasser-Wärmespeicher

    Seasonal Heat Storages

    Erdsonden-Wärmespeicher Aquifer-Wärmespeicher

  • District Heating – 1 MW th, Graz

  • District Heating – 1 MW th, Graz

  • District Heating – 3MW th, AEVG, Graz, Austria

  • Solar District HeatingSolar District Heating –– Marstal, DKMarstal, DK –– 13 13 MWth