Carbon in Earth

28
Carbon in Earth Midterm Report of the Deep Carbon Observatory Inside/Outside Cover Material DCO Mission DCO Organizational Structure Decadal Goals Map(s) Inside/Outside Text Achievements/Discoveries Quantities Movements Forms Origins Next Five Years Cameos FUTURE VOLUMES

description

Carbon in Earth. Midterm Report of the Deep Carbon Observatory. Inside/Outside Cover Material DCO Mission DCO Organizational Structure Decadal Goals Map(s). Inside/Outside Text Achievements/Discoveries Quantities Movements Forms Origins Next Five Years Cameos. - PowerPoint PPT Presentation

Transcript of Carbon in Earth

Page 1: Carbon in  Earth

Carbon in Earth  

Midterm Report of the Deep Carbon Observatory

Inside/Outside Cover Material

DCO MissionDCO Organizational StructureDecadal GoalsMap(s)

Inside/Outside Text

Achievements/DiscoveriesQuantitiesMovementsFormsOrigins

Next Five YearsCameos FUTURE VOLUMES

Page 2: Carbon in  Earth

Carbon in EarthQUANTITITES, MOVEMENTS, FORMS, ORIGINS

The Deep Carbon Observatory is laying the groundwork for a new science of one of nature’s key elements. As such, the Observatory seeks to determine the quantities, movements, forms, and origins of carbon in our planet.  Each goal comes with questions that we proposed to answer during the current decade. These questions are being tackled by interdisciplinary science teams in communities spanning 50 countries. As we move into the second half of the program, we will answer our decadal questions, while at the same time expanding our purview to target significant new programs connected with carbon in Earth and in extreme environments.

DCO Midterm Report

1. Quantities2. Movements3. Forms4. Origins

Reservoirs and Fluxes  Deep Life 

Deep Energy Extreme Physics and Chemistry 

}Matrix Communities and phenomena

Distinguish between fully supported and leveraged DCO projects16 page high-level summary

OVERVIEW

Page 3: Carbon in  Earth

How much carbon is in Earth? What are the relative amounts of carbon-bearing phases? What physical and chemical properties of the interior affect carbon storage in different regions?   Carbon, as it presents itself to us at the surface of our planet, exists in three 

different oxidation states. This variation is not well determined at depth.  Diamond in the mantle as reservoirs and indicators of mantle chemistry.   Carbon should not be considered in isolation; it is a component within 

complex chemical systems –fluids, melts, and solids – that comprise our planet.

Among the most significant is water.   Discoveries by DCO scientists have led to the realization that there are 

significant unexpected reservoirs of carbon. Having an estimate of the extent of the deep biosphere has implications for 

understanding how much carbon is stored in Earth. 

DCO Midterm Report

1. Quantities

OVERVIEW

Page 4: Carbon in  Earth

EPC Spin transition and elasticity of Mg-Fe carbonate. RF  Ultradeep diamonds formed within Earth’s transition zone trap inclusions of minerals. EPC New deep Earth water model that permits computation of carbon transport by aqueous fluids.1EPC  The puzzling transition of low-density water to high-density water.2 EPC Direct measurements of carbonate ion speciation in high-pressure aqueous fluids.3 RF Redox state of mantle Cottrell and Kelley paper4 and Stagno et al Nature5

EPC Magnesite as a deep carbon reservoir6EPC Liu et al.7 spin transition Same lab ferromag as a C host8RF Mantle Temperature at Mid-Ocean Ridges (Kelley Perspective9 in Science)RF Carbon Dioxide Content of the Icelandic Mantle Barry et al10RF Mantle Carbon Content Influences Plate Tectonics Sifre et al11RF Remarkably, Carbon Isotope fractionation in the mantle Mikhail et al 12RF Geochem of diamonds: Review by Shirey and Shigley13RF EPC Olivine inclusion and mantle compositionRF Diamond formation in 2 stages, 1 billion years apart Bulanova et al14EPC C coordination in silicates Navrotsky et al 15EPC Polymeric carbon dioxide as a stable form of C in the mantle16

EPC Two groups solve structure of polymeric CO217, 18

EPC Galli and Sverjensky dielectric constant of water19RF Hirschman review20

EPC Refractive index of water under increasing pressure21

RF Diamondite formation in the mantle Mikhail et al22DL CoDL developmentsDL Presence of life in crust Lever et al23 DL Global estimates of subseafloor life D’Hondt PNAS24

DCO Midterm Report

1. Quantities

DISCOVERIES TO DATE

Page 5: Carbon in  Earth

DCO Midterm Report

The discovery of water-rich ringwoodite in a diamond by Pearson et al. changes our view of the water (and presumably other volatile) content of mantle.  The paper raises the possibility of many oceans being stored in the transition zone.  

This finding may have significant implications for our understanding of the deep water/hydrogen cycle and the possible effects on the properties of the minerals in that region. This result is an example of what carbon (i.e., diamond) can tell us about the abundance of other components (i.e., water) in the deep Earth. 

Pearson, D. G. et al., Hydrous mantle transition zone indicated by ringwoodite included within diamond, Nature 507, 221-224 (2014).

1. Quantities

Diamond Reveals Oceans of Water at Depth

BREAKTHROUGHS

Page 6: Carbon in  Earth

DCO Midterm Report

The implementation of two methodologies for the analysis of clumped methane isotopes is a far-reaching development/discovery and potentially can integrate research from all DCO communities. Clumped methane isotopes can reveal otherwise inaccessible secrets regarding the source and formation mechanism of methane. Clumped methane isotope measurements are triggering new research on isotopic fractionation that will result in an improved understanding of the biogeochemistry of methane in the environment. Future extensions to larger carbon-bearing molecules is particularly relevant for the identification of unique biosynthetic signaturesThe quantum cascade laser to measure the isotopologues of methane to distinguish geological and biological sources of methane in the atmosphere, hydrosphere, and lithosphere is a tremendous achievement.

Ono, S. et al., Measurement of a doubly-substituted methane isotopologue, 13CH3D, by tunable infrared laser direct absorption spectroscopy, Analyt. Chem. 86, 6487-6494 (2014); Young, E. et al.to be published 1. Quantities

Clumped Isotope Signatures of Methane Sources

BREAKTHROUGHS

Page 7: Carbon in  Earth

What is the global carbon budget and nature of the deep carbon cycle? The global carbon flux extends the question of carbon reservoirs, an area with 

major implications for human energy resources at depth.   Carbon moves in crustal fluids sequestered naturally but also it is released through 

multiple mechanisms. The intake and release on the global scale constitutes the deep carbon cycle.  Owing to advances made by DCO scientists in the past five years, we are just now 

beginning to understand that cycle, including both large apparent discrepancies between intake and release and the nature of smaller epicycles

DCO Midterm Report

2. Movements

OVERVIEW

Page 8: Carbon in  Earth

 

RF Zeolites masquerading carbonititic tuffs25DE RiMG vol edited by Navrotsky and Cole on C sequestration26

RF Metastable graphite intermediates in crustal fluids Foustoukos27

RF Graphite formation during subduction RF DECADE activities: Costa Rica and Nicaragua RF Carbon in silicate melts28RF Measuring outgassing Mather29RF Diamond morphology suggests how they move from mantle to surface30

DE DL Methane hydrate field movement31RF New Constraints on the Deep Carbon Cycle (carbonates and CO2 degassing)RF Ague paper movement of CO2 from subduction zone to volcanoes32

RF Clues in Chilean lavas Mather et al33RF Earth’s ancient carbon cycle and the first ice age34

RF Mars’ ancient carbon cycle35

RF Rajdeep Dasgupta chapter in RiMG36

RF Movements of diamonds through mantle Walter et al Science37

RF Diamonds and the beginning of plate tectonics on Earth Shirey and Richardson38

EPC/RF Oxygen fugacity at forearcs and carbon movement in the mantle Lazar et al39

DCO Midterm Report DISCOVERIES TO DATE

2. Movements

Page 9: Carbon in  Earth

DCO Midterm Report

A significant achievement is the discovery of the doubling of known volcanic CO2 emissions.  Significant outgassing is connecting deep carbon to the air we breathe, and the numbers are only increasing.  Couple this with diffuse outgassing (e.g. from tectonic regions), and we have a long term contribution to make to climate change models, and to societies concern over carbon and tax. 

There is a great opportunity to consolidate our connection with NASA and look at our own planet with scrutiny with some urgency to assess carbon-based and greenhouse gases.  At a time when the hydrocarbon industry is lurching towards shale gas, etc., we need spatially-resolved and time-resolved atmospheric data all the more, to assess the before and after of regional and local energy operations in the context of the natural environment.  

Burton, M. R. et al., Deep carbon emissions from volcanoes, in Reviews in Mineralogy and Geochemistry: Carbon in Earth (eds. R. Hazen, Jones, A. P. and Baross, J. A.), 75, 323-354 (2013). 2. Movements

Volcanic Degassing

BREAKTHROUGHS

Page 10: Carbon in  Earth

DCO Midterm Report

The summer school in Yellowstone captured a facet of volcanic degassing similarly under appreciated on the planet, namely that active carbon emission through a nominally "inactive" system rivals the most "active" volcano, and the interaction between fluids in the crust and degassing carbon directly connects, again,  the biosphere to  deep earth volatiles requiring multidisciplinary science to untangle (and a new generation of carbon scientists we are truly helping to educate and transform).  

Capturing young scientists' minds and enabling pathways for their early careers in DCO are tremendous legacy goals we are already starting to achieve.  They will also need the valuable databases, which DCO is creating. 

2. Movements

Volcanic Degassing (cont’d)

BREAKTHROUGHS

Page 11: Carbon in  Earth

DCO Midterm Report

The upper mantle is pervasively soaked in a carbonate-rich melt. This melt is the precursor to all magmatism, and also lubricates the plates. 

DCO has helped revolutionized understanding of the mantle melting beneath mid-ocean ridges. It is very likely that precursors to Earth’s most important magmatic system, mid-ocean ridges, are carbonate-rich melts of low melt fraction. These react progressively with the mantle as they rise, eventually becoming MORB. If true, all CO2 degassed at ridges originated carbonate rich magma. This explains recent evidence for deeper melting beneath ridges. 

Dasgupta, R., A. Mallik, K. Tsuno, A. C. Withers, G. Hirth, and M. M. Hirschmann, Carbon-dioxide-rich silicate melt in the Earth's upper mantle, Nature 493, 211-215 (2013).

2. Movements

Carbon-soaked upper mantle melts

BREAKTHROUGHS

Page 12: Carbon in  Earth

What forms and structures of carbon and carbon-bearing phases exist and prevail in Earth?

• Novel carbon structures and chemical reactions are being documented, observationally, experimentally and theoretically.

• Structurally, electronically, and chemically, carbon can behave mimic other elements in the Periodic Table (e.g., silicon, which is cosmochemically abundant). 

• Novel carbon phases are leading to new physics, and to carbon-based devices with potential implications for materials science and technology.  

• The questions of diversity of carbon forms also touches on biological diversity. Observations over the past five years have led to remarkable findings, and surprising correlations are emerging.

 

DCO Midterm Report

3. Forms

OVERVIEW

Page 13: Carbon in  Earth

 EPC  Spanu et al43 EPC Struzhkin et al49 defects in synthetic diamond for quantum computing EPC Extreme Conditions and the Periodic Table Bini et al47EPC Carbon substitution for Si in ceramics Navrotsky et al40EPC Methane forms heavy hydrocarbons not just diamond and H2 Lobanov et al 41

EPC Novel Carbon structure various authors (not sure DCO contrib)EPC Carbon storage in the mantle Wu and Buseck42RF Formation of carbonados Ishibashi et al44EPC “Amorphous” carbon forms crystalline material at high P Mao et al45 EPC High pressure crystals of methane clathrates Tulk et al46EPC More from Wu and Buseck48EPC Superconducting C polymers at high P Dias et al50EPC Using moissanite to compress methane51

DL The deep virosphere Baross et al52DL Subseafloor microbial populations 2 publications53, 54DL Distribution of similar microbes around the world Moser55DL Review of deep life Colwell et al56DL Directed evolution at high pressure Vanlint et al (not sure DCO contrib)57DL Deep nematode worms TC Onstott et al58DL Visualizing diversity Pham et al59

DCO Midterm Report DISCOVERIES TO DATE

3. Forms

Page 14: Carbon in  Earth

DCO Midterm Report

One of the greatest discovery of DCO to date is the calculation of the dielectric constant of water under extreme conditions of pressure and temperature. This has opened the possibility of understanding deep fluids, thanks to the DEW model and to a series of experiments.

This advance has deeply changed our understanding of the chemistry of deep fluids that are a major agent of transport of carbon. Whilst carbon in deep fluids has mostly been considered previously as oxidized, DCO has changed the view -- with potentially a lot more reduced carbon in the deep Earth. 

The model is a fundamental and lasting contribution with the promise of revolutionizing our understanding mantle fluid geochemistry. 

Pan, D. et al., Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth, Proc. Nat. Acad. Sci. 110, 6646-6650 (2013). 3. Forms

Nature of Water at Depth

BREAKTHROUGHS

Page 15: Carbon in  Earth

DCO Midterm Report

The detailed determination of the crystal structure of ‘polymeric’, silica-like CO2 , together with the determination of their stability range, open vast new possibilities for carbon storage at high pressure. This is now even more viable with demonstration of CO2-SiO2 solid solution, forming a cristobalite-type mixed polymeric structures.

Santoro, M. et al., Carbon enters silica forming a cristobalite-type CO2-SiO2 

solid solution, Nature Comm. 5, 3761 (2014).

3. Forms

BREAKTHROUGHS

Dense Polymeric SiO2-CO2

Page 16: Carbon in  Earth

What is the origin of various forms of carbon? What can deep carbon tell us about the origins of life, Earth, and the Solar System? How do conditions of the deep Earth affect life and what does this tell us about the origins of life? Carbon and carbon-bearing materials includes prebiotic systems and life 

itself.  Carbon atoms are born in exploding supernova, but what has been their 

subsequent trajectory ot the present?  Thus, we use carbon as historical tracer, a recorder of events into the depths 

of not only space but also time. We have the opportunity to study carbon in meteorites, planetary surfaces, 

and planetary atmospheres. Serpentinization and geologic hydrogen production fuels deep ecosystems. New discoveries made in mineralogy provide fossil evidence for early life.  New measurements are allowing us to distinguish between abiotic and biotic 

sources of hydrocarbons

DCO Midterm Report

4. Origins

OVERVIEW

Page 17: Carbon in  Earth

DL Microhydrogarnets that may have constituted a prebiotic environment of prime interest for studying the emergence of the first microbial cells on earth.EPC ZnS cleanly catalyzes a fundamental chemical reaction – the making and breaking of a C-H bond.63 DE Ancient water and implications for origins of life here and on other planets.67 DE  Continental Lithosphere doubles global hydrogen flux estimates for the deep biosphereDE DL Aluminum catalysis of serpentinization60

DE DL Low-temperature serpentinization McCollom et al61DE DL Serpentinization in subseafloor mantle and origins of life Menez et al62DE DL Sphalerite catalyzes hydrothermal reactions Shipp, Shock et al63DE DL Minerals present on Earth at birth of life Hazen64

RF DL Earth’s atmosphere at the birth of life Marty et al65 and Pujol, Marty, Burgess et al34DL Fossils of ancient ecosystem (oldest maybe?) found in Australia Noffke and Hazen66

DL Methane as a source of food Boetius paper68DL Piezophillic organisms in nature and the lab (review) Picard and Daniel69DE DL Geochemical constraints on deep life Pockalny, D’Hondt et al70DL Sulfate starvation in deep ecosystems Bowles, Hinrichs et al71

DCO Midterm Report DISCOVERIES TO DATE

4. Origins

Page 18: Carbon in  Earth

DCO Midterm Report

Shipp, J. A. et al., Sphalerite is a geochemical catalyst for carbon−hydrogen bond activation, Proc. Nat. Acad. Sci. 111, 11642-11645 (2014).

The generation of hydrocarbons by mineral reactions, and in particular, the catalysis of organic reactions by sulfide minerals, in the laboratory represent a major advance

This discovery bridges the gap between organic and inorganic chemistry, which is in itself a scientific game-changer, and places the generation of DNA-type molecules and eventually life within the mineral world. 

The most favorable systems for eventful interactions between organic and inorganic compounds, i.e. hydrothermal systems, have been identified/confirmed. 

4. Origins

Hydrocarbon Generation at Mineral Surfaces

BREAKTHROUGHS

Page 19: Carbon in  Earth

DCO Midterm Report

The discovery of very old waters in the Canadian shield by Holland et al. has important implications for very ancient deep biosphere. Noble gas data are used to determine the protozeroic age of the waters.

Holland, G. et al., Deep fracture fluids isolated in the crust since the Precambrian era, Nature 497, 357-360 (2013).

4. Origins

The existence of very old and deep pockets of water, isolated from the surface for almost the last 3 billions of years, has potential to host  (more recent) microbial life sustained by hydrogen. This feature, as the result of the interaction between rocks and water, may be the most important one through the history of the Earth and other planets in the Solar System and is closely related to the origin of life.

3 Billion Year Old Water

BREAKTHROUGHS

Page 20: Carbon in  Earth

Kallmeyer et al., Global distribution of microbial abundance and biomass in subsea floor sediment, Proc. Natl. Acad. Sci. 109 16213-16216 (2012).

Research from the DCO has reduced estimates of microbes in the subseafloor by one order of magnitude relative to Barney Whitman’s classic PNAS paper on the number of microbes in different environmental contexts.

DCO Midterm Report

The influential work by Kallmeyer et al. provides to date most accurate estimate of the microbial biomass in the global subseafloor; it improves the mechanistic understanding of the distribution of microbial life in the subsea floor.

4. Origins

BREAKTHROUGHS

Subsurface Microbial Biomass

Page 21: Carbon in  Earth

DCO Midterm Report

A research team using 200 borehole samples from 32 continental sites world estimated the first global estimate of H2 sources (radiolysis, serpeninization) from the Precambrian continental lithosphere. This previously neglected H2 source is on the order of in put from marine hydrothermal systems and may double the global hydrogen flux estimate for the deep biosphere

4. Origins

BREAKTHROUGHS

Hydrogen Fuels the Deep Biosphere

Sherwood Lollar, B., et al. Continental lithosphere doubles global hydrogen flux estimates for the deep biosphere, submitted

Page 22: Carbon in  Earth

Cameos  DCO Early Career Scientist Network Bringing People Together Panorama Mass Spectrometer Serpentine Days Workshop Kazan Workshop on Abiotic Hydrocarbons DCO Global Field Studies 

DCO Midterm Report

Page 23: Carbon in  Earth

DCO Midterm Report

Earth through time and the origins of life are now questions we will address in the next five years.  The natural connections with space and planetary research as a future area we may be able to enhance, which stem from the outstanding concept of mineral evolution and mineral diversity at Earths dynamic exosphere.

Origins of Life

NEXT FIVE YEARS

Deep Carbon and Deep Time

The deep time data Infrastructure, including new fundamental models along with vast data and modeling resources in an open-access platform could be a major breakthrough, at least in terms of its contribution to the global scientific community to do new things.  This effort is building a new scientific instrument, available to everyone, that will be an engine of discovery about Earth's changing geosphere and biosphere through deep time. The statistical and visualization features we have in mind will make this "instrument" an absolutely new and transformative advance.

Page 24: Carbon in  Earth

DCO Midterm Report

Earth’s Carbon Budget

DCO has created a world-wide community of scientists who really work together according to a well-defined plan,  linking strands of research that complement one another and that otherwise would have been carried out out of sync.  The problem of the Earth carbon budget is truly a global one and needs to be tackled at the appropriate scale.

New Carbon-based Materials

New discoveries of the physics and chemistry of carbon under extreme conditions raise the possibility of creating altogether new carbon and carbon-rich materials with extraordinary properties for a range of new technologies (e.g., superconductors, sensors, thermoelectrics, high-strength components)

Biophysics (“EPC-B”)Systematic exploration of fundamental physico-chemical origin of biological processes in extreme environments could lead to breakthroughs in understanding form and function of organisms and ecosystems in the deep biosphere.

NEXT FIVE YEARS

Page 25: Carbon in  Earth

Diamond Nanothreads[Fitzgibbons et al., Nature Mat., 2014]

Page 26: Carbon in  Earth

A potential new satellite would be able to be targeted with a high resolution footprint of ~500 m and would counterbalance existing global missions like OCO-2.  It could be attractive to industry and agencies for monitoring, both anthropogenic and natural emissions. and we could point at an active volcano when it erupts.  

The first satellite detection of CO2 in an explosive eruption plume would open the door for finally quantifying point sources of carbon into the atmosphere, needed to understand natural vs anthropogenic fluxes. This discovery from the DCO will end up affecting climate research as well.

DCO Midterm Report

Satellite Observations of Carbon Emissions

NEXT FIVE YEARS

Page 27: Carbon in  Earth

DCO Midterm Report

An important new opportunity is he on-going Rosetta mission which sniffs out gases released by comet 67P/CG, 500 millions km from the Earth. Results will certainly give strong constraints on the origin of water, carbon and other volatile elements on terrestrial planets. And this is exploration at its purest level. DCO scientists are associated with groups who built and are in charge of the mass spectrometers on board of the spacecraft.  The origin of this carbon is clearly a first-order cosmological problem.

Missions Beyond the Earth

NEXT FIVE YEARS

Page 28: Carbon in  Earth

DCO Midterm Report

Nature of Extrasolar Carbon

The recognition that planets are commonplace in the cosmos, some having variable compositions, including some that are carbon-rich, open up new prospects for the DCO where its techniques, methodologies, and expertise could be applied to the nature of carbon well beyond our Solar System (“Deep Space Carbon Observatory”).

New Physics of Ultradense Carbon Materials

New facilities and instruments for exploring matter and materials to P-T conditions that are orders of magnitude more extreme than current approaches.  Both P and T can be independently controlled from cold, warm, and hot dense matter approaching stellar interiors.  The succcess is demonstrated by the landmark highly accurate measurement of the compression of diamond to 50 Mbar at the National Ignition Facility (LLNL).

NEXT FIVE YEARS