Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

19
Cd(Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC Possibility with AIDA WP3 3D-ASIC development project Paul Seller RAL

description

Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC Possibility with AIDA WP3. 3D-ASIC development project Paul Seller RAL. 3D-ASIC development. Cd (Zn)Te X-ray pixel detectors. Bump bonding Gold Stud Silver epoxy Imaging applications Dual isotope SPECT - PowerPoint PPT Presentation

Transcript of Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

Page 1: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

• Cd(Zn)Te X-ray detectors• 3D-ASIC project

– EMFT technology– 4040 pixel ASIC– Possibility with AIDA WP3

3D-ASIC development projectPaul Seller

RAL

Page 2: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

3D-ASIC development

Bump bonding• Gold Stud• Silver epoxy

Imaging applications• Dual isotope SPECT• K-edge subtraction• Florescence imaging• Astrophysics• Tumour identification• Illicit materials• TEDDI

ASIC gold stud bonded to 3mm CZT and wire bonded to PCB

Cd(Zn)Te X-ray pixel detectors

Page 3: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

3D-ASIC development

holes

electrons

isig

Q

Some of the charge carriers can be ‘trapped’ in the bulk.This is a ‘noise’ on the signal depending on depth of interaction so use small pixel effect.

CZT Tailing

One can change bias voltage and thickness but typically electron transit times in CZT can be 100-500ns which gives limits to the shaping time of the signal processing.

Cd(Zn)Te detector constraints

Page 4: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

3D-ASIC development

X-ray

P+ diodes

+bias

e-

h+

As q drifts in the electric field it also diffuses in all directions. This produces Charge Sharing between pixels and can give rise to ‘tailing’ or multiple hits in photon counting systems.

Charge sharingin CZT

Also the florescence photons can have a similar effect at small pixel sizes.

This either constrains the minimum pixel size or requires detailed charge summing considerations to get good spectral and spatial resolution.

Cd(Zn)Te detector constraints

Page 5: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

3D-ASIC development

Rolling shutter type readout

Four 80x20 pixel arrays on one ASIC

250mm x 250mm pixels

Gold stud bonded to CZT

Programmable regions of interest

12 Analogue outputs

Selectable range 150keV - 1500keV

Noise <1keV FWHM with CZT detector

AMS 0.35um CMOS

Cd(Zn)Te Spectroscopy ASIC

Page 6: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

3D-ASIC development

Cd(Zn)Te Spectroscopy ASIC Pixel Electronics

Page 7: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

3D-ASIC development80 x 80 pixel ASIC and readout card with copper insert

With a 50ns clock whole frame readout takes20x80x50ns =100us/frame =10,000 frames/sec

Page 8: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

3D-ASIC development

Enclosure with temperature stabilisation and Camera Link output to PC.

Page 9: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

3D-ASIC development

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

0 1000 2000 30000

0.5

1

80 x 80 pixel spectroscopic ASIC results

Pb ring 74keV

Page 10: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

3D-ASIC development

If we want more pixels in future:-

analogue tracking problems more ADCsslower frame times

If we had ADC per pixel:

no analogue output problemlots of cross-talk issuesneed space in pixel

If we had 3D-ASIC, analogue on top level, digital bottom layer

lots of spaceno crosstalklots of routing

Page 11: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

3D-ASIC development

3D-ASIC project aims:-• To develop the next step in IC signal processing density

for HEP, Synchrotrons, Space, medical…… systems• Specifically a 3D-ASIC with two active layers bonded

together at many points on surface– Layer 1:- Analogue preamplifiers– Layer 2:- Digital ADCs

Progress this year:-• Define a Back-End-of-Line Process with EMFT so we

could use different CMOS processes on the different layers. Cu/Sn SLID process with W vias.

• Designed and built the 2 layer CMOS wafers for EMFT (IZM Munich) bonding

– 40 x 40 pixel detector test ASIC4040 pixel 3D-ASIC

Page 12: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

3D-ASIC development

Proposed EMFT process

Passivation layers

SLID Cu/Sn/Cu

50um Silicon

Pad stack

Tungsten TSVs

Bottom Silicon

Extra metal

Pad stack

Active layer

Active layer

Page 13: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

4040 RAL 3D-ASIC

Analogue pixel design– Copied from the 8080 pixel readout– 250um pixels– 1keV FWHM with 2us shaping– Dynamic range to 150keV

Page 14: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

4040 RAL 3D-ASIC

Digital pixel design• Lower layer has peak-hold and synchronous 12 bit ADC in every pixel.• Also identifies hit pixels and nearest neighbours• 1600 x 13 bits @ 50MHz = 40 micro second readout

3D-ASIC Upper pixel

3D-ASIC Lower pixel

Page 15: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

4040 RAL 3D-ASIC

Upper and lower ASIC on single wafer. (12 wafers made)

Page 16: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

4040 RAL 3D-ASIC

Upper and lower pixels with via test areas clearly visible

Page 17: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

Future plans 2011/2012

Test 2 layers separately with on-chip test circuits

Start SLID bonding (2012 finish and test)

Require test effort and detailed design of SLID bonding

AIDA support for wafers, SLID and collaboration

Page 18: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

3D-ASIC development

Acknowledgements:-

CZT projectMatt WilsonMatt Veale(Hexitec funded from EPSRC grant)

ASICsMark PrydderchPeter MurrayMatt HartLawrence JonesStephen Thomas

TestAlec Hardie

Page 19: Cd (Zn)Te X-ray detectors 3D-ASIC project EMFT technology 4040 pixel ASIC

• Advanced structure for 4-side butting.3D-ASIC development

Gold studsWire bond

PCBHeat sink

Detectoreg. CZT

Thick digital ASIC

50um analogueASIC

SLID Bonds

Gold studs

Wire bondPCBVery small dead space

Heat sink

Detectoreg. CZT

Thick digital ASIC

50um analogueASIC

SLID Bonds

• Not yet discussed with EMFT