Cell Biology TL Unit Contributors - First 2...

35
FIRST National Meeting 2005 1 Kellogg Biological Station Executive Summary Cell Biology TL Unit Contributors: Stephanie Aamodt, Beverly Clendening, Hans Landel, and John Rebers, Doug Luckie (facilitator) Course Description: Introduction to Cell and Molecular Biology. An introductory course for science majors (generalizable to non-major courses; other courses in major). Enrollment of 50-200 students. Concept Unit covered is cell structure Learning Goals/Objectives: After completing this unit the student will: Describe cellular organization and the way this organization relates to function o Describe the spatial and temporal organization of different types of cells o Relate the organization of the cell to different functional activities Compare and contrast the organization of living and non-living objects At the end of the course, the student will: Describe the hierarchal organization of living things, including the following levels: o Chemical/molecular o Cellular/organelle o Tissue/organ/system o Organisms/ecosystems Rationale for Instructional Approach: Student misconception: Students often think of the cell as a static, two-dimensional collection of independent parts. Students memorize the names and definitions of the parts without understanding the function or interrelationships of these parts. The expert view of the cell recognizes that cells have dynamic spatial and temporal organization that is important for function. This lesson plan uses model-based reasoning and inquiry for students to develop skills and knowledge they can apply later to understand the hierarchal organization of living things. The same approach could be used for other systems, including physiology and ecosystems. This unit will help students understand cellular organization. We begin by using organization of a familiar machine, followed by the organization of the human body, to model the way that organization is required for function. Students then use active learning processes to model the organization of cellular components (molecules and organelles) and develop ideas about the way this organization is related to function.

Transcript of Cell Biology TL Unit Contributors - First 2...

Page 1: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

FIRST National Meeting 2005 1 Kellogg Biological Station Executive Summary

Cell Biology TL Unit

Contributors: Stephanie Aamodt, Beverly Clendening, Hans Landel, and John Rebers, Doug Luckie (facilitator) Course Description: Introduction to Cell and Molecular Biology. An introductory course for science majors (generalizable to non-major courses; other courses in major). Enrollment of 50-200 students. Concept Unit covered is cell structure Learning Goals/Objectives: After completing this unit the student will:

• Describe cellular organization and the way this organization relates to function o Describe the spatial and temporal organization of different types of cells o Relate the organization of the cell to different functional activities

• Compare and contrast the organization of living and non-living objects At the end of the course, the student will:

• Describe the hierarchal organization of living things, including the following levels: o Chemical/molecular o Cellular/organelle o Tissue/organ/system o Organisms/ecosystems

Rationale for Instructional Approach: Student misconception: Students often think of the cell as a static, two-dimensional collection of independent parts. Students memorize the names and definitions of the parts without understanding the function or interrelationships of these parts. The expert view of the cell recognizes that cells have dynamic spatial and temporal organization that is important for function. This lesson plan uses model-based reasoning and inquiry for students to develop skills and knowledge they can apply later to understand the hierarchal organization of living things. The same approach could be used for other systems, including physiology and ecosystems. This unit will help students understand cellular organization. We begin by using organization of a familiar machine, followed by the organization of the human body, to model the way that organization is required for function. Students then use active learning processes to model the organization of cellular components (molecules and organelles) and develop ideas about the way this organization is related to function.

Page 2: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

FIRST National Meeting 2005 2 Kellogg Biological Station Executive Summary

Brief Description of the TL Unit: This TL Unit emphasizes scale and function to emphasize the dynamic nature of cell organelles in one to two fifty minute classes. Students start by exploring the importance of the spatial and temporal relationship among parts of a tree. The process is then repeated for a root and leaf cell. To reinforce and assess understanding, students label a cell diagram with the functions of cell organelles and build a concept map emphasizing the functional relationships between cell parts. How Does the TL Unit Address Active Learning?

• Group discussions relate parts of complex systems (car, human body) to the need for organization (static and dynamic) to produce a functioning system

o For both car and human body: Students use think/pair/share to develop list of parts Informal groups are used to relate parts to function Class discussion relates organization of overall system to function

• Students individually are responsible for developing list of cell parts • Informal groups are used to relate parts of cells to functions • Students use concept mapping to relate ideas of static and dynamic organization to show how cell

parts are organized and interact • “perturb and predict” activities stress critical thinking and allow assessment and reinforcement

Page 3: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

FIRST National Meeting 2005 1 Kellogg Biological Station Unit Description

Cell Biology TL Unit

Brief Description of the TL Unit Class Process:

1. What must a tree have to produce apples? Draw a model of an apple tree with all possible parts

labeled. a. GROUP WORK: groups of 3 or 4 b. Draw a model of an apple tree labeling all possible parts. The model should

illustrate how the parts work together to help the tree produce apples. The model should have

- Parts labeled - Functions identified for each of the parts - Arrows showing how resources ( water, CO2, sugar etc. ) are transported

2. Now use the model to help make an apple. a. GROUP WORK (part 2): b. Integrate all of the parts and processes of the model together into a logical sequence of

events to make an apple. c. example: model illustrates water (and nutrient) acquisition by roots, transport of water

through trunk and stems to leaves, diffusion of CO2 into leaf, photosynthesis with CO2 and light in leaf, transport of sugar to flower and apple. The model can be more complex, but this simple model will help them start to integrate processes

3. Assess understanding to this point: “perturb and predict” by having students develop scenarios

where 1) spatial and 2) temporal organization are perturbed effecting function. a. GROUP WORK: groups of 3 or 4 b. You have an apple tree in your yard. Most years you have more apples than you

can eat. This year there was a drought and it appears that there are only a few small apples on your tree. The some leaves have turned red and others have fallen off the tree even though it is only mid August.

- Using your model, describe the processes and parts that might have reduced apple production?

c. Selected groups present model as instructor builds class consensus model for apple tree. 4. FOCUS—Bring to cell level

a. GROUP WORK: groups of 3 or 4 b. Simultaneously repeat steps 1-3 for a leaf cell and a root cell. The two cells will help

identify differences in function and help connect from the cellular to the organismal scale.

5. Mini-lecture on one cell organelle as illustration of how students should approach the material

a. Vote to decide which organelle to “uncover” first b. re-emphasize organization concepts while doing this—connections, processes

Page 4: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

FIRST National Meeting 2005 2 Kellogg Biological Station Unit Description

6. Homework (critical thinking + assessment) a. concept map – functional organization of cell parts b. graphic – unlabeled cell diagram, label parts with functions, not names c. Process – Using your concept map, predict what would happen if a particular

perturbation in a process occurs. Show where this perturbation occurs. Grading Rubric – Cell Biology Concept Map

1. 5 pts a. All assigned concepts listed included b. Relationships between terms shown clearly using appropriate

connecting words c. Network of relationships between ideas clearly shown d. All significant relationships shown

2. 4 pts a. All assigned terms included b. Relationships between terms shown clearly using appropriate

connecting words c. Not all important relationships between concepts indicated

3. 3 pts a. All assigned terms included b. Relationships between terms not shown clearly, or inappropriate

connecting words used c. Network of relationships between ideas not shown clearly

4. 2 pts a. Not all assigned terms included b. Relationships between terms not shown clearly, or inappropriate

connecting words used c. Network of relationships between ideas not shown clearly

Page 5: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

FIRST National Meeting 2005 3 Kellogg Biological Station Unit Description

Homework A. Label all of the organelles and functions discussed in class on the figure below. Draw additional lines as needed.

B. Quickly discuss why this is a leaf cell or a root cell? What organelles and processes would differ between the two cells? C. Use all of the organelles discussed in class to create a concept map illustrating the functional relationship between the parts of a cell. D. Using your concept map, predict what would happen if a particular perturbation in a process occurs.

Page 6: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Eukaryotic Cell Organization: Breaking the Jell-O Salad

Mold Stephanie Aamodt, LSU-Shreveport Beverly Clendening, Hofstra Univ.

Hans Landel, Edmonds Community College Doug Luckie, MSU

John Rebers, Northern Michigan University

Page 7: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Description of the Challenge   Our group: Cell/Developmental Biology   Target: introductory biology course, majors or non-

majors, of any size   The Misunderstanding: the eukaryotic cell is a collection

of individual and isolated parts, randomly arranged in the cell   The “Jell-O Salad” paradigm

  You will see later what we want students to think instead the “Jell-O Salad” model (what our objectives are) because we do not want to prejudice you, but we can tell you:   Emphasis on model-based reasoning, relying on analogy   Specific objectives are in our course description document

Page 8: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Learning Goals/Objectives After completing this unit the student will:

•  Be able to describe cellular organization and the way this organization relates to function

•  Be able to relate the organization of the cell to different functional activities

•  Be able to make reasonable assumptions about the reasons for differences between prokaryotic and eukaryotic cells

 At the end of the course, the student will: •  Be able to apply the idea that function is dependent on

organized structure to the organization of living things, including the following levels:   o Chemical/molecular   o Cellular/organelle   o Tissue/organ/system   o Organisms/ecosystems

Page 9: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Preliminaries  Before this class

 Preliminary introduction to macromolecules  Class discussion: Define “living things” and generate

list of requirements   Introduce cells as the “smallest unit of life”  All cells have membrane, DNA, cytoplasm

Page 10: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

“The class part”  Run through first part of class

Page 11: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Summary  Car is organized

 parts   subsystems   systems  connections

 Organization is important to function  Car has processes

  simultaneous  connections

 Processes important to function  Processes and Organization are interdependent

Page 12: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

“The FIRST part”  Describe rest of class

Page 13: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

TRANSITION: Bring the Class to Biology

  have been examining a non-living object   let’s use what we have learned about the car to

examine a living object -- the human body

Page 14: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

TRANSITION: Bring the Class to Biology   The procedures with the car has served as a model for what

we would like the students to do.   Car will serve as an analogy   Now use the same procedure as with the car, but with the

human body   list functions body must perform to live   list body parts   categorize body parts according to function   parts must be assembled in correct locations   certain activities must occur for body to function   may or may not include formative assessment by performing

“perturb and predict” exercises

Page 15: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Concept Maps  NOTE: Homework (assessment) will include

concept mapping of cell parts with respect to function

  If students have not been introduced to concept maps, a good place to introduce them is at the point when they are asked to categorize the parts of the body according to function. This will model for them what we would like them to do in the homework assignment.

Page 16: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Possible example concept map: plants

Page 17: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Example of a poor concept map   “Sentence-in-a-box”   Poor concept map   Good concept map

should show complex relationships   One part can have

multiple relationships   Use linking terms to

show how parts are related

  Focus on most important connections

Page 18: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

FOCUS: Bring the class to the cell level

  Important transition  Have established a context for

describing and understanding the cell

Page 19: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Break the “Jell-O salad mold”  More than a boring parts list  Structures are not isolated; they are

interconnected  Structures are not randomly placed; they are

highly organized  The organization is not static; it is dynamic

Page 20: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Repeat steps 1 through 3  Ask the class to list functions cell must

perform to live, and the parts of the cell  Can the students group the parts according

to function?  Can the students organize the parts of the

cell? Make connections?

Page 21: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Recognize that student knowledge is limited

 Students will have some prior knowledge, but it will be simple, pat definitions.

 Allow class to explicitly identify what they don’t know or understand.

 Emphasize that what we don’t know as a class will direct the rest of the unit.

Page 22: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Model a dynamic view of the cell  Present an exciting mini-lecture on one cell

structure or organelle as an example for the class.   Include a video clip of a cell process such as

mitosis or transport or a cell in motion.  Describe how the structure is made of smaller

parts that fit together precisely to allow a specific, controlled process

  (Here, “model” means showing students what we expect them to do)

Page 23: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.
Page 24: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Encourage students to think

 The contextual framework will be reinforced by homework and assessments.

 The dynamic, highly organized view of life will be further developed in classes on cellular respiration, mitosis and most other topics, as well, as the course continues into the study of cell biology.

Page 25: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Assignment

1.  Complete the structure/function chart for the cell that was begun in class. The information can be found in Chapter x of your textbook.

•  this forces the students to learn the parts on their own, but within the context of function

Page 26: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

2. Draw a concept map that shows the spatial and functional relationships among  nucleus  endoplasmic reticulum   ribosomes   mitochondria  cytosol   synthesis of macromolecules (anabolic metabolism)  breakdown of macromolecules for energy production

(catabolic metabolism) Examples of connecting phrases (is connected to, takes

place in , etc.)   this assesses their understanding of the concepts of

spatial and temporal organization

Page 27: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

3. Label the cell compartments with their functions.

Page 28: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

4. Predict, in detail, what would happen if   Group A

•  there was a hole in the cell membrane. •  the cell had no mitochondria. •  a mature cell lost its nucleus.

 Group B •  none of the ribosomes were attached to the endoplasmic

reticulum. •  the process of vesicle formation could not occur (the Golgi

apparatus could not form vesicles).  Pick one from Group A and one from Group B

  this assesses their understanding of the importance of spatial and temporal organization of cells

Page 29: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

The EXCITING significance of this unit   It covers a BIG idea in Biology   It is “scalable” for use in other topics

Page 30: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

The Big Idea   Living Things Are Organized.

  Spatially- certain parts are located in certain places

  Temporally - certain processes take place in a certain order

  Function is dependent on both spatial and temporal organization

  Interconnected   Interactions   Hierarchical (systems, subsystems, sub-

subsystems . . .)

Page 31: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Permeation of the “Big Idea”   you can (and we think you should) re-examine the

importance of spatial and temporal organization when the following cellular topics are discussed  Metabolism  Mitosis  Protein synthesis   Intracellular signaling   Intercellular signaling

  our assessments can be used after any of these topics, and in midterm and final exams

Page 32: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

“Active Transport” of the “Big Idea”

 The Big Idea applies (by definition) to all levels of biology. We think it should be continually stressed.

•  Macromolecules •  Organelles •  Tissues •  Organs •  Organisms •  Communities •  Ecosystems

Page 33: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Scalability of Exercise  Because life is hierarchically organized,

with each level exhibiting spatial and temporal organization (i.e., because it is a Big Idea), this exercise can be used at any level.

 (it has wide applicability)

Page 34: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Living things are organized.

  Replace “Living Things” with . . . •  Macromolecules •  Organelles •  Tissues •  Organs •  Organisms •  Communities •  Ecosystems

Page 35: Cell Biology TL Unit Contributors - First 2 htmlfirst2.plantbiology.msu.edu/TLUnits/TLUnit2_CellBio.pdfFIRST National Meeting 2005 2 Kellogg Biological Station Unit Description 6.

Revisions?  Feedback from FIRST participants suggests

  Transition (human body) step can be left out   Car analogy has sexual bias -- women will

have a harder time relating to it •  we had discussed this and had decided to address

this by calling on women first •  also, you can use ANY object you would like as

your analogy, as long as it it sufficiently complex, has processes, and is understandable by the majority of your students (see course description document)